Nanotechnology Division Department of Electronics and Communication Engineering

Periyar Nagar, Vallam Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: <u>headnano@pmu.edu</u> Fax: +91- 4362 - 264660 Web: www. pmu.edu

think • innovate • transform

Board of Studies in Nanotechnology Division / Department of ECE

Curriculum (I –IV Semesters) & Syllabus (I-IV Semesters)

(For the candidates admitted from 2018-19 onwards Based on Outcome Based Education)

For

M.Tech (Nanotechnology)

2 Year Degree Programme

APPROVED DATE					
BOS	28.05.2018				
ACM	09.06.2018				

VISION	To be a University of global dynamism with excellence in knowledge and innovation
	ensuring social responsibility for creating an egalitarian society.

MISSION	UM1	Offering well balanced programmes with scholarly faculty and state-of- art facilities to impart high level of knowledge.
	UM2	Providing student - centred education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
	UM3	Involving progressive and meaningful research with concern for sustainable development.
	UM4	Enabling the students to acquire the skills for global competencies.
	UM5	Inculcating Universal values, Self respect, Gender equality, Dignity and Ethics.

CORE VALUES

- ↓ Student centric vocation
- **4** Academic excellence
- **4** Social Justice, equity, equality, diversity, empowerment, sustainability
- **4** Skills and use of technology for global competency.
- **4** Continual improvement
- **4** Leadership qualities.
- Societal needs
- ↓ Learning, a life long process
- Team work
- **4** Entrepreneurship for men and women
- Rural development
- **4** Basic, Societal, and applied research on Energy, Environment, and Empowerment.

VISION	To be a pioneer division in offering Nanotechnology education and research with
	special emphasis on Energy, Environment and Health which would help to serve
	industry and society for developing cost effective and useful means

MISSION	DM1	To offer UG, PG and Research Programmes in Nano Technology
	DM2	To incorporate innovative teaching learning methods and teaching aids
	DM3	To nurture requirements of the emerging industrial needs to the students
	DM4	To cultivate the spirit of Entrepreneurship
	DM5	To explore solutions via Nano for the needs of society

Table: 1 Mapping of University Mission (UM) and Department Mission (DM)

	DM1	DM2	DM3	DM4	DM5	Total
UM1	3	2	2	2	2	11
UM2	2	2	2	2	2	10
UM3	2	2	2	2	2	10
UM4	2	1	1	1	1	6
UM5	1	0	1	0	0	2

1-Low 2- Medium 3 – High

PROGRAMME EDUCATIONAL OBJECTIVES

Based on the mission of the department, the programme educational objectives is formulated as

PEO1	Be employed in fields of engineering such as research, development, applications, testing, processing, analyzing and technical sales or service as an engineering technologist
PEO2	Start an entrepreneurial firm
PEO3	Achieve positions of increased responsibility (technical and/or supervisory) within an organization; and progress through advanced degree or certificate programs or participate in continuing education in engineering, business, and/or other professionally related fields.
PEO4	Progress through advanced degree or certificate programs or participate in continuing education in engineering, business, and/or other professionally related fields.

Mapping of Department Mission (DM) with Program Educational Objectives (PEOs)

	DM1	DM2	DM3	DM4	DM5
PEO1	3	2	1	1	2
PEO2	0	1	1	3	2
PEO3	1	-	2	-	-
PEO4	3	1	3	3	2
	7	4	7	7	6
	2	1	2	2	2

1 - Low Relation

2 - Medium Relation

3 – High Relation

GRADUATE ATTRIBUTES

- 1. <u>Engineering knowledge:</u> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. <u>Problem analysis:</u> Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. <u>Conduct investigations of complex problems:</u> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. <u>Modern tool usage:</u> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. <u>The engineer and society:</u> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. <u>Environment and sustainability:</u> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. <u>Ethics:</u> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. <u>Communication:</u> Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. <u>Project management and finance:</u> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. <u>Life-long learning</u>: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM OUTCOMES

PO 1	To strengthen the application of fundamental knowledge in Mathematics, Science, Engineering and Technology for the benefit of mankind.						
PO 2	To enhance the technical competence of identifying, analyzing and creating appropriate engineering solutions.						
PO 3	To provide demand based training to meet the graduates readily employable by the industries.						
PO 4	To create opportunities for the students to take on research projects for solving the problems of the future.						
PO 5	To cultivate the habit of lifelong learning for successful career and life.						
PO 6	To inculcate qualities of team work and leadership for creating future leaders of the nation.						
PO 7	To impart awareness of social responsibilities for becoming a responsible citizen.						
	PROGRAM SPECIFIC OUTCOME						
PSO 1	Knowledge and generation of intellectual capital (Paper, poster, presentation, patent etc) in the areas of Nano architecture, Nanomaterials, Nanosystems, and their encompassing applications						
PSO 2	Ability to identify tailor made Nano applications for Local and Societal needs by (a) Improving efficiency of existing systems by developing innovative low cost solutions (b) New product development						

PO/GA	GA 1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA 10	GA 11	GA 12
PO1	3	1	0	0	1	0	0	0	0	0	0	0
PO2	1	3	2	2	1	2	2	1	1	1	1	1
PO3	1	1	3	1	1	1	1	1	1	1	1	1
PO4	1	1	1	3	3	3	3	0	0	0	2	2
PO5	1	1	1	1	3	1	0	0	0	0	1	3
PO6	1	1	1	1	1	3	0	0	0	0	0	0
PO7	1	1	1	1	1	3	2	1	0	0	0	0
PSO1	2	2	2	2	2	2	2	1	1	2	2	2
PSO2	2	2	2	2	2	2	2	0	0	0	0	2

Mapping of Program Outcomes (POs) with Graduate Attributes (GAs)

0-Relation1- Low Relation2 - Medium Relation3-High RelationTable 3 Mapping of Program Outcomes (POs) with Program Educational Objectives (PEOs)

PEO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
PEO 1	3	3	2	3	2	2	1	2	2
PEO 2	2	3	2	3	3	2	2	2	2
PEO 3	0	0	1	0	0	1	2	2	2
PEO 4	2	2	3	1	2	1	1	2	2

0-No Relation 1- Low Relation 2 – Medium Relation

3-High Relation

STRUCTURE OF M.TECH NANOTECHOLOGY PROGRAMME (FULLTIME)

S.No	Course Type	Symbol	Credits				
1.	Professional core courses	PCC	12				
2.	Professional Elective courses	PEC	15				
3.	Open Elective Course	OEC	3				
4.	Professional Core Courses –Lab	PCC-L	6				
5.	Mandatory Courses	MC	2				
6.	Audit	MC-Audit	0				
7.	Project	PR	30				
	Total						

Sl.No	Course	Course Name	Semester	Credits
	Code			
1.	YNT101	Fundamentals of Nanotechnology	Ι	3
2.	YNT102	Nano Fabrication and Synthesis	Ι	3
	1111102	Techniques		
3.	YNT201	Nanomaterials Characterization	II	3
		Techniques		
4.	YNT202	Computational Nanotechnology	II	3

PROFESSIONAL CORE COURSES (PCC)

PROFESSIONAL ELECTIVE COURSES

Sl.No	Course	Course Name	Semester	Credits
	Code			
1.	YNT103A	Societal Implications of		3
		Nanotechnology		
2.	YNT103B	Nanochemistry		3
3.	YNT103C	Nanomedicine	I	3
4.	YNT103D	Nanotechnology in		3
		Energy Conversion and		
		Storage		
5.	YNT104A	Nanoscale Magnetic		3
		Materials and Devices		
6.	YNT104B	Metallopolymer		3
		Nanocomposites	Ι	
7.	YNT104C	Properties of		3
		Nanophase Materials		
8.	YNT104D	Nanotoxicology		3
9.	YNT203A	Green Manufacturing	II	3
		Technology		
10.	YNT203B	Advanced Crystal		3
		Growth Techniques		
11.	YNT203C	Carbon Nanotube		3
		Electronics and		
		Devices		
12.	YNT203D	Nanoscale Integrated		3
		Computing		
13.	YNT204A	Micro/Nano Devices	II	3
		and Sensors		

14.	YNT204B	Spectroscopic		3
		Techniques for		
		Nanomaterials		
15.	YNT204C	Thin Film Science and		3
		Technology		
16.	YNT204D	Micro and Nano		3
		Emulsions		
17.	YNT301A	Nanotechnology	III	3
		Business Applications		
		and Commercialization		
18.	YNT301B	Nano – CMOS Circuit		3
		and Physical Design		
19.	YNT301C	Nanomanipulation &		3
		Assembly		J

OPEN ELECTIVE COURSES

Sl.No	Course Code	Course Name	Semester	Credits
1.		Business Analytics	III	3
2.		Industrial Safety	III	3
3.		Operations Research	III	3
4.		Cost Management of Engineering Projects	III	3

PROFESSIONAL CORE COURSES – LAB

Sl.No	Course	Course Name	Semester	Credits
	Code			
1.	YNT105	Simulation of Nanostructure &	Ι	2
	111103	Nanomaterials Lab		
2.	YNT106	Nano Fabrication and Synthesis	Ι	2
	1111100	Techniques Lab		
3.	YNT205	Nanomaterials Characterization	II	2
		Techniques Lab		
4.	YNT206	Computational Nanotechnology	II	2
		Lab		
5.	YNT303	Dissertation Phase - I	III	10
6.	YNT401	Dissertation Phase - II	IV	16

MANDATORY COURSES

Sl.No	Course Code	Course Name	Semester	Credits
1.		Research Methodology and IPR	I	2
2.		Mini Project	II	2

MANDATORY COURSES - AUDIT

Sl.No	Course Code	Course Name	Semester	Credits
1.		English for Reasearch Paper Writing	Ι	0
2.		Constitution of India	II	0

CURRICULUM - REGULATION 2018

AICTE	Course	Course Title		С	redi	its			H	ours	
Abbr	Code		L	Т	Р	Total	L	Т	Р	S.S	Total
PCC	YNT101	Fundamentals of Nanotechnology	3	0	0	3	3	0	0	0	3
PCC	YNT102	Nano Fabrication and Synthesis Techniques	3	0	0	3	3	0	0	0	3
PEC	YNT103*	Professional Elective Course I	3	0	0	3	3	0	0	1	4
PEC	YNT104*	Professional Elective Course II	3	0	0	3	3	0	0	1	4
PCC-L	YNT105	Simulation of Nanostructure & Nanomaterials Lab	0	0	2	2	0	0	4	0	4
PCC-L	YNT106	Nano Fabrication and Synthesis Techniques Lab	0	0	2	2	0	0	4	0	4
MC	YRM107	Research Methodology and IPR	2	0	0	2	3	0	0	0	3
MC – Audit	YEGOE1	English for Research Paper Writing	0	0	0	0	2	0	0	0	2
	Total					18	17	0	8	2	27

SEMESTER I

Total Credits – 18

SEMESTER II

AICTE	Course	Course Title		C	redi	ts			Н	ours	
Abbr	Code		L	Т	P	Total	L	Т	Р	S.S	Total
PCC	YNT201	Nanomaterials Characterization Techniques	3	0	0	3	3	0	0	1	4
PCC	YNT202	Computational Nanotechnology	3	0	0	3	3	0	0	1	4
PEC	YNT203*	Professional Elective Course III	3	0	0	3	3	0	0	1	4
PEC	YNT204*	Professional Elective Course IV	3	0	0	3	3	0	0	0	3
PCC-L	YNT205	Nanomaterials Characterization Techniques Lab	0	0	2	2	0	0	4	0	4
PCC-L	YNT206	Computational Nanotechnology Lab	0	0	2	2	0	0	4	0	4
PR	YNT207	Mini Project	0	0	2	2	0	0	4	0	4
MC – Audit	YPSOE1	Constitution of India	0	0	0	0	2	0	0	0	2
		Total	12	0	6	18	14	0	12	3	29

Total Credits – 18

SEMESTER III

AICTE	Course	Course Title	Credits					Hours					
Abbr	Code		L	Т	Р	Total	L	Т	Р	S.S	Total		
PCC	YNT301*	Professional Elective Course V	3	0	0	3	3	0	0	0	3		
OE		Open Elective	3	0	0	3	3	0	0	0	3		
PR	YNT303	Dissertation Phase - I	0	0	10	10	0	0	20	0	20		
		Total	6	0	10	16	6	0	20	0	26		

Total Credits – 16

SEMESTER IV

AICTE	Course	Course Title	Credits				Hours					
Abbr	code		L	Т	Р	Total	L	Т	Р	S.S	Total	
PR	YNT401	Dissertation Phase - II	0	0	0	16	0	0	32	0	32	
		Total	0	0	0	16	0	0	32	0	32	

Total Credits - 16

Course	Course Title		C	redi	ts			Ho	ours	
Code		L	Τ	Р	Total	L	Τ	Р	S.S	Total
	Professional Elective Co	urse	I-Y	NT1	03*					
YNT103A	Societal Implications of	3	0	0	3	3	0	0	0	3
	Nanotechnology	3	0	0	3	3	0	0	0	3
YNT103B	Nanochemistry	3	0	0	3	3	0	0	0	3
YNT103C	Nanomedicine	3	0	0	3	3	0	0	0	3
YNT103D	Nanotechnology in Energy Conversion and Storage	3	0	0	3	3	0	0	0	3
	Professional Elective Co	urse	e II-`	YNT	104*					
YNT104A	Nanoscale Magnetic Materials and Devices	3	0	0	3	3	0	0	0	3
YNT104B	Metallopolymer Nanocomposites	3	0	0	3	3	0	0	0	3
YNT104C	Properties of Nanophase Materials	3	0	0	3	3	0	0	0	3
YNT104D	Nanotoxicology	3	0	0	3	3	0	0	0	3
	Professional Elective Co	urse	III-	YNI	[203*					
YNT203A	Green Manufacturing Technology	3	0	0	3	3	0	0	0	3
YNT203B	Advanced Crystal Growth Techniques	3	0	0	3	3	0	0	0	3
YNT203C	Carbon Nanotube Electronics and Devices	3	0	0	3	3	0	0	0	3
YNT203D	Nanoscale Integrated Computing	3	0	0	3	3	0	0	0	3
	Professional Elective Co	urse	IV-	YNT	204*					
YNT204A	Micro/Nano Devices and Sensors	3	0	0	3	3	0	0	0	3
YNT204B	Spectroscopic Techniques for Nanomaterials	3	0	0	3	3	0	0	0	3
YNT204C	Thin Film Science and Technology	3	0	0	3	3	0	0	0	3
YNT204D	Micro and Nano Emulsions	3	0	0	3	3	0	0	0	3
	Professional Elective Co	urse	• V-`	YNT	301*					
YNT301A	Nanotechnology Business Applications and Commercialization	3	0	0	3	3	0	0	0	3
YNT301B	Nano – CMOS Circuit and Physical Design	3	0	0	3	3	0	0	0	3
YNT301C	Nanomanipulation & Assembly	3	0	0	3	3	0	0	0	3

LIST OF PROFESSIONAL ELECTIVE COURSE

Course	Course Title		Credits			Hours				
Code		L	Т	Р	Total	L	Т	Р	S.S	Total
	Business Analytics	3	0	0	3	3	0	0	0	3
	Industrial Safety	3	0	0	3	3	0	0	0	3
	Operations Research	3	0	0	3	3	0	0	0	3
	Cost Management of Engineering Projects	3	0	0	3	3	0	0	0	3

LIST OF OPEN ELECTIVE COURSE

Overall Credits – 68

SYLLABUS

SEMESTER I

	YNT101	L	Τ	P	С
COURSE NAME	FUNDAMENTALS OF NANOTECHNOLOGY	3	0	0	3
PREREQUISITE	APPLIED PHYSICS AND APPLIED	L	Т	Р	Н
S	CHEMISTRY				
		3	0	0	3
UNIT I Emer	gence of Nanotechnology				9
Historical Develop	ment: ancient works on Nanomaterials; emergence o	f nar	notech	nolog	y with
special reference to	Feynman. Size & Scales: definition of nanostructures	s; ins	ight i	nto th	e nano
world; intervention	into the nano world; building blocks of nanotechnology	. Scie	entific	revo	lutions;
types of nanotechr	ology & nano machines; basic problems & limitation	ns; oj	oportu	inities	at the
nanoscale; time and	length scale in structures; energy landscapes.				
UNIT II Nanos	cale Phenomena				9
Density of states;	unnelling; chemical bonds (types & strength). Intermo	lecul	ar &	inter-	particle
forces. Molecular	& crystalline structures; particles & grain boundaries	. Cov	alent	& c	oulomb
interactions; in	tions involving polar molecules & polarization; weak i	ntern	nolecu	ılar fo	orces &
total intermolecula	pair potentials. Forces between solvation, hydration;	poly	mers	at su	urfaces;
adhesion. Thermod	ynamics of self-assembly. Hierarchical structures &	Func	tional	ity. E	Bulk to
surface transition.	Spatial & temporal scales; concept of confinement	t; ro	le of	surfa	aces in
nanotechnology de	vices; surface reconstruction; dangling bonds & surfa	ce st	ates;	interf	aces &
Casmir force.					
UNIT III Funct	ional Nanomaterials				9
Fullerenes, carbon	nanotube, graphene. Monomers & polymers. Amorph	nous,	cryst	alline	, semi-
crystalline; crystals	polycrystals. Composite materials; ceramics, alloys, sil	icates	. Qua	ntum	hetero-
structures: quantum	well, quantum wire, quantum dot, nanofossils, smart du	ist, po	orous	& nor	nporous
inorganic materials,	hydro gel & aerosols.				
Bio nanomaterials:		elles,	lipos	ome's	, block
	bio mimetic systems, bio ceramics, dendrimers, mice		-		
copolymers. Nanon		-film	trans	istors,	single-
copolymers. Nanon electron transistors,	bio mimetic systems, bio ceramics, dendrimers, mice naterials for molecular electronics & optoelectronics: thin	-film	trans	istors,	single-
copolymers. Nanon	bio mimetic systems, bio ceramics, dendrimers, mice naterials for molecular electronics & optoelectronics: thin	-film	trans	istors,	single-
copolymers. Nanon electron transistors, superconductors.	bio mimetic systems, bio ceramics, dendrimers, mice naterials for molecular electronics & optoelectronics: thin	-film	trans	istors,	single-
copolymers. Nanon electron transistors, superconductors. UNIT IV Struct	bio mimetic systems, bio ceramics, dendrimers, mice naterials for molecular electronics & optoelectronics: thin light-emitting devices, photovoltaic materials, nanomag	-film gnetic	trans: mate	istors, erials	single- & nano
copolymers. Nanon electron transistors, superconductors. UNIT IV Struct Crystal structure:	bio mimetic systems, bio ceramics, dendrimers, mice naterials for molecular electronics & optoelectronics: thin light-emitting devices, photovoltaic materials, nanomage	-film gnetic	trans mate	istors, erials of ma	single- & nano 9 aterials,
copolymers. Nanon electron transistors, superconductors. UNIT IV Struct Crystal structure: nanoparticles, nano	bio mimetic systems, bio ceramics, dendrimers, mice naterials for molecular electronics & optoelectronics: thin light-emitting devices, photovoltaic materials, nanomage tures of Nanomaterials crystal planes, Miller indices, crystal orientation. Mo	-film gnetic	trans: mate	istors, erials of ma terials	single- & nano 9 aterials, s, solid
copolymers. Nanon electron transistors, superconductors. UNIT IV Struct Crystal structure: nanoparticles, nano disordered nanostru	bio mimetic systems, bio ceramics, dendrimers, mice naterials for molecular electronics & optoelectronics: thin light-emitting devices, photovoltaic materials, nanomage cures of Nanomaterials crystal planes, Miller indices, crystal orientation. Mo owires, nanorods, nanoclusters, powders of nano cryst	-film gnetic	trans: mate	istors, erials of ma terials	single- & nano 9 aterials, s, solid
copolymers. Nanon electron transistors, superconductors. UNIT IV Struct Crystal structure: nanoparticles, nano disordered nanostru screw dislocation) a	bio mimetic systems, bio ceramics, dendrimers, mice naterials for molecular electronics & optoelectronics: thin light-emitting devices, photovoltaic materials, nanomage tures of Nanomaterials crystal planes, Miller indices, crystal orientation. Moreover, nanorods, nanoclusters, powders of nano cryst actures. Imperfection in solids: dislocations in single cr	-film gnetic	trans: mate	istors, erials of ma terials	single- & nano 9 aterials, s, solid

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45
TEXT			
1. "Nanotechnology:	Basic Science & Emergin	g Technologies," Mick Wilson,	Kamali
Kannangara & Ge	off Smith, Overseas Press	s India Private Limited, 2005.	
2. "Amorphous and l	Nanocrystalline Materials	: Preparation, Properties and Ap	plications," A.
Inoue & K. Hashin	noto (Eds.), Springer, 200	01.3. "	
E REFERENCES			
1. <u>http://nupex</u>	.eu/index.php?g=textcon	tent/materialuniverse/sizeofthin	gs⟨=en
2. <u>http://www</u>	slideshare.net/niraliakaba	ari3/ppt-of-phynanophysics	
3. http://www	nanoscienceworks.org/pu	ublications/books/4/9781420048	8056/instruct
ors/ITNS-L	ecture-1.pdf		
4. <u>http://ipn2.e</u>	pfl.ch/lns/lectures/nanoso	cience/lecturenotes/cour-1.pdf 5	
5. www.unirop	ma2.it/didattica/NANOSC	CIENZE/deposito/L1.ppt	
mp.misis.ru	/docs/courses/17/Mats_N	loscow_2.ppt б.	
6. http://uw.ph	ysics.wisc.edu/~himpsel/	/Nano/lectures.htm	
E REFERENCES			
www.nptel.ac.in			
www.mit.co.in			

COURSE CODE	YNT102		L	Τ	Р	C
COURSE NAME	NANO FABRICATION AND SYN	NTHESIS	3	0	0	3
	TECHNIQUES					
PREREQUISITES			L	Т	Р	Η
			3	0	0	3
UNIT I Basic	oncepts of Nano Fabrication					9
	ate; realistic projections; outline of vari			-	-	
concepts of nano-str	ctured materials; nucleation: surface nuclea	tion, growth, g	rain s	ize d	istrib	ution
nano-particle transp	rt in low density media; unnel nano pha	se thermodyna	amics	; coa	gulati	on o
nano particles; det	rmination of grain size; aggregate form	ation; mass f	ractal	mo	rpholo	ogies
Requirements for an	deal semiconductor nano structure; clean ro	om technology	y			
UNIT II Physic	l Techniques					9
Physical processes	n semiconductor nano structures. Introduct	ion; thin film	depo	sitio	n met	hods
fundamentals of film	deposition; thermal evaporation; spray py	rolysis; flame	pyro	lysis;	mole	ecula
beam epitaxy; puls	d laser deposition; sputter deposition; di	fferent types	sputte	ering	proc	esses
thermal forming pro	esses; plasma processes; physical methods	for the prepa	ratior	n of r	nano t	ubes
types of nano tubes;	new forms of carbon nano tubes; properties	of nano tubes	; plas	ma a	rcing;	lase
methods; pyrolytic	ynthesis; zeolites & template powders;	layered silicat	es; s	oft c	hemic	al 8
combustion method	Laser fusion target fabrication techniques	; inorganic cap	osule	fabri	cation	i; and
cluster formation by	aser ablation					
UNIT III Chemi	al Methods					9
Chemical unnel d	position (CVD); plasma-enhanced CVD;	low pressure	plasm	a CV	√D; r	netal
organic CVD (MO	VD); photo-enhanced CVD; electron enh	anced CVD;	Laser	indu	iced (CVD
atmospheric pressur	CVD; reactive ion etching (RIE) molecu	lar-beam epita	xy (I	MBE)	; che	mica
beam epitaxy (CBE)	chemical bath deposition; electrochemical s	synthesis of na	no sti	uctu	res. So	ol-ge
processing; fundame	ntals of sol-gel process; sol-gel synthesis m	ethods for oxi	ides;	other	inorg	ganic
and nano composite	; the Pecheni method; silica gel; zirconia an	nd Yttrium gel	; aluı	ninos	silicat	e gel
polymer nano comp	sites. Mechanochemistry: grinding and mill	ing devices				
UNIT IV Self-A	sembly					9
Bottom-up approach	Self-assembly; self-assembled mono layer	s; directed ass	embly	; lay	er-by-	-laye
assembly; spontane	us formation & ordering of nano structu	res; nano-flui	dics	to bu	uild s	ilicoı
devices with feature	comparable in size to DNA, proteins & oth	er biological n	nolecu	iles; o	contro	ol and
manipulation of m	crofluidic and nanofluidic processes for	lab-on-a-chip	dev	ices.	Lang	gmui
Blodgett films; e	ectrochemical self-assembly of oxide/	dye composi	ites.	Self	-asser	nble
nanobiomaterials;	attern definition; pallsin transfer; ator	nic & mole	cular	ma	nipul	ation
biomineralization: c	atterni derinition, punsin transfer, ator					
	lloidal quantum dots; self-assembly techniq	ues				
	-	ues				9
UNIT V Lithog	lloidal quantum dots; self-assembly techniq		otolith	ograj	phy;	9 phase
UNIT V Lithog Top-down approach	lloidal quantum dots; self-assembly techniq aphic Techniques	hy, EUV pho				phase
UNIT V Lithog Top-down approach shifting masks; x-ra	lloidal quantum dots; self-assembly techniques aphic Techniques to nanolithography; immersion lithograp	hy, EUV pho ces; e-beam a	nd fo	cusec	l ion-	phase bean

growth techniques (po	lymerization, directed ass	embly). Proximal probe nanc	lithography; STM;
AFM; resists & imagin	g layers for proximal prob	es	
LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45
TEXT			
1. "Introduction to Nat	notechnology," Frank J. Ov	wens & Charles P. Poole, Wile	y-IEEE, 2003.
2. "Encyclopedia of N	lanoscience & Nanotechno	logy," H. S. Nalwa, American	Scientific
Publishers, 2004.			
3. "The Powder Metho	od," L.V. Azaroff & M. J. I	Buerger, McGraw-Hill, 1958	
REFERENCES			
1."Introduction to Nand	otechnology," Frank J. Ow	ens & Charles P. Poole, Wiley-	-IEEE, 2003.
2. "Encyclopedia of Na	noscience & Nanotechnolo	ogy," H. S. Nalwa, American S	cientific
Publishers, 2004.			
2. "X-ray Diffraction P	Procedures," H. P. Klung &	L. E. Alexander, John Wiley&	z Sons.
3. "The Powder Metho	d," L.V. Azaroff & M. J. E	Buerger, McGraw-Hill, 1958	
E REFERENCES			
1. www.nptel.ac.in			
2. <u>www.mit.co.in</u>			

COURSE CODE	YNT105	L	Т	Р	С
COURSE NAME	SIMULATION OF NANOSTRUCTURE & NANOMATERIALS LAB	0	0	2	2
PREREQUISITES	Applied Physics, Applied Chemistry, Introduction to nanotechnology and Materials Science	L	Т	Р	Н
		0	0	4	4

List of Experiments

- 1. Calculate the band structure of a crystal
- 2. Transport calculations with ATK
- 3. Phonon Band structure, Electrical and Heat Transport of a Graphene Nanoribbon
- 4. Electron-phonon coupling properties of a Graphene Nanoribbon
- 5. Optical Properties of Silicon
- 6. Study of NiSi2–Si interface
- 7. Study of Bi_2Se_3 topological insulator
- 8. Study of Effective band structure of random alloy InGaAs
- 9. Study of Li-air battery interface
- 10.Study of Li-ion diffusion in LiFePO₄ for battery applications

COURSE CODE	YNT106	L	Т	Р	С
COURSE NAME	NANO FABRICATION AND SYNTHESIS TECHNIQUES LAB	0	0	2	2
PREREQUISITES	Material Science, Nanofabrication Techniques and Introduction to nanotechnology	L	Т	Р	Н
		0	0	4	4

List of Experiments

Any Twelve Experiments :

- 1. Synthesis of zno nanoparticles by Wet Chemical Precipitation
- 2. Synthesis of zero valent iron nanoparticles(fe³⁺) by Wet Chemical Precipitation
- 3. Synthesis of Polymerosomes by Water Oil emulsification Technique
- 4. Synthesis of cadmium sulphide nanoparticles by Sol-Gel Method
- 5. Synthesis of pva/peg film by Spin Coating
- 6. ZnO thin film fabrication by Dip Coating Method
- 7. Synthesis of silver nanoparticles
- 8. Synthesis of zns nanoparticles
- 9. Fabrication of copper nanoparticles by Electrodeposition Techniques
- 10. Synthesis of cu/pva nanofibers by Electrospinning
- 11. Nanoarray Fabrication by Oxide Dot Fabrication
- 12. Synthesis of silver nanofibers
- 13. Herbal nanopowder fabrication by Ball Milling
- 14. Circuit fabrication by Manual Lithography Techniques
- 15. Thin film Fabrication by Spray Pyrolysis
- 16. Thin film fabrication By Physical Vapour Deposition
- 17. Nanopowder fabrication by Chemical Vapour Deposition

COURSE CODE		YNT201	l		L	Т	Р	С
COURSE NAME		NANON	ATERIALS		3	0	0	3
		CHARA	CTERIZATIO	N				
		TECHN	IQUES					
PREREQUISITES	5				L	Т	Р	Η
					3	0	0	3
UNIT I Introd	luction to spec	ctroscopy				9)	
Basic principles an	nd applications	of UV-Vis-NIR	, FTIR, FT-Ram	an, Photolur	mines	scenc	e, N	MR,
ESR and Light Scat	ttering methods	5.						
UNIT II X – ra	y techniques					9)	
X-ray powder diffr	action –Quanti	itative determinat	tion of phases; S	tructure anal	ysis,	sing	le cr	ystal
diffraction techniqu	ues - Determir	nation of accurate	e lattice paramet	ters - structu	ire a	nalys	is-pr	ofile
analysis - particle	size analysis	using Scherer f	ormula- Particle	Size Analy	zer-	Ellip	som	etry-
thickness measuren	nents							
UNIT III Electr	on Spectrosco	ру				9)	
X-Ray Photoelectr	on Spectrosco	py, Auger Elect	tron Spectroscop	y, X-Ray C	Chara	cteriz	zatio	n of
Nanomaterials –	EDAX and	WDA analysis	– EPMA – A	Applications	to	nano	mate	rials
characterization								
characterization	anical, Magne	tic and electrical	properties meas	surement		9)	
characterization					ties c			ls in
characterizationUNITIVMecharNanoindentation	rinciples- elasti	c and plastic def	ormation -mecha	nical propert		of ma	teria	
characterizationUNITIVMecharNanoindentationprsmalldimensions-	rinciples- elasti models for	c and plastic def interpretation	ormation -mecha of Nanoindentat	nical propert	place	of ma ment	teria cui	ves-
characterizationUNITIVMecharNanoindentationprsmalldimensions-Nanoindentationdata	inciples- elasti models for ta analysis met	c and plastic def interpretation of thods-Hardness te	ormation -mecha of Nanoindentat esting of thin film	nical propert ion loaddisp is and coating	place gs- N	of ma ment /ID s	teria cui imula	rves- ation
characterizationUNITIVMecharNanoindentationprsmalldimensions-	inciples- elasti models for ta analysis met n. Vibration	c and plastic defe interpretation of thods-Hardness te Sample Magnet	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda	nical propert ion loaddisp is and coating	place gs- N	of ma ment /ID s	teria cui imula	rves- ation
characterization UNIT IV Mecha Nanoindentation pr small dimensions- Nanoindentation da of nanoindentation Measurement of Ma	inciples- elasti models for analysis met m. Vibration agnetic and elec	c and plastic defe interpretation of thods-Hardness te Sample Magnet	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda	nical propert ion loaddisp is and coating	place gs- N	of ma ment /ID s	iteria cui imula PPM:	rves- ation
characterization UNIT IV Mecha Nanoindentation pr small dimensions- Nanoindentation da of nanoindentation Measurement of Ma	inciples- elasti models for analysis met n. Vibration agnetic and electrometric Metho	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials.	nical propert ion loaddisp is and coating nce Spectro	place gs- N oscop	of ma ment /ID s y- 1	iteria cui imula PPM:	rves- ation S, -
characterizationUNITIVMecharNanoindentationprsmalldimensions-NanoindentationdaofnanoindentationMeasurementof MaUNITVElectr	inciples- elasti models for ta analysis met n. Vibration agnetic and elec cometric Metho emical cells; elec	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials.	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials.	nical propert ion loaddisp as and coating nce Spectro	gs- Noscop	of ma ment /ID s y- 1 9 Meas	iteria cui imula PPMS	eves- ation S, -
characterizationUNITIVMecharNanoindentationprsmalldimensionsNanoindentationdaofnanoindentationdasurementof MaUNITVElectrTypes of electrocher	inciples- elasti models for analysis met n. Vibration agnetic and elect cometric Methor emical cells; elected current-Volta	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) characte	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I nce; voltage 1	blace gs- N bscop Hall meas	of ma ment /ID s y- I Meas urem	iteria cui imula PPMS	eves- ation S, -
characterizationUNITIVMecharNanoindentation prsmalldimensionsNanoindentation dationofnanoindentationMeasurement of MatrixUNITVElectrTypes of electrocherDynamicandstatic	inciples- elasti models for analysis met n. Vibration agnetic and elect cometric Methor emical cells; elected current-Volta	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) characte	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I nce; voltage 1	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	iteria cui imula PPMS	rves- ation S, - nent; I-V
characterizationUNITIVMecharNanoindentationprsmalldimensionsNanoindentationdaofnanoindentationMeasurementof MaUNITVElectreTypesof electrocheDynamicand station	inciples- elasti models for analysis met n. Vibration agnetic and elect cometric Methor emical cells; elected current-Volta	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) characte electron beam inc	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar duced current me	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I nce; voltage n asurement (E	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	iteria cur imula PPMS PMS suren ents;	rves- ation S, - nent; I-V
characterizationUNITIVMecharNanoindentationprsmalldimensions-NanoindentationdaofnanoindentationMeasurementof MaUNITVElectrTypesof electrocheDynamicand station	inciples- elasti models for analysis met n. Vibration agnetic and elect cometric Methor emical cells; elected current-Volta	c and plastic definiterpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) character electron beam inclusion LECTURE	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar duced current me TUTORIAL	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I nce; voltage 1 asurement (E PRACTIC	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterizationUNITIVMecharNanoindentationprsmalldimensionsNanoindentationdaofnanoindentationMeasurementof MaUNITVElectreDynamicand staticanalysisby AFM anTEXT	inciples- elasti models for analysis met n. Vibration agnetic and elect cometric Methor emical cells; elect current-Volta nd STM (STS);	c and plastic definiterpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) character electron beam inclusion LECTURE	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitan duced current me TUTORIAL 0	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I nce; voltage 1 asurement (E PRACTIC	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterizationUNITIVMecharNanoindentationmsmalldimensionsNanoindentationdaofnanoindentationdofnanoindentationMeasurementof MaUNITVElectreTypes of electrocheDynamic and staticanalysis by AFM andstaticTEXT1.Skoog, Holler	inciples- elasti models for analysis met n. Vibration agnetic and elect cometric Methor emical cells; elect current-Volta nd STM (STS);	c and plastic definiterpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) character electron beam interpretation beam interp	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar duced current me TUTORIAL 0 ental Analysis"	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I nce; voltage 1 asurement (E PRACTIC	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterizationUNITIVMecharNanoindentation prsmalldimensionsNanoindentation daofnanoindentationdofnanoindentationMeasurementUNITVElectrTypes of electrocheDynamicanalysisby AFM andTEXT1.Skoog, Holler,2.Rainer Waser	inciples- elasti models for na analysis met n. Vibration agnetic and elec cometric Meth emical cells; elec current-Volta nd STM (STS);	c and plastic definiterpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) character electron beam interpretation beam interp	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar duced current me TUTORIAL 0 ental Analysis"	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I nce; voltage 1 asurement (E PRACTIC	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterizationUNITIVMecharNanoindentation prsmalldimensionsNanoindentation dationofnanoindentationofnanoindentationdationMeasurementof MathematicationMeasurementof MathematicationUNITVElectrationTypes of electrocherDynamic and staticationanalysis by AFM andstaticationTEXT1.Skoog, Holler, 2.2.Rainer Waser	inciples- elasti models for na analysis met n. Vibration agnetic and elec cometric Meth emical cells; elec current-Volta nd STM (STS);	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) characte electron beam ind LECTURE 45	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar duced current me TUTORIAL 0 ental Analysis"	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I nce; voltage 1 asurement (E PRACTIC	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterizationUNITIVMecharNanoindentationmsmalldimensionsNanoindentationdaofnanoindentationdasurement of MaUNITVElectreTypes of electrocheDynamicand staticanalysis by AFM andTEXT1.Skoog, Holler2.Rainer Waser3.Rainer WaserREFERENCES	inciples- elasti models for ta analysis met n. Vibration agnetic and elec cometric Metho emical cells; ele c Current-Volta nd STM (STS);	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) characte electron beam ind LECTURE 45 nciples of Instrume alibratin Standards gy"Wiley-VCH	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar duced current me TUTORIAL 0 ental Analysis" s"Wiley-VCH	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I ace; voltage 1 asurement (E PRACTIC 0	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterizationUNITIVMechaNanoindentation prsmalldimensionsNanoindentation dationofnanoindentationofnanoindentationMeasurementof MatteriorMeasurementof MatteriorUNITVElectraDynamic and staticanalysis by AFM andTEXT1.Skoog, Holler2.Rainer Waser3.Rainer Waser1."Handbook	inciples- elasti models for ta analysis met n. Vibration agnetic and elec cometric Metho emical cells; elec current-Volta nd STM (STS); , Nieman " Prin " Nanoscale Ca " Nanometrolo of Nanostructu	c and plastic definiterpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) character electron beam interpretation beam interp	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar duced current me TUTORIAL 0 ental Analysis" s"Wiley-VCH	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I ace; voltage 1 asurement (E PRACTIC 0	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterization UNIT IV Mecha Nanoindentation pro- small dimensions- Nanoindentation da of nanoindentation Measurement of Ma UNIT V Electro Types of electroche Dynamic and static analysis by FM and TEXT 1. Skoog, Holler 2. Rainer Waser 3. Rainer Waser 3. Rainer Waser 1. Skoog Koller 2. Rainer Waser 3. Rainer Waser 3. Rainer Waser 3. Rainer Waser 3. Rainer Waser 3. Rainer Waser 3. Rainer Waser 4. S. Nalw	inciples- elasti models for ta analysis met n. Vibration agnetic and elec cometric Meth emical cells; ele c Current-Volta nd STM (STS); , Nieman " Prin " Nanoscale Ca " Nanometrolo of Nanostructu va (Ed.), Acader	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) characte electron beam ind LECTURE 45 heiples of Instrume alibratin Standards gy"Wiley-VCH red Materials and mic Press, 2000.	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremer eristics; capacitar duced current me TUTORIAL 0 ental Analysis" s"Wiley-VCH	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I ace; voltage 1 asurement (E PRACTIC 0	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterizationUNITIVMechaNanoindentation prsmalldimensionsNanoindentation daofnanoindentationdofnanoindentationMeasurementUNITVElectrTypes of electrocheDynamic and staticanalysis by AFM andTEXT1.Skoog, Holler2.Rainer Waser3.Rainer Waser1."HandbookH. S. Nalw2."Electron Magentation"	inciples- elasti models for ta analysis met n. Vibration agnetic and elec cometric Meth emical cells; ele c Current-Volta nd STM (STS); , Nieman " Prin " Nanoscale Ca " Nanometrolo of Nanostructu va (Ed.), Acader licroscopy and	c and plastic definiterpretation of thods-Hardness terms Sample Magnet extrical properties of ods of Analysis extrode potentials. Age (I-V) character electron beam index electron beam in	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremer eristics; capacitar duced current me TUTORIAL 0 ental Analysis" s"Wiley-VCH	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I ace; voltage 1 asurement (E PRACTIC 0	blace gs- N bscop Hall meas	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V
characterization UNIT IV Mecha Nanoindentation provident signal dimensions Nanoindentation dation of nanoindentation dation Measurement of Matrix Measurement of Matrix Measu	inciples- elasti models for ta analysis met n. Vibration agnetic and elect cometric Metho emical cells; elect current-Volta nd STM (STS); , Nieman " Prin " Nanoscale Ca " Nanometrolo of Nanostructu va (Ed.), Acader licroscopy and Francis.	c and plastic defe interpretation of thods-Hardness te Sample Magnet ctrical properties of ods of Analysis ectrode potentials. age (I-V) characte electron beam ind LECTURE 45 heiples of Instrume alibratin Standards gy"Wiley-VCH red Materials and mic Press, 2000.	ormation -mecha of Nanoindentat esting of thin film ometer, Impeda of nanomaterials. Hall measuremen eristics; capacitar duced current me TUTORIAL 0 ental Analysis" s"Wiley-VCH Nanotechnology	nical propert ion loaddisp ns and coating nce Spectro nt; Quantum I ace; voltage 1 asurement (E PRACTIC 0	alace gs- N oscop Hall meas EBIC) CAL	of ma ment /ID s y- l 9 Meas urem	teria cui imula PPMS P suren ents;	rves- ation S, - nent; I-V

- 4. "Electronic Structure of Materials," A. P. Sutton, Oxford University Press, 1993.
- "Semiconductor Materials & Device Characterization," D. K. Schroder, John Willy & Sons

E REFERENCES

- 1. www.nptel.ac.in
- 2. <u>www.mit.co.in</u>

COURSE CODE	YNT202				L	Т	P	C
COURSE NAME	COMPUT	TATIONAL NAN	NOTECHNOLO	GY	3	0	0	3
PREREQUISITES	5				L	Т	Р	H
					3	0	0	3
UNIT I Phys	cal Modeling							9
Basics of simulatio	n and modeling	g - Role of simul	ation in model ev	aluation and	l stud	ies - j	princ	iples
used in modeling -	Concept of sys	stem and environr	nent - continuous	and discrete	e syste	em - 1	linea	r and
nonlinear system -	stochastic activ	vities - static and	dynamic models -	Advantage	s and	Disac	lvant	tage
of simulation.								
UNIT II Com	putation Base	d Simulation						9
Technique of sime	ilation - calu	mnious system	models - experi	mental natu	are of	i sim	ulati	on
numerical computation	ion techniques	s - Monte Carlo r	nethod - analog a	nd hybrid si	imulat	ion -	feed	bac
systems.								
UNIT III Prob	ability Conce	pts in Simulation	n					9
Stochastic variables	- discrete and	d continuous prob	pability functions	- random n	umbe	rs - g	ener	atio
of random numbers	- variance red	uction techniques	- determination of	of the length	of sir	nulat	ion r	uns
Output analysis.								
UNIT IV Mole	cular Modelii	ng						9
Introduction to mol	ecular modeli	ng – molecular n	nechanics- molect	ılar dynami	cs bas	sic pr	incip	oles
Computing transpo	t in motorials							
computing transpo	t III materials	- Simulation of	crystals with che	mical disor	der at	lattic	ce si	tes -
			-					
Design of compound structural property l	nd semiconduc	ctor alloys using	-					
Design of compound structural property l	nd semiconduc by first princip	ctor alloys using	molecular simula				trical	
Design of compound structural property IUNIT VMicrStudies on microstr	nd semiconduc by first princip o and Nanost ucture system	ctor alloys using le calculations. ructure Modelin s using atomistic	molecular simula g and mesoscale s	imulations - Op	tical , – Soli	elect	trical uid p	and 9 ohase
Design of compound structural property IUNIT VMicrStudies on microstr transition under compounder compounder	nd semiconduc oy first princip o and Nanost ucture system ifinement – M	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals	g and mesoscale s - Simulation pro	tions – Op imulations tocol – Sem	tical , – Soli	elect	trical uid p	and 9 ohase
Design of compound structural property IUNIT VMicrStudies on microstr	nd semiconduc oy first princip o and Nanost ucture system ifinement – M	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals	g and mesoscale s - Simulation pro	tions – Op imulations tocol – Sem	tical , – Soli	elect	trical uid p	and 9 ohase
Design of compound structural property IUNIT VMicrStudies on microstr transition under compounder compounder	nd semiconduc oy first princip o and Nanost ucture system ifinement – M	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals	g and mesoscale s - Simulation pro	tions – Op imulations tocol – Sem	tical , – Soli niempi	elect d liqu ical 1	trical uid p	9 9 ohase ods
Design of compound structural property IUNIT VMicrStudies on microstr transition under compounder compounder	nd semiconduc oy first princip o and Nanost ucture system ifinement – M	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz	molecular simula g and mesoscale s - Simulation pro ation and analysis	imulations – Op imulations tocol – Sem	tical , – Soli niempi	elect d liqu ical 1	trical uid p	and 9 ohase ods AL
Design of compound structural property b UNIT V Micr Studies on microstructure transition under com Density functional t	nd semiconduc oy first princip o and Nanost ucture system ifinement – M	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL	imulations – Op imulations tocol – Sem s. PRACTI	tical , – Soli niempi	elect d liqu ical 1	trical uid p neth	and 9 ohase ods AL
Design of compound structural property by UNIT V Micr Studies on microstructural transition under con Density functional to TEXT	nd semiconduc oy first princip o and Nanostr ucture system finement – M heory mehods	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL	imulations – Op imulations – tocol – Sem s. PRACTI 0	tical , – Soli niempr CAL	elect d liqu ical 1	trical uid p neth	and 9 ohase ods AL
Design of compound structural property b UNIT V Micr Studies on microstructures transition under com Density functional to TEXT 1. Erwin Kreyzig,	nd semiconduc oy first princip o and Nanostr ucture system finement – M heory mehods	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0	imulations – Op imulations – tocol – Sem s. PRACTI 0	tical , – Soli niempr CAL	elect d liqu ical 1	trical uid p neth	and 9 ohase ods AL
Design of compound structural property by UNIT V Micr Studies on microstructures transition under con Density functional to TEXT 1. Erwin Kreyzig, REFERENCES	nd semiconduc oy first princip o and Nanostr ucture system ifinement – M heory mehods	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0	imulations – Op imulations tocol – Sem PRACTI 0 ey & Sons, 1	tical , – Soli niempi CAL 2004	elect	trical uid p methe TOT 45	9 9 9 9 9 9 0 0 8 8 8 8 8 8 8 8 8 8 8 8
Design of compound structural property by UNIT V Micr Studies on microstructures transition under con Density functional to TEXT 1. Erwin Kreyzig, REFERENCES	nd semiconduc oy first princip o and Nanostr ucture system ifinement – M heory mehods	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0	imulations – Op imulations tocol – Sem PRACTI 0 ey & Sons, 1	tical , – Soli niempi CAL 2004	elect	trical uid p methe TOT 45	9 9 bhas ods
Design of compound structural property by UNIT V Micr Studies on microstructures transition under con Density functional to TEXT 1. Erwin Kreyzig, REFERENCES	nd semiconduc oy first princip o and Nanostr ucture system ifinement – M heory mehods "Advanced Er K.I., G. Deepa	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45 agineering Mather	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0	imulations – Op imulations tocol – Sem PRACTI 0 ey & Sons, 1	tical , – Soli niempi CAL 2004	elect	trical uid p methe TOT 45	9 9 bhas ods
Design of compouns structural property b UNIT V Micr Studies on microstr transition under cor Density functional to TEXT 1. Erwin Kreyzig, REFERENCES 1. Ramachandran – Principles and a	nd semiconduc oy first princip o and Nanostr ucture system ifinement – M heory mehods "Advanced Er K.I., G. Deepa pplications", S	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45 ngineering Mathen a, K.Namboori "C	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0	itions – Op imulations tocol – Sem s. PRACTI 0 ey & Sons, 2 emistry and	tical , – Soli niempr CAL 2004 molec	elect d liqu ical n ical n	trical uid p methe FOT 45 mode	and 9 bhas ods AL
Design of compouns structural property I UNIT V Micr Studies on microstr transition under con Density functional to TEXT 1. Erwin Kreyzig, REFERENCES 1. Ramachandran – Principles and a	nd semiconduc oy first princip o and Nanostr ucture system ifinement – M heory mehods "Advanced Er K.I., G. Deepa pplications", S ecular modelin	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45 agineering Mather a, K.Namboori "Conspringer, 2008. ang for the design of	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0 matics", John Wil	itions – Op imulations tocol – Sem s. PRACTI 0 ey & Sons, 2 emistry and	tical , – Soli niempr CAL 2004 molec	elect d liqu ical n ical n	trical uid p methe FOT 45 mode	and 9 bhas ods AL
Design of compouns structural property b UNIT V Micr Studies on microstr transition under con Density functional t TEXT 1. Erwin Kreyzig, REFERENCES 1. Ramachandran - Principles and a 2. BeenaRai, "Mon Taylor & France 3. Chistopher.J. C	nd semiconduc by first princip o and Nanostr ucture system ifinement – M heory mehods "Advanced Er K.I., G. Deepa pplications", S ecular modelin s group, 2012. ramer "Essen	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45 agineering Mathen a, K.Namboori "C Springer, 2008. ang for the design of	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0 matics", John Wil	imulations – Op imulations tocol – Sem s. PRACTI 0 ey & Sons, 1 emistry and ance chemic	tical , – Soli niempr CAL 2004 molec	elect d liqu ical n ical n zular	trical uid p nethe fOT. 45 mode	and 9 bhas ods AL eling
Design of compoun structural property I UNIT V Micr Studies on microstr transition under con Density functional t TEXT 1. Erwin Kreyzig, REFERENCES 1. Ramachandran - Principles and a 2. BeenaRai, "Mo Taylor & France	nd semiconduc by first princip o and Nanostr ucture system ifinement – M heory mehods "Advanced Er K.I., G. Deepa pplications", S ecular modelin s group, 2012. ramer "Essen	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45 agineering Mathen a, K.Namboori "C Springer, 2008. ang for the design of	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0 matics'', John Wil Computational che of Novel performation	imulations – Op imulations tocol – Sem s. PRACTI 0 ey & Sons, 1 emistry and ance chemic	tical , – Soli niempr CAL 2004 molec	elect d liqu ical n ical n zular	trical uid p nethe fOT. 45 mode	and 9 ohase ods AL eliną
Design of compouns structural property I UNIT V Micr Studies on microstr transition under com Density functional t TEXT 1. Erwin Kreyzig, REFERENCES 1. Ramachandran - Principles and a 2. BeenaRai, "Mo Taylor & France 3. Chistopher.J. C wiley& sons 20	nd semiconduc by first princip o and Nanostr ucture system ifinement – M heory mehods "Advanced Er K.I., G. Deepa pplications", S ecular modelin s group, 2012. ramer "Essen	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45 agineering Mathen a, K.Namboori "C Springer, 2008. ang for the design of	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0 matics'', John Wil Computational che of Novel performation	imulations – Op imulations tocol – Sem s. PRACTI 0 ey & Sons, 1 emistry and ance chemic	tical , – Soli niempr CAL 2004 molec	elect d liqu ical n ical n zular	trical uid p nethe fOT. 45 mode	and 9 bhas ods AL eling
Design of compouns structural property b UNIT V Micr Studies on microstr transition under con Density functional t TEXT 1. Erwin Kreyzig, REFERENCES 1. Ramachandran - Principles and a 2. BeenaRai, "Mon Taylor & France 3. Chistopher.J. C	nd semiconduc by first princip o and Nanostr ucture system ifinement – M heory mehods "Advanced Er K.I., G. Deepa pplications", S ecular modelin s group, 2012. ramer "Essen	ctor alloys using le calculations. ructure Modeling s using atomistic odeling of metals (DFT) - Visualiz LECTURE 45 agineering Mathen a, K.Namboori "C Springer, 2008. ang for the design of	molecular simula g and mesoscale s - Simulation pro ation and analysis TUTORIAL 0 matics'', John Wil Computational che of Novel performation	imulations – Op imulations tocol – Sem s. PRACTI 0 ey & Sons, 1 emistry and ance chemic	tical , – Soli niempr CAL 2004 molec	elect d liqu ical n ical n zular	trical uid p nethe fOT. 45 mode	and 9 ohase ods AL eling

COURSE CODE	YNT205	L	Т	Р	С
COURSE NAME	NANOMATERIALS CHARACTERIZATION TECHNIQUES	0	0	1	1
PREREQUISITES	Applied Physics , Applied Chemistry, Introduction to nanotechnology and Materials Science	L	Т	Р	Н
		0	0	2	2

List of Experiments

- 1. UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.
- 2. Determination of Food Quality by UV Spectroscopic Methods.
- 3. Experimental studies on Thermal and Electrical properties of NiO2 thin film using SEM
- 4. Experimental setup for the measurement of the electrical resistivity and thermopower of thin films and bulk materials
- 5. Measuring Magnetization by Induction method
- 6. To determine the composition of a piece of tire tread using thermogravimetric analysis (TGA).
- 7. Analysis of the Thermal Properties of Ammonium Nitrate and Polystyrene by Differential Scanning Calorimetry (DSC)
- 8. Nanomechanical Measurements On Different Materials using Contact Mode AFM.

COURSE CODE	YNT206	L	Т	Р	С
COURSE NAME	COMPUTATIONAL NANOTECHNOLOGY	0	0	1	1
PREREQUISITES		L	Т	Р	Η
		0	0	2	2
List of Experiments					
1. Simulation and mod	leling of simple molecular structures.				
2. Prediction of crysta	ls structure and properties using nanomaterials mod	eling n	nethods	•	
3. Simulation and mo	deling of various nanostructures.				
4. Simulation and mod	leling of metals nanoparticles and their studies.				
5. Development of sin	nulation protocols for the study of nanofilms and na	nosurfa	aces.		
6. Simulation and mod	deling study of nanomaterials and their optical prope	erty stu	dies.		
7. Simulation and mo	deling of nanomaterials and their electronic propert	y studie	es.		
8. Modeling of nanom	aterials and their interaction studies with other mole	cules.			

COURSE CODE	YNT103A		L	Т	Р	С
COURSE NAME	SOCIETAL IMPLICATIO	ONS OF	3	0	0	3
	NANOTECHNOLOGY					
PREREQUISITES			L	Т	Р	Η
			3	0	0	3
UNIT I Economic	E Impact of Nanotechnology					9
Socio-Economic Impa	ct of Nanoscale Science	- Managing the Nanot	echn	ology	Revolu	ution:
Consider the Malcolm	Baldrige National Quality (Criteria - The Emerging	g Na	no Eco	onomy	Key
Drivers, Challenges, an	nd Opportunities -Transcendi	ng Moore's Law with Mo	olecu	lar Ele	ctronic	s and
Nanotechnology -Sem	iconductor Scaling as a M	odel for Nanotechnology	y Co	mmer	cializat	ion -
Sustaining the Impact of	of Nanotechnology on Produc	tivity, Sustainability, and	Equ	ity		
UNIT II Social Sce	enarios					9
Navigating Nanotechr	ology Through Society -	Nanotechnology, Surv	veilla	nce, a	nd So	ciety:
Methodological Issues	and Innovations for Sc	cial Research - Nan	otecl	nnolog	y: So	cietal
Implications: Individu	al Perspectives -Nanotechno	ology and Social Trends	- Fiv	ve Nan	otech S	Social
Scenarios-Technologic	al Revolutions and the Limi	ts of Ethics in an Age of	of Co	ommer	cializat	tion -
Vision, Innovation, and	d Policy					
UNIT III Converg	ing Technology and Govern	ance				9
Nanotechnology's Imp	lications for the Quality of Li	fe - Management of Inn	ovati	ion for	Conve	rgent
	tegration/Penetration Model:	-				-
-	vergence of Nano-, Bio-,	-			-	-
Technologies: Innova	tion, Legal Risks, and So	ciety .Governance- Prob	lems	of Go	overnan	ice of
Nanotechnology -Ins	titutional Impacts of Govern	ment Science Initiatives	- N	anotec	hnolog	y for
National Security						
UNIT IV Ethics an	nd Law					9
Ethics and Law -	Ethical Issues in Nanosci	ience and Nanotechnol	logy:	Refle	ections	and
Suggestions - Ethics	and Nano: A Survey - Lav	v in a New Frontier - A	n Ex	plorati	on of F	Patent
Matters Associated with	th Nanotechnology -The Eth	ics of Ethics - Negotiatio	ons o	ver Qu	ality of	f Life
in the Nanotechnology	Initiative.					
UNIT V Public P	erception and Participation					9
Public Interaction Reso	earch - Communicating Nar	otechnological Risks -	A Pr	oposal	to Adv	vance
Understanding of Na	notechnology's Social Imp	bacts - Nanotechnolog	y in	the	Media	a: A
Preliminary Analysis	s - Public Engagement	with Nanoscale Scienc	e an	d Eng	gineerir	ng -
Nanotechnology: Mov	ving Beyond Risk - Com	munication Streams and	Nar	notechi	nology:	The
(Re)Interpretationof a	New Technology - Nanot	echnology:Societal Impl	icatio	ons —	- Indiv	vidual
Perspectives.						
LECTURE	TUTORIAL	PRACTICAL			TOTA	L
45	0	0			45	
TEXT				•		

1. Mihail C. Roco and William Sims Bainbridge —Nanotechnology: Societal Implications II-Individual Perspectives, Springer (2007)

REFERENCES

- 1. Geoffrey Hunt and Michael D. Mehta —Nanotechnology: Risk, Ethics and Lawl, Earthscan/James & James publication (2006).
- Jurgen Schulte Nanotechnology: Global Strategies, Industry Trends and Applications^{II}, John Wiley & Sons Ltd (2005).
- 3. Mark. R. Weisner and Jean-Yves Bottero —Environmental Nanotechnology applications and impact of nanomateriall, The McGraw-Hill Companies (2007).

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. <u>www.mit.co.in</u>

COURSE CODE	YNT103B		L	Т	Р	С
COURSE NAME	NANOCHEMISTRY		3	0	0	3
PREREQUISITES			L	Т	Р	Η
			3	0	0	3
UNIT I CHEMI	STRY OF NANOPARTICL	ES				9
Synthesis by Organic	Molecule Templates – Mole	ecular Self-Assembly	– Spa	atially	Constr	ained
Synthesis - Biomimeti	c Synthesis – Oxide Nanopar	rticles – Particle size –	Partic	le shap	e – Pa	rticle
density – Composite	structure – Pore structure – S	Surface modification of	f inorg	anic N	anopar	ticles
by organic functional g	groups					
UNIT II ADVAN	CED POLYMERIC MATE	RIALS				9
Polymer chain statis	tics – Static light scatterin	g – Hydrodynamics	of po	lymer	solutio	ons –
Thermodynamics of p	oolymer solutions - Polymer	blends – Solubility	para	meters	and g	group
contribution methods	- High performance thermo-	plastics – Polymer r	nateria	l for j	photov	oltaic
applications – Synthe	etic biomedical polymers -	Optical fibers – A	Assemb	oly of	polyn	ner –
Nanoparticle composit	te material – Fabrication of po	lymer – Applications of	of polyr	ners in	cataly	sis.
UNIT III SUPRA	MOLECULAR CHEMISTR	Y				9
Dendrimers and their	applications - From mole	cular to supramolecul	ar Che	mistry	, Mole	cular
Recognition, Anionic	Coordination Chemistry and	Recognition of Anic	onic Su	ibstrate	es, Mu	ltiple
Recognition Application	ons.					
UNIT IV NANOC	CATALYSIS					9
Types of catalysis – H	Iomogeneous, heterogeneous	and biocatalysis – Cat	alysis	by nan	opartic	eles –
Physical properties of	free and supported nanoparticl	es – Reactivity of supp	orted r	netal n	anopar	ticles
- Gold nanoparticles -	- Preparative methods and pr	operties – Reactions -	- Wate	r gas s	hift –	vinyl
acetate synthesis – hyd	rogenation – CO oxidation – I	Heck reaction – Comm	ercial a	pplicat	ion.	
UNIT V ELECT	ROCHEMISTRY OF NANO	OMATERIALS				9
Electrochemistry of	Semiconductor Nanostruct	ures, Nanostructured	Meta	al Ox	ide F	ilms.
Electrochemistry with	Nanoparticles – Preparatio	n of Nanostructures	s, Elec	trocher	mistry	with
Metallic Nanoparticle	s – Monolayer protected na	anoclusters, Nanoelect	rode I	Enseml	oles, S	ingle
Electron Events, Probing Nanoparticles using Electrochemistry Coupled with Spectroscopy -						
Nanosensors – Biosensors – Chemical Sensors – Electrocatalysis.						
LECTURE	TUTORIAL	PRACTICA	L		TOT	AL
45	0	0			45	
TEXT						
1. Hosokawa.M.,	Nogi.K., Naito.M. Y., "Nanop	particle Technology Ha	ndbool	k" Vol	I, Else	evier,
2007						
2. Pignataro.B., "	Tomorrow's Chemistry Today	y, Concepts in Nanosc	ience,	Organ	ic Mat	erials
and Environme	ntal Chemistry", Wiley-Vch	Verlag GmbH, 2008.				
REFERENCES						
•	mour . R. B., "Polymer Chem	•				
	er.A., Cheetham.A. K., "The G	-	erials: S	Synthe	sis,	
	ications", Wiley-Vch Verlag	C 1 TT 0004				

3. Ozin.G.A., Aresenault.A.C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC
Publishing, 2005.
4.Br'echignac.C ., Houdy.P., Lahmani. M., "Nanomaterials and Nanochemistry", Springer-
Verlag, 2007
E REFERENCES
www.nptel.ac.in

www.mit.co.in

	YNT103C		L	Т	Р	С
COURSE NAME	NANOMEDICINE		3	0	0	3
PREREQUISITES			L	Т	Р	H
			3	0	0	3
UNIT I PROSPE	CT OF NANO-MEDICINE					9
History of the idea –	The Biological and Mechanic	al Traditions – Nano-I	medici	ne – 7	Faxono	omy –
Bio-Pharmaceuticals	– Implantable Materials – Imp	lantable Devices - Su	ırgical	Aids -	- Diag	nostic
Tools - Genetic Test	ing – Imaging – Nanoparticle	es Probe – Case Anal	lysis –	1) Re	siproc	ytes –
Mechanical Artificial	Red Cells – 2) Using DNA as a	a construction medium				
UNIT II NANOC	ARRIERS FOR DRUG DEL	IVERY				9
Fundamentals and rat	ionale of sustained / controlle	d/ targeted drug delive	ery – F	Factors	influe	encing
the design and perform	nance of sustained release / cor	ntrolled / targeted relea	ise pro	ducts ·	– Need	ds and
Requirements of nan	ocarriers – Nanoparticle Flow	: Implications for Dru	ug Del	ivery -	- Poly	meric
Nanoparticles as Drug	Carriers and Controlled Relea	se Implant Devices.				
UNIT III NANO	PARTICULATE SYSTEMS	FOR DRUG DELIVE	ERY			9
Polymer used for the	ne formulation of controlled	drug delivery system	ns –	Classif	icatio	n and
applications of polym	ers – Polymeric Micelles as l	Drug Carriers – Dendr	rimers	as Nar	oparti	culate
Drug Carriers – Nano	capsules preparation, Characte	rization and Therapeut	ic App	licatio	ıs	
UNIT IV LIPID	BASED NANOCARRIERS					9
	BASED NANOCARRIERS	y – Recent Advances	in Micı	oemul	sions a	-
Liposomes for Gener						as
Liposomes for Gener	ic Vaccines and cancer therapy es – Lipoproteins as Pharmace					as
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic	ic Vaccines and cancer therapy es – Lipoproteins as Pharmace	utical Carriers – Solid I				as
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C	tic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu lic core nanocapsules	utical Carriers – Solid I	Lipid N	lanopa	rticles	as
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug	tic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu lic core nanocapsules CARRIERS AS DRUG TARG	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast	Lipid N	lanopa	rticles	as 9
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug	tic Vaccines and cancer therapy es – Lipoproteins as Pharmacer lic core nanocapsules CARRIERS AS DRUG TARG Delivery systems for the delive	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast	Lipid N tro-Inte mphati	lanopa	rticles	as 9
Liposomes for General Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloendothelial S	tic Vaccines and cancer therapy es – Lipoproteins as Pharmacer lic core nanocapsules ARRIERS AS DRUG TARG Delivery systems for the delivery system, Cardiovascular System	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Ly	Lipid N tro-Inte mphati	lanopa	rticles	as 9 AL
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloendothelial S LECTURE	ic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu lic core nanocapsules ARRIERS AS DRUG TARG Delivery systems for the delive ystem, Cardiovascular System TUTORIAL	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI	Lipid N tro-Inte mphati	lanopa	Tract,	as 9 AL
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloendothelial S LECTURE 45 TEXTBOOK	ic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu lic core nanocapsules ARRIERS AS DRUG TARG Delivery systems for the delive ystem, Cardiovascular System TUTORIAL	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI 0	Lipid N tro-Inte mphati	lanopa	Tract,	as 9 AL
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloendothelial S LECTURE 45 TEXTBOOK 1. Parag D., and	ic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu ic core nanocapsules ARRIERS AS DRUG TARG Delivery systems for the delive ystem, Cardiovascular System TUTORIAL 0	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI 0 entagon Press, 2006.	Lipid N tro-Inte mphati	estinal '	Tract, TOT. 45	as as 9 AL
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloender the lial Sy LECTURE 45 TEXTBOOK 1. Parag D., and 2. Vladimir P.T., REFERENCES	ic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu lic core nanocapsules CARRIERS AS DRUG TARG Delivery systems for the delivery system, Cardiovascular System TUTORIAL 0 Ashish., "Nano Medicines", Pe "Nanoparticulates as Drug Ca	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI 0 entagon Press, 2006. urriers", Imperial Colleg	Lipid N tro-Inte mphati	s, 200	rticles Tract, TOT 45 6	AL
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloender the lial Sy LECTURE 45 TEXTBOOK 1. Parag D., and 2. Vladimir P.T., REFERENCES	ic Vaccines and cancer therapy es – Lipoproteins as Pharmacer lic core nanocapsules CARRIERS AS DRUG TARG Delivery systems for the delivery system, Cardiovascular System TUTORIAL 0 Ashish., "Nano Medicines", Pe	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI 0 entagon Press, 2006. urriers", Imperial Colleg	Lipid N tro-Inte mphati	s, 200	rticles Tract, TOT 45 6	AL
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloender Helial Sy LECTURE 45 TEXTBOOK 1. Parag D., and 2. Vladimir P.T., REFERENCES	ic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu lic core nanocapsules CARRIERS AS DRUG TARG Delivery systems for the delivery system, Cardiovascular System TUTORIAL 0 Ashish., "Nano Medicines", Pe "Nanoparticulates as Drug Ca	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI 0 entagon Press, 2006. urriers", Imperial Colleg	Lipid N tro-Inte mphati	s, 200	rticles Tract, TOT 45 6	as 9 AL
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloendothelial Sy LECTURE 45 TEXTBOOK 1. Parag D., and 2. Vladimir P.T., REFERENCES 1. Reza.A., Kent	ic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu lic core nanocapsules CARRIERS AS DRUG TARG Delivery systems for the delivery system, Cardiovascular System TUTORIAL 0 Ashish., "Nano Medicines", Pe "Nanoparticulates as Drug Ca	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI 0 entagon Press, 2006. urriers", Imperial Colleg	Lipid N tro-Inte mphati	s, 200	rticles Tract, TOT 45 6	as 9 AL
Liposomes for Gener Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloendothelial Sy LECTURE 45 TEXTBOOK 1. Parag D., and 2. Vladimir P.T., REFERENCES 1. Reza.A., Kent	ic Vaccines and cancer therapy es – Lipoproteins as Pharmaceu lic core nanocapsules CARRIERS AS DRUG TARG Delivery systems for the delivery system, Cardiovascular System TUTORIAL 0 Ashish., "Nano Medicines", Pe "Nanoparticulates as Drug Ca	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI 0 entagon Press, 2006. urriers", Imperial Colleg	Lipid N tro-Inte mphati	s, 200	rticles Tract, TOT 45 6	as 9 AL
Liposomes for General Drug Delivery Vehicl Drug Carriers – Lipic UNIT V NANO C Nanoparticulate Drug Reticuloendothelial Sy LECTURE 45 TEXTBOOK 1. Parag D., and 2. Vladimir P.T., REFERENCES 1. Reza.A., Kent 2005	ic Vaccines and cancer therapy es – Lipoproteins as Pharmacer lic core nanocapsules ARRIERS AS DRUG TARG Delivery systems for the delivery system, Cardiovascular System TUTORIAL 0 Ashish., "Nano Medicines", Po "Nanoparticulates as Drug Ca us. L., "Smart Nanoparticles in	utical Carriers – Solid I ETING TOOLS ery of drugs to the Gast , lungs, Brain, and Lyn PRACTICAI 0 entagon Press, 2006. urriers", Imperial Colleg	Lipid N tro-Inte mphati	s, 200	rticles Tract, TOT 45 6	as 9 AL

COUDEEN)DE	YNT103D		L	Т	Р	С
		NANOTECHNOLOGY	IN ENERGY	3	0	0	3
CONVERSION AND STORAGE							
PREREQUISITES L T					Т	Р	Н
				3	0	0	3
UNIT I	Introdu	ction					9
Nanotechnol	ogy for	sustainable energy- Energy	y conversion process, ind	direct a	and di	rect e	hergy
conversion-N	Aaterials	for light emitting diode	es-batteries-advanced tur	bines-c	atalyti	c read	ctors-
capacitors-fu	el cells						
UNIT II	Renewa	ble Energy Technology					9
Energy chal	llenges,	development and impleme	entation of renewable of	energy	techn	ologie	s -
		led renewable energy tec					
		o, and poly crystalline		-			
-		arious techniques of Si depo	-				
UNIT III	1	Fuel Cell Technology					9
Micro-fuel		nologies, integration and	performance for micro -	fuel c	ell sv	stems	-thin
		tion methods - design metho	1		•		
UNIT IV		uidic Systems		P	50010	•	9
Nano-electro		•	microfluidic devices	- 1	nano	engine	-
		- power generation - mi				U	
-		apillary forces -Thermocapi	-		-		
UNIT V		en Storage Methods	mary pumping (101) pr			moran	9
	•	hods - metal hydrides - size	za affacte hydrogen etc	rana co	macity	hydr	-
reaction kin		-carbon-free cycle- grav					logen
	ictics -						
hydriding/de							s -
• •	hydriding	kinetics -high enthalpy o					s -
hydriding rea	hydriding action.	kinetics -high enthalpy o	f formation - and thermal			t durin	s - g the
hydriding rea	hydriding action.	kinetics -high enthalpy o	f formation - and thermal PRACTICAL			t durin	s - g the
hydriding rea LECTU 45	hydriding action.	kinetics -high enthalpy o	f formation - and thermal PRACTICAL			t durin	g the
hydriding rea LECTU 45 TEXT	hydriding action. RE	kinetics -high enthalpy o TUTORIAL 0	f formation - and thermal PRACTICAL 0			t durin	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett	hydriding action. RE tani , Direc	kinetics -high enthalpy o TUTORIAL 0 ct energy conversion, Addision	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970).			t durin	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H	hydriding action. RE tani , Direc Hand book	kinetics -high enthalpy o TUTORIAL 0 ct energy conversion, Addision of Batteries and fuel cells, Mc	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984).			t durin	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers ,	hydriding action. RE tani , Direc Hand book Fuel cell t	kinetics -high enthalpy o TUTORIAL 0 ct energy conversion, Addision of Batteries and fuel cells, Mc rechnology handbook. CRC Pr	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003).	mana		t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers ,	hydriding action. RE tani , Direc tand book Fuel cell t Handboo	kinetics -high enthalpy o TUTORIAL 0 ct energy conversion, Addision of Batteries and fuel cells, Mc	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003).	mana		t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers , 4. Vielstich, REFERENC	hydriding action. RE tani , Direc Hand book Fuel cell t Handboo CES	kinetics -high enthalpy o TUTORIAL 0 ct energy conversion, Addision of Batteries and fuel cells, Mc rechnology handbook. CRC Pr	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003). blogy and applications, Wiley	, crc	Press, (t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers , 4. Vielstich, REFERENC 1. J. Twidell a	hydriding action. RE tani , Direc Hand book Fuel cell t Handboo CES and T. Wei	kinetics -high enthalpy o TUTORIAL 0 ct energy conversion, Addision of Batteries and fuel cells, Mc rechnology handbook. CRC Pr k of fuel cells: Fuel cell techno	f formation - and thermal PRACTICAL 0 Newsley Reading, (1970). Graw Hill, (1984). ess, (2003). ology and applications, Wiley ess, E & F N Spon Ltd, Londo	, CRC	Press, (t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers , 4. Vielstich, REFERENC 1. J. Twidell a 2. Martin A G	hydriding action. RE tani , Direc Hand book Fuel cell t Handboo CES and T. Wei Freen, Sola	kinetics -high enthalpy of TUTORIAL 0 ct energy conversion, Addision of Batteries and fuel cells, Mc technology handbook. CRC Pr k of fuel cells: Fuel cell techno r, Renewable Energy Resource	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003). ology and applications, Wiley es, E & F N Spon Ltd, Londo echnology and system applic	, CRC	Press, (t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers , 4. Vielstich, REFERENC 1. J. Twidell a 2. Martin A G Prentice Hal	hydriding action. RE tani , Direc tand book Fuel cell t Handboo CES and T. Wei freen, Sola Il Inc,Engl	kinetics -high enthalpy of TUTORIAL 0 ct energy conversion, Addision of Batteries and fuel cells, Mc echnology handbook. CRC Pr k of fuel cells: Fuel cell technol r, Renewable Energy Resource r cells: Operating principles, te	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003). ology and applications, Wiley es, E & F N Spon Ltd, Londo echnology and system applic).	y, CRC on, (198 ations,	Press, (t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers , 4. Vielstich, REFERENC 1. J. Twidell a 2. Martin A G Prentice Hall 3. H J Moller, 4. Ben G Stree	hydriding action. RE tani , Direc Iand book Fuel cell t Handboo CES and T. Wei freen, Sola Il Inc,Engl Semicono	t kinetics -high enthalpy of TUTORIAL 0 t energy conversion, Addision of Batteries and fuel cells, Mc technology handbook. CRC Pro k of fuel cells: Fuel cell technol r, Renewable Energy Resource r cells: Operating principles, te ewood Cliffs, NJ, USA, (1981	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003). blogy and applications, Wiley es, E & F N Spon Ltd, Londo echnology and system applic). ouse Inc, MA, USA, (1993).	y, CRC	Press, (t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers , 4. Vielstich, REFERENC 1. J. Twidell a 2. Martin A G Prentice Hal 3. H J Moller,	hydriding action. RE tani , Direc Iand book Fuel cell t Handboo CES and T. Wei freen, Sola Il Inc,Engl Semicono	t energy conversion, Addision of Batteries and fuel cells, Mc echnology handbook. CRC Pre k of fuel cells: Fuel cell technol r, Renewable Energy Resource r cells: Operating principles, te ewood Cliffs, NJ, USA, (1981 fuctor for solar cells, Artech He	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003). blogy and applications, Wiley es, E & F N Spon Ltd, Londo echnology and system applic). ouse Inc, MA, USA, (1993).	y, CRC	Press, (t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers , 4. Vielstich, REFERENC 1. J. Twidell a 2. Martin A G Prentice Hall 3. H J Moller, 4. Ben G Stree (1995) E REFEREN	hydriding action. RE tani , Direct Hand book Fuel cell to Handboo CES and T. Wei Freen, Sola II Inc,Engl Semiconce etman, Sol	t energy conversion, Addision of Batteries and fuel cells, Mc echnology handbook. CRC Pre k of fuel cells: Fuel cell technol r, Renewable Energy Resource r cells: Operating principles, te ewood Cliffs, NJ, USA, (1981 fuctor for solar cells, Artech He	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003). blogy and applications, Wiley es, E & F N Spon Ltd, Londo echnology and system applic). ouse Inc, MA, USA, (1993).	y, CRC	Press, (t durin TOT 45	g the
hydriding rea LECTU 45 TEXT 1. M.A. Kett 2. Linden , H 3. Hoogers , 4. Vielstich, REFERENC 1. J. Twidell a 2. Martin A G Prentice Hal 3. H J Moller, 4. Ben G Stree (1995)	hydriding action. RE tani , Direct land book Fuel cell to Handboo CES and T. Wei freen, Sola Il Inc,Engl Semiconce etman, Sol NCES cel.ac.in	t energy conversion, Addision of Batteries and fuel cells, Mc echnology handbook. CRC Pre k of fuel cells: Fuel cell technol r, Renewable Energy Resource r cells: Operating principles, te ewood Cliffs, NJ, USA, (1981 fuctor for solar cells, Artech He	f formation - and thermal PRACTICAL 0 Wesley Reading, (1970). Graw Hill, (1984). ess, (2003). blogy and applications, Wiley es, E & F N Spon Ltd, Londo echnology and system applic). ouse Inc, MA, USA, (1993).	y, CRC	Press, (t durin TOT 45	g the

COURSE CODE	YNT104A]	L	Т	Р	С
COURSE NAME	NANOSCALE MAG	NETIC MATERIAL	S :	3	0	0	3
	AND DEVICES						
PREREQUISITES]	Ĺ	Т	Р	Η
				3	0	0	3
UNIT I Introduction	n						9
Magnetic fundamentals -	-Antiferromagnetic mate	rials – Domains and	the magne	etiza	ation	proc	ess –
	es – Super paramagnet			-			
Induced anisotropy in	thin films –Electron	transport in mag	netic mul	lti-l	ayers	_	Spir
polarized electron tun	neling – Interlayer ex	change coupling -	-Spin relax	katio	on in	mag	netic
metallic layers and mult	ti-layers - Non-equilibr	ium spin dynamics i	n laterally	de	fined	mag	netic
structures							
UNIT II Nanomagne							9
Two-spin channel model	- Two terminal spin ele	ectronics – Three terr	minal spin	ele	ctroni	cs -	Spir
tunneling - Study of fe	erromagnetic and antifer	romagnet interfaces	– Photo	emi	ssion	Ele	ctror
	bsorption Spectroscopy -						ŕ
	lar Dichroism (XMCD) -Temperature dep	pendence of	of X	K-ray	Mag	netio
Dichroism.							
UNIT III Fabrication	1 T						9
	h and Imaging						
	and Imaging – Mesoscopic magnet	ism - Particulate r	nanomagne	ts	– Ge	eome	trica
Molecular nanomagnets	8 8		-				
Molecular nanomagnets nanomagnets –Fabrica	6 – Mesoscopic magnet	- Characterization	using vari	ious	s tech	nniqu	es -
Molecular nanomagnets nanomagnets –Fabrica Imaging magnetic micro	6 – Mesoscopic magnet tion techniques scaling	 Characterization Imaging – Lorent: 	using vari z Microso	ious	s tech	nniqu	es -
Molecular nanomagnets nanomagnets –Fabrica Imaging magnetic micro Holography of Magnetic	5 – Mesoscopic magnet tion techniques scaling pspectroscopy –Optical	 Characterization Imaging – Lorentz etic Force Microscop 	using vari z Microso	ious	s tech	nniqu	es -
Molecularnanomagnetsnanomagnets–FabricaImagingmagneticHolographyofMagneticMagneticUNITIVMagneticdatastorage	 Mesoscopic magnet tion techniques scaling pspectroscopy –Optical c Nanostructures –Magn Data Storage and Record – Disk formatting – F 	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard 	using vari z Microso y disk featu	ious cop ures	s tech y –	niqu Ele Hard	es - ctroi 9 disl
Molecularnanomagnets –Fabricananomagnets–FabricaImagingmagneticHolographyofMagneticMagneticUNITIVMagneticdatadatatransfermodes–P	 Mesoscopic magnet tion techniques scaling pspectroscopy –Optical c Nanostructures –Magn Data Storage and Record – Disk formatting – F programmed I/O – Direct 	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U 	using vari z Microso by disk featu	ious cop ures – I	s tech y – s – I Data a	Ele Ele Hard	es - ctroi 9 disl ssing
Molecularnanomagnetsnanomagnets–FabricaImagingmagneticImagingmagneticHolographyofMagneticMagneticUNITIVMagneticdatadatatransfermodes–P	 Mesoscopic magnet tion techniques scaling pspectroscopy –Optical c Nanostructures –Magn Data Storage and Record – Disk formatting – F 	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U 	using vari z Microso by disk featu	ious cop ures – I	s tech y – s – I Data a	Ele Ele Hard	es - ctroi 9 disl ssing
Molecular nanomagnets nanomagnets –Fabrica Imaging magnetic micro Holography of Magnetic UNIT IV Magnetic D Magnetic data storage data transfer modes –P – Standard CHS addre	 Mesoscopic magnet tion techniques scaling pspectroscopy –Optical c Nanostructures –Magn Data Storage and Record – Disk formatting – F programmed I/O – Direct 	 Characterization Imaging – Lorent: etic Force Microscop ing Partitioning – Hard memory access – U S addressing – Lage 	using vari z Microso by disk featu Itra DMA ogical Blo	ious cop ures – I ock	s tech y – s – H Data a Addr	Ele Ele Hard ddre essin	es - ctroi 9 disl ssing g -
Molecular nanomagnets nanomagnets –Fabrica Imaging magnetic micro Holography of Magnetic UNIT IV Magnetic D Magnetic data storage data transfer modes –P – Standard CHS addre Magnetic recording – Perpendicular recording	 Mesoscopic magnet Mesoscopic magnet tion techniques scaling ospectroscopy –Optical c Nanostructures –Magn Data Storage and Record Disk formatting – F rogrammed I/O – Direct essing – Extended CH 	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U S addressing – La c recording - Ma 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dig	ious cop ures – I ock gita	s tech y – s – I Data a Addr I reco	Ele Ele Hard ddre essin	es - ctroi g disl ssing g - g
Molecular nanomagnets nanomagnets –Fabrica Imaging magnetic micro Holography of Magnetic UNIT IV Magnetic D Magnetic data storage data transfer modes –P – Standard CHS addre Magnetic recording –	 Mesoscopic magnet Mesoscopic magnet tion techniques scaling ospectroscopy –Optical c Nanostructures –Magn Data Storage and Record Disk formatting – Herogrammed I/O – Direct essing – Extended CH Principles of magnetic 	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U S addressing – La c recording - Ma 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dig	ious cop ures – I ock gita	s tech y – s – I Data a Addr I reco	Ele Ele Hard ddre essin	es - ctroi g disl ssing g - g
Molecular nanomagnets nanomagnets –Fabrica Imaging magnetic micro Holography of Magnetic UNIT IV Magnetic D Magnetic data storage data transfer modes –P – Standard CHS addre Magnetic recording – Perpendicular recording effect.	 a – Mesoscopic magnet tion techniques scaling pspectroscopy –Optical c Nanostructures –Magn Data Storage and Record – Disk formatting – F Programmed I/O – Direct essing – Extended CH Principles of magnetic - Magneto-Optic record 	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U S addressing – La c recording - Magnetic med 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dig	ious cop ures – I ock gita	s tech y – s – I Data a Addr I reco	Ele Ele Hard ddre essin	es - ctrop g disl ssing g
Molecularnanomagnetsnanomagnets–FabricaImagingmagneticImagingmagneticHolographyofMagneticMagneticUNITIVMagneticdatastoragedatadatatransfermodes–P–StandardCHSaddreeMagneticrecording-StandardCHSaddreeMagneticrecordingeffect.UNITVMagnetic St	 Mesoscopic magnetic magnet	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U S addressing – La c recording - Ma ing - Magnetic med 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dia lia – Kerr	ious cop ures – I ock gita	s tech y – S – H Data a Addr I reco fect –	nniqu Ele Hard Iddre essin ordin - Far	es - ctroi 9 disl ssing g rada 9
Molecularnanomagnets nanomagnetsmagingmagneticImagingmagneticMolecularmagneticMagneticMagneticMagneticdatastoragedatadatatransfermodes-P-StandardCHSaddreMagneticrecording-StandardCHSaddreMagneticrecording-StandardCHSstorageMagneticrecording-StandardMagneticsensorsandMagneticStandardStandardMagneticsensorsandCHSMagneticsensorsStandardSensorsStandard <td< td=""><td> Mesoscopic magnetic tion techniques scaling performing of the second scale of the second of the secon</td><th> Characterization Imaging – Lorentz etic Force Microscoping Partitioning – Hard memory access – U S addressing – La c recording - Magnetic med ing - Magnetic med </th><td>using vari z Microso by disk featu ltra DMA ogical Blo agnetic dig lia – Kerr</br></td><td>ious cop ures – I ock gita c eff</td><td>s tech y – g – H Data a Addr l reco fect – - So</td><td>Hard Hard Hard Hard Hard Hard Hard Far Far</td><td>es ctron 9 disl ssiną g rada 9 rrrite</td></td<>	 Mesoscopic magnetic tion techniques scaling performing of the second scale of the second of the secon	 Characterization Imaging – Lorentz etic Force Microscoping Partitioning – Hard memory access – U S addressing – La c recording - Magnetic med ing - Magnetic med 	using vari z Microso by 	ious cop ures – I ock gita c eff	s tech y – g – H Data a Addr l reco fect – - So	Hard Hard Hard Hard Hard Hard Hard Far Far	es ctron 9 disl ssiną g rada 9 rrrite
Molecularnanomagnetsnanomagnets–FabricaImagingmagneticImagingmagneticHolographyofMagneticMagneticUNITIVMagneticdatastoragedatadatatransfermodes–P–StandardCHSaddreeMagneticrecording-StandardCHSaddreeMagneticrecordingeffect.IVNITVMagnetic StMagneticsensors-Nanocompositemagneticmagnetic	 Mesoscopic magnetic tion techniques scaling papertroscopy –Optical Nanostructures –Magn Data Storage and Record Disk formatting – Herogrammed I/O – Direct essing – Extended CH Principles of magnetic - Magneto-Optic record Tructures and Applicatio Giant Magnetoresistance Magnetic refrigerant 	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U S addressing – La c recording - Magnetic med ing - Magnetic med ns Optically transpar t – High TC superced 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dig lia – Kern ent materi onductor –	ious cop ures – I ock gita c eff als - Fe	s tech y – S – H Data a Addr I reco fect – - So erro/b	Hard Hard ddre essin ordin - Far ft fe	es - ctroi g disl g raday 9 rrite ids -
Molecularnanomagnetsnanomagnets–FabricaImagingmagneticHolographyofMagneticMagneticUNITIVMagneticdatastoragedatadatatransfermodes–P–StandardCHSaddreMagneticrecording-StandardCHSaddreMagneticrecording-Perpendiculareffect.ImagneticUNITVMagneticsensorsanocompositemagneticBiomedicalapplications	 Mesoscopic magnet Mesoscopic magnet tion techniques scaling pspectroscopy –Optical Nanostructures –Magn Data Storage and Record Disk formatting – Herogrammed I/O – Direct Principles of magnetic Magneto-Optic record tructures and Applicatio Giant Magnetoresistance ets - Magnetic refrigerant s of magnetic nanopart 	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U S addressing – La c recording - Ma ing - Magnetic med ing - Magnetic med ns Optically transpar t – High TC superce cicles - Diagnostic 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dig lia – Kern ent materi onductor –	ious cop ures – I ock gita c eff als - Fe	s tech y – S – H Data a Addr I reco fect – - So erro/b	Hard Hard ddre essin ordin - Far ft fe	es - ctrop g g radaj 9 rrite ids -
Molecularnanomagnetsnanomagnets–FabricaImagingmagneticHolographyofMagneticMagneticUNITIVMagneticdatastoragedatadatatransfermodes–P–StandardCHSaddreMagneticrecording-StandardCHSaddreMagneticrecording-Perpendicularrecordingeffect.UNITVMagneticsensorsSensorsand C-Nanocompositeapplicationsapplications	 Mesoscopic magnet tion techniques scaling ospectroscopy –Optical Nanostructures –Magn Data Storage and Record Disk formatting – F Programmed I/O – Direct Principles of magnetic Magneto-Optic record Tructures and Applicatio Giant Magnetoresistance ets - Magnetic refrigerant s of magnetic nanopart cal aspects - Toxic effects 	 Characterization Imaging – Lorentzetic Force Microscoping Partitioning – Hard memory access – U S addressing – Lateria c recording - Magnetic med ms Optically transpart t – High TC superconduction Jugnostic 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dig lia – Kern ent materi onductor – applicatio	ious cop ures – I ock gita c eff als - Fe	s tech y – S – H Data a Addr l reco fect – - So erro/b - Tl	Hard Hard Hard ordin Far ft fei hoflu	es - ctroi 9 disl ssing g - raday rrite ids - peutic
Molecular nanomagnets nanomagnets –Fabrication Imaging magnetic Holography of Magnetic Magnetic UNIT IV Magnetic data storage data data transfer magnetic recording – Standard CHS addree Magnetic recording – Standard CHS addree Magnetic recording – Standard CHS addree Magnetic recording effect. – UNIT V Magnetic sensors and C – Nanocomposite magnet Biomedical applications Physiologic LECTURE –	 Mesoscopic magnetic magnetic magnetic magnetic scaling performance of the second of the	 Characterization Imaging – Lorentz etic Force Microscop ing Partitioning – Hard memory access – U S addressing – La c recording - Ma ing - Magnetic med ing - Magnetic med ns Optically transpar t – High TC superce cicles - Diagnostic 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dig lia – Kern ent materi onductor – applicatio	ious cop ures – I ock gita c eff als - Fe	s tech y – S – H Data a Addr 1 reco fect – fect – - So erro/b - Tl TC	nniqu Ele Hard Iddre essin ordin - Far ft fer ioflu nerap	es - ctrop g disl g rada; g rrite ids - peuti
Molecular nanomagnets nanomagnets –Fabrication Imaging magnetic Holography of Magnetic Magnetic Holography of Magnetic Magnetic Magnetic data Magnetic data Magnetic recording - Standard CHS addree Magnetic recording - Standard CHS addree Magnetic recording - Perpendicular Perpendicular recording effect. Imagnetic VINIT V Magnetic sensors Biomedical applications applications Physiologia LECTURE 45	 Mesoscopic magnet tion techniques scaling ospectroscopy –Optical Nanostructures –Magn Data Storage and Record Disk formatting – F Programmed I/O – Direct Principles of magnetic Magneto-Optic record Tructures and Applicatio Giant Magnetoresistance ets - Magnetic refrigerant s of magnetic nanopart cal aspects - Toxic effects 	 Characterization Imaging – Lorentzetic Force Microscoping Partitioning – Hard memory access – U S addressing – Lateria c recording - Magnetic med ms Optically transpart t – High TC superconduction Jugnostic 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dig lia – Kern ent materi onductor – applicatio	ious cop ures – I ock gita c eff als - Fe	s tech y – S – H Data a Addr 1 reco fect – fect – - So erro/b - Tl TC	Hard Hard Hard ordin Far ft fei hoflu	es ctro 9 dis ssin g rada g rrite ids - euti
Molecular nanomagnets nanomagnets –Fabrication Imaging magnetic Holography of Magnetic magnetic Holography of Magnetic Magnetic Magnetic data Magnetic data Magnetic recording - Standard CHS addree Magnetic recording - Standard CHS addree Magnetic recording - Perpendicular Perpendicular recording effect. - Nanocomposite magnetic Biomedical applications applications - Physiologic - 45 - TEXT -	 a – Mesoscopic magnetic tion techniques scaling ospectroscopy –Optical c Nanostructures –Magn Data Storage and Record – Disk formatting – Herogrammed I/O – Direct essing – Extended CHerogrammed I/O – Direct essing – Extended CHerogrammet of magnetic record tructures and Application Giant Magnetoresistance ets - Magnetic refrigerants of magnetic nanopartical aspects - Toxic effects TUTORIAL 	 Characterization Imaging – Lorentzetic Force Microscoping Partitioning – Hard memory access – U S addressing – Laterization S addressing – Laterization recording - Magnetic med Ins Optically transpart t – High TC supercondition PRACTICA 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dia lia – Kern ent materi onductor – applicatio	ious cop ures – I ock gita c eff als - Fo	s tech y – S – H Data a Addr 1 reco fect – fect – - So erro/b - Tl TC	Hard Hard Hard ddre essin ordin - Far ft fer hioflu herap	es - ctrop g disl ssing g rada g rrite ids - euti
Molecular nanomagnets nanomagnets –Fabrication Imaging magnetic Holography of Magnetic magnetic UNIT IV Magnetic data data transfer magnetic recording - Standard CHS addree Magnetic recording - Standard CHS addree Magnetic recording - Standard CHS addree Magnetic recording - Perpendicular Perpendicular recording effect. Imaging UNIT V Magnetic sensors Biomedical applications applications Physiologic LECTURE Imaging 45 Imaging	 Mesoscopic magnetic magnetic magnetic magnetic scaling performance of the second of the	 Characterization Imaging – Lorentzetic Force Microscoping Partitioning – Hard memory access – U S addressing – Laterization S addressing – Laterization recording - Magnetic med Ins Optically transpart t – High TC supercondition PRACTICA 	using vari z Microso by disk featu Itra DMA ogical Blo agnetic dia lia – Kern ent materi onductor – applicatio	ious cop ures – I ock gita c eff als - Fo	s tech y – S – H Data a Addr 1 reco fect – fect – - So erro/b - Tl TC	Hard Hard Hard ddre essin ordin - Far ft fer hioflu herap	es ctro 9 dis ssin g rada g rada 9 rrite ids eeuti

- 1. Bland J.A.C., and B. Heinrich.B., —Ultra thin Magnetic Structures III Fundamentals of Nanomagnetism^{II}, Springer (2004).
- 2. Nicola A.S., —Magnetic Materials: Fundamentals and Device Applications^{II}, Cambridge University Press (2003).

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. <u>www.mit.co.in</u>

PREREQUISITES L T P H 3 0 0 3 0 0 3 Classification of nanoparticles by size – Structural organization of nanoparticles and materials on their base characteristic features of nanoparticles nucleat ion – Kinetic features of new phase formation – Phase formation in chemical reactions – Self organization of metal containing nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles - Metal clusters as nanoparticles with fixed dimensions. 9 Stability of nanoparticles in solutions – Stabilizing capability characteristics of polymer surfactants as stabilizers – Metal clusters – Surface proofing as a method of stabilizing nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by electrolytes – Surface proofing as a method of stabilizing nonoparticles into polymers – Formation of Physical methods of incorporating nanoparticles into polymers – Formation of 2D nanostructures on polymers – Formation of metal nanoparticles in polymers – Stabilization of precursors jointly with polymers with metal reduction of polymer matrix voids (pores) – Physical methods for Metallo-Polymer – Microencapsulation of procursors jointly with polymers in polymer matrix voids (pores) – Physical methods for Metallo-Polymer matrix voids (pores) – Physical methods for Metallanonoparticles in pol	COURSE CODE	YNT104B	L	Т	Р	С
Image: construction of the problem of matrix confinement 3 0 0 3 UNIT I Nanoparticles In Materials Chemistry And In The Natural Sciences 9 Classification of nanoparticles by size – Structural organization of nanoparticles – Dimensional phenomena in the chemistry and physics of nanoparticles – nanoparticles and materials on their base characteristic features of nanoparticles nucleat in – Kinetic features of new phase formation – Phase formation in chemical reactions – Self organization of metal containing nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles (Fractal structures) – Brief account of major production by Polymers – Physical ductors and Mechanisms of Nanoparticle Stabilization by Polymers – Characteristics of polymer absorption on metal surfaces specifics of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilization of mator accomposite preparation – Physical methods of incorporating nanoparticles into polymers – Stabilization of polymers – Stabilization of polymers – Stabilization of provides – Surface proofing as a method of stabilizing nanoparticles on polymers – Formation of 2D nanostructures on polymers – Formation of metal nanoparticles on polymers – Formation of D polymers – Nanocomposite or polymers – Sunocomposite formation and filling of polymers with metal reduction of polymer – Bound metal containing precursor thermolysis – Nanocomposite formation and monoparticles in abortscures on polymer – Immobilized met	COURSE NAME	METALLOPOLYMER NANOCOMPOSITES	3	0	0	3
UNIT I Nanoparticles In Materials Chemistry And In The Natural Sciences 9 Classification of nanoparticles by size – Structural organization of nanoparticles – Dimensional phenomena in the chemistry and physics of nanoparticles – nanoparticles and materials on their base characteristic features of nanoparticles nucleat ion – Ninetic features of nanoparticles nucleat ion – Kinetic features of new phase formation – Phase formation in chemical reactions – Self organization of metal containing nanoparticles – Metal clusters as nanoparticles with fixed dimensions. 9 Stability of nanoparticles in solutions – Stabilizing capability characteristics of polymers – Otheracteristics of polymer absorption on metal surfaces specifics of polymers – Stabilization of nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymer swith metal reduction of polymer – Sound etal complexes – Nanocomposite formation in monomer – Polymer Manocomposite preparation – Sunocomposite formation in monomer – Polymer Nanocomposite proparation and filling of polymers Nuthermolysis – Nanocomposite formation in monomer – Polymer Nanocomposite preparation – Physical Methods for Metallo-Polymer Nanocomposite Production of polymer – Nanocomposites on the base of polymer – Immobilized metalloclusters 9 Vint II Vinteria Methods for Metallo-Polymer Nanocomposite Production of polymer – Physical deposition on puse and p	PREREQUISITES		L	Т	Р	Η
Classification of nanoparticles by size – Structural organization of nanoparticles – Dimensional phenomena in the chemistry and physics of nanoparticles – nanoparticles and materials on their base characteristic features of nanoparticles nucleat ion – Kinetic features of new phase formation – Phase formation in chemical reactions – Self organization of metal containing nanoparticles – Metal clusters as nanoparticles with fixed dimensions. UNIT II Principles and Mechanisms of Nanoparticle Stabilization by Polymers / Metal clusters as nanoparticles stabilizing capability characteristics of polymer absorption on metal surfaces specifics of polymer surfactants as stabilizers – Metal nanoparticles - Stabilization by polymers – Stabilizing nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical motification and filling of polymer suffication in polymer - Bound metal complexes – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite of termation in monomer – Polymer matrices in a plasma-chemical process – Radiolysis in polymer solutions – Stabilization of polymer suffication in deposition on polymers – Metal evaporation methods of atomic metal deposition on polymer systems as means of obtaining nanocomposites – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites formation in monomer – Polymer matrices in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of nanocomposite formation – General characteristics of sol-gel reactions – A com			3	0	0	3
phenomena in the chemistry and physics of nanoparticles – nanoparticles and materials on their base characteristic features of nanoparticles nucleat ion – Kinetic features of new phase formation – Phase formation in chemical reactions – Self organization of metal containing nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles – Metal clusters as nanoparticles with fixed dimensions. UNTT II Principles and Mechanisms of Nanoparticle Stabilization by Polymers 9 Stability of nanoparticles in solutions – Stabilization by polymers of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilization of nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles on polymers – Mechanosmo of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filing of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite of atomic metal deposition on polymers – Metal evaporation methods of polymer solytes of atomic metal deposition of polymer systems as easily in polymers – Sol-gel synthesis of nanocomposite formation – General containing procursor thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites of atomic metal deposition on polymers – Metal evaporation methods on polymers – Sol-gel synthesis of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymers – Metal evaporation methods on poly	UNIT I Nanoparti	cles In Materials Chemistry And In The Natural Scie	nces			9
their base characteristic features of nanoparticles nucleat ion – Kinetic features of new phase formation – Phase formation in chemical reactions – Self organization of metal containing nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles – Metal clusters as nanoparticles with fixed dimensions. UNT II Principles and Mechanisms of Nanoparticle Stabilization by Polymers 9 Stability of nanoparticles in solutions – Stabilizing capability characteristics of polymer absorption on metal surfaces specifics of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilization of nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement UNIT II Synthetic Methods for Metallo-Polymer 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymer swith metal reduction of polymer – Soundometal complexes – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation in monomer – Polymer natrices in thermolysis – Nanocomposites on the base of polymer – Immobilized metalloclusters UNIT IV Physico-Chemical Methods for Metallo-Polymer Nanocomposite Production 9 Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposite formation – Polymer nanocomposite formation – Polymer submas of nanocomposites – Netpolegy and metal containing precursor so tobtaining nanocomposites – Sol-gel synthesis of nanocomposites in a plasma-chemical physical methods of anoncomposites in the presence of polymer s – Morphology and fractati model of Hybrid nanocomposites – Nanocomposites into polymers – Norphology and fractati model of Hybrid nanocomposites – Nanocomposites films as self organized h	Classification of nano	particles by size – Structural organization of nanopart	icles	– D	imens	ional
phase formation – Phase formation in chemical reactions – Self organization of metal containing nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles – Metal clusters as nanoparticles with fixed dimensions. UNIT II Principles and Mechanisms of Nanoparticle Stabilization by Polymers 9 Stability of nanoparticles in solutions – Stabilizing capability characteristics of polymer absorption on metal surfaces specifics of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilization of nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical characteristics of sol-gel reactions – A combination of polymeris – Morphology and fractat model of Hybrid nanocomposites – Nanocomposites in the prosence of polymers – Morphology and fractat model of Hybrid nanocomposites – Nanocomposites into polymeris – Manocomposites of polymeris – IEectrochemical methods of atomic metal deposition on polymeris – Manocomposite of Generatical characteristics of sol-gel reactions – A combination of polymerizatio	phenomena in the che	mistry and physics of nanoparticles – nanoparticle	es an	d ma	terial	s on
nanoparticles (Fractal structures) – Brief account of major production methods of metal containing nanoparticles – Metal clusters as nanoparticles with fixed dimensions. 9 Stability of nanoparticles in solutions – Stabilizing capability characteristics of polymers – Characteristics of polymer absorption on metal surfaces specifics of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilization of nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Pontation of metal nanoparticles in polymer – Sound et al. (polymers) – Physical deposition of metal nanoparticles in polymer – Sound metal complexes – Nanocomposite formation in monomer – Polymer matrix voids (pores) – Physical methods for Metallo-Polymer Matrix et al. (polymer) – Nanocomposite of polymer – Immobilized metalloclusters 9 Cyrochemical methods of atomic metal deposition on polymer s – Metal containing precursor thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation polymer – Immobilized metalloclusters 9 Cyrochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers – Subilisi in polymer solutions – Pontipic of matal-polymer systems as means of obtaining nanocomposites – Subilized metalloclusters 9 Cyrochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers – Subalisi in polymer solutions – Pontopici of metal-polymer	their base characterist	tic features of nanoparticles nucleat ion – K	inetic	featu	ires of	new
nanoparticles – Metal clusters as nanoparticles with fixed dimensions. 9 Stability of nanoparticles in solutions – Stabilizing capability characteristics of polymers absorption on metal surfaces specifics of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilizing nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement 9 VNIT II Synthetic Methods for Metallo-Polymer 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymer swith metal reduction of polymer – Bound metal complexes – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite of atomic metal deposition on polymers – Metal containing precursor thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites on the base of polymer – Immobilized metalloclusters 9 Crycchemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers solutions – Ponteprise of mation – General characteristics of sol-gel reactions – A combination of polymer systems as means of folamity in polymer solutions – Ponteprise of mation – General characteristics of sol-gel reactions – A combination of polymer size of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layeed host lattices –	phase formation - Ph	hase formation in chemical reactions - Self organization	n of 1	netal	conta	ining
UNIT II Principles and Mechanisms of Nanoparticle Stabilization by Polymers 9 Stability of nanoparticles in solutions – Stabilizing capability characteristics of polymer absorption on metal surfaces specifics of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilization of nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement 9 UNIT III Synthetic Methods for Metallo-Polymer 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix on polymers – Formation of 2D nanostructures on polymers – Formation of metal nanoparticles in polymer – Physical modification and filling of polymer matrices in thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation in monomer – Polymer Manocomposite Production 9 Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers – Immobilized metalloclusters 9 UNIT IV Physico-Chemical Methods for Metallo-Polymer Nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Nonocomposites of nanocomposites in a plasma-chemical characteristics of sol-gel reactions – A combination of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites in the presence of polymers – Morphology an	nanoparticles (Fractal	structures) – Brief account of major production method	ls of 1	netal	conta	ining
Stability of nanoparticles in solutions – Stabilizing capability characteristics of polymers – Characteristics of polymer absorption on metal surfaces specifics of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilization of nanoparticles by electrolytes – Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposites formation by metal containing precursor thermolysis –Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation in monomer – Polymer matrices in a plasma-chemical process – Radiolysis in polymer solutions – Notolysis of metal-polymer systems as means of obtaining nanocomposites – Sol-gel synthesis of nanocomposites in a plasma-chemical characteristics of sol-gel reactions – A combination of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites into the basel space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.						
Characteristics of polymer absorption on metal surfaces specifics of polymer surfactants as stabilizers – Mechanism of nanoparticles stabilization by polymers – Stabilization of nanoparticles by polymers – Stabilization of nanoparticles by polymers nethods for Metallo-Polymer 9 Nanocomposite preparation – Physical methods of incorencapsulation of nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymer – Mechanochemical dispersion of precursor for nanoparticles into polymer – Mechanochemical filling of polymer matrix voids<(pores)	-		•			-
stabilizers Mechanism of nanoparticles stabilization by polymers Stabilization of nanoparticles by electrolytes Synthetic Methods for Metallo-Polymer 9 Nanocomposite preparation Physical methods of incorporating nanoparticles into polymers Mechanochemical dispersion of precursors jointly with polymers Microencapsulation of nanoparticles into polymers Formation of 2D nanostructures on polymers Formation of metal nanoparticles in polymer matrix voids (pores) Physical modification and filling of polymers with metal reduction of polymer Bound metal complexes Nanocomposite on the base of polymer Immonomer Nanocomposite on the base of polymer Polymer matrix voids (pores) Nanocomposite on the base of polymer Formation by metal containing precursor thermolysis Nanocomposite on the base of polymer Immobilized metalloclusters UNIT IV Physico-Chemical Methods for Metallo-Polymer Nanocomposite Production 9 Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules in	• •			-	•	
nanoparticles by electrolytes Surface proofing as a method of stabilizing nanoparticles by polymers on the problem of matrix confinement UNIT III Synthetic Methods for Metallo-Polymer 9 Nanocomposite preparation Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers Formation of 2D nanostructures on polymers – Formation of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymers with metal reduction of polymer Bound metal complexes – Nanocomposites formation in monomer – Polymer Bound Nanocomposites of polymer – Immobilized metalloclusters 9 Cryochemical methods for Metallo-Polymer Nanocomposite Production 9 Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers in polymer solutions – Photolysis of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites of polymer – Maroomolecules introduction into the layered host lattices – Intercalation nanocomposites of polymer/metal chalocgenide Mprohology and frac	-	• • • • •	•			
polymers on the problem of matrix confinement 9 UNIT III Synthetic Methods for Metallo-Polymer 9 Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles on polymers – Formation of 2D nanostructures on polymers – Formation of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposites formation by metal containing precursor thermolysis –Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites on the base of polymer – Immobilized metalloclusters 9 UNIT IV Physico-Chemical Methods for Metallo-Polymer Nanocomposite Production 9 Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites. UNIT V Nanobiocomposites 9 Basic notion of metal containing prote						
UNIT IIISynthetic Methods for Metallo-Polymer9Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposites formation by metal containing precursor thermolysis –Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites on the base of polymer – Immobilized metalloclusters9UNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites in corporating multi-metallic ceramics – Intercalation process – Polymerization into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.			zing	nanop	article	es by
Nanocomposite preparation – Physical methods of incorporating nanoparticles into polymers – Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposites formation by metal containing precursor thermolysis –Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites on the base of polymer – Immobilized metalloclustersUNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production9Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on 						
Mechanochemical dispersion of precursors jointly with polymers – Microencapsulation of nanoparticles into polymers – Physical deposition of metal nanoparticles on polymers – Formation of 2D nanostructures on polymers – Formation of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposites formation by metal containing precursor thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposite of polymer – Immobilized metalloclusters UNIT IV Physico-Chemical Methods for Metallo-Polymer Nanocomposite Production 9 Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites. UNIT V Nanobiocomposites 9	UNIT III Synthetic	Methods for Metallo-Polymer				9
nanoparticlesintopolymers–Physical deposition of metal nanoparticles on polymers –Formation of 2D nanostructures on polymers – Formation of metal nanoparticles in polymer matrixvoids (pores) – Physical modification and filling of polymers with metal reduction of polymer –Bound metal complexes – Nanocomposites formation by metal containing precursorthermolysis –Nanocomposite formation in monomer – Polymer matrices in thermolysis –Nanocomposites on the base of polymer – Immobilized metalloclustersUNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production9Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods onpolymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemicalprocess – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means ofobtaining nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology andfractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallicceramics – Intercalation process – Polymerization into the basal space – Macromoleculesintroduction into the layered host lattices –Intercalation nanocomposites of polymer/metalchalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybridnanocomposites.UNIT VNanobiocomposites9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,	Nanocomposite prepar	ation – Physical methods of incorporating nanoparti	cles i	nto p	olyme	rs –
Formation of 2D nanostructures on polymers – Formation of metal nanoparticles in polymer matrix voids (pores) – Physical modification and filling of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposites formation by metal containing precursor thermolysis –Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites on the base of polymer – Immobilized metalloclustersUNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production9Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,9	Mechanochemical disp	persion of precursors jointly with polymers - M	icroe	ncaps	ulatio	n of
voids (pores) – Physical modification and filling of polymers with metal reduction of polymer – Bound metal complexes – Nanocomposites formation by metal containing precursor thermolysis –Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites on the base of polymer – Immobilized metalloclustersUNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production9Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry, Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,9	nanoparticles into	polymers - Physical deposition of metal nanopart	icles	on p	olyme	ers –
Bound metal complexes – Nanocomposites formation by metal containing precursor thermolysis –Nanocomposite formation in monomer – Polymer matrices in thermolysis – Nanocomposites on the base of polymer – Immobilized metalloclustersVNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production9Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.UNIT VNanobiocomposites9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,						
thermolysis-Nanocomposite formation in monomerPolymer matrices in thermolysis-Nanocomposites on the base of polymer – Immobilized metalloclustersUNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production9Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,9				-		
Nanocomposites on the base of polymer – Immobilized metalloclustersUNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production9Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,	=			-	-	
UNIT IVPhysico-Chemical Methods for Metallo-Polymer Nanocomposite Production9Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,	-		es in	ther	molys	sis –
Cryochemical methods of atomic metal deposition on polymers – Metal evaporation methods on polymers localized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,9					-	
polymerslocalized at room temperature – Synthesis of nanocomposites in a plasma-chemical process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.UNIT VNanobiocomposites9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,	v					
process – Radiolysis in polymer solutions – Photolysis of metal-polymer systems as means of obtaining nanocomposites – Electrochemical methods of nanocomposite formation – General characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,9	5	1 1 2	1			
obtainingnanocomposites– Electrochemicalmethodsofnanocompositeformation– Generalcharacteristicsofsol-gelreactions– Acombination ofpolymerizationreactions and in situsol-gelsynthesisofnanocomposites– Sol-gelsynthesisinthepresenceofpolymers– MorphologyandfractalmodelofHybridnanocomposites– Nanocompositesincorporatingmulti-metallicceramics– Intercalationprocess– Polymerizationintothebasalspace– Macromoleculesintroductionintothelayeredhostlattices–Intercalationnanocompositesofpolymer/metalchalcogenidetype– Langmuir-Blodgettmetallopolymersfilmsasselforganizedhybridnanocomposites. UNIT V Nanobiocomposites 9 Basicnanoparticles 9		· · · ·	-			
characteristics of sol-gel reactions – A combination of polymerization reactions and in situ sol-gel synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.						
synthesis of nanocomposites – Sol-gel synthesis in the presence of polymers – Morphology and fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.	• •	-				
fractal model of Hybrid nanocomposites – Nanocomposites incorporating multi-metallic ceramics – Intercalation process – Polymerization into the basal space – Macromolecules introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites.UNIT VNanobiocomposites9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,	-					-
ceramicsIntercalation processPolymerization into the basal spaceMacromoleculesintroductioninto the layered host latticesIntercalation nanocomposites of polymer/metalchalcogenidetypeLangmuir-Blodgettmetallopolymersnanocomposites.UNIT VNanobiocomposites9Basic notion of metal containing proteinsystemsMetalnanoparticles inImmunochemistry,	•			-		
introduction into the layered host lattices –Intercalation nanocomposites of polymer/metal chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites. UNIT V Nanobiocomposites 9 Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,			-			
chalcogenide type – Langmuir-Blodgett metallopolymers films as self organized hybrid nanocomposites. UNIT V Nanobiocomposites 9 Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,						
nanocomposites. UNIT V Nanobiocomposites 9 Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,		•				
UNIT VNanobiocomposites9Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry,	• • • •	– Langmun-Diougett metanopotymets mills as s		rgamz		yonu
Basic notion of metal containing protein systems - Metal nanoparticles in Immunochemistry,	*	nmosites				0
		—	n Im	muno	chem	-
\mathbf{V} viochemistry and wedicine – b iosorphone selective neterocoagniation and nacterial				and		-

concentration of metal nanoparticles – Sol-gel process as a way of template – Synthesized nanobioceramics – Biomineralization and bioinorganic nanocomposites – Control of physicmechanical properties of nanocomposites – Peculiarity of nanocomposites synthesized by solgel methods – Polyolefin based nanocomposites – Polymer matrix structurization in nanocomposites – Physical and mechanical properties of metallopolymer nanocomposites – Nanocomposites in adhesion compounds and Tribopolymers – New trends in Material science connected with metallopolymeric nanocomposites

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45
TEXT			

1. C. F. Candau and R. H. Ottewill, —An introduction to polymer colloids^{II}, Springer Berlin Heidelberg, New York, (2005)

REFERENCES

1. A. D. Pomogailo and V. S. Savostyanov, —Synthesis and polymerization of metal containing monomers CRC press, (1994).

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. <u>www.mit.co.in</u>

COURSE	CODE	YNT104C	L	Т	P	С
COURSE	NAME	PROPERTIES OF NANOPHASE	3	0	0	3
		MATERIALS				
PREREQU	JISITES		L	Т	Р	H
			3	0	0	3
UNIT I	Structur	al Properties of Nano Materials				9

Crystal structures of nano particles; lattice vibrations; size-dependent of properties; chemical & mechanical properties; catalytic properties of nano-materials. Mechanical properties: hardness, compressive & tensile strength; failure mechanisms of conventional grain-sized materials; mechanical properties of nano-structured multilayers; metal nano cluster composites; crystals of metal nano particles; nano particle lattices in colloidal suspensions; metallic glasses; shape memory alloys; thermodynamics & kinetics of phase transformations in synthesis of nano phase materials; structure: micro-structural stability; powder consolidation; properties of nano materials at low temperatures; thermal contact & isolation

Electronic Properties of Nano-materials UNIT II

Energy bands & gaps in semiconductors; Fermi surfaces; localized particle, donors, acceptors, deep traps, excitons, mobility; size-dependent effects, conduction electrons & dimensionality, Fermi gas & density of states, potential wells, partial confinement; electronic properties of metal nano clusters, semi-conducting nanoparticles, single-electron unnelling, electronic properties of unnelli and similar nano structures. Thermo-mechanical unnellin of thin-film nano structures: a general framework for the thermo-mechanics of the multiplayer films, surface stress-scaling from micro to nano structures

UNIT III | Optical Properties of Nano-materials

Photonic crystals, optical properties of semiconductors, band edge energy, band gap dependence on nano crystalline size. Quantum dots; optical transitions; absorption; inter-band transitions; quantum confinements; fluorescence/luminescence; photoluminescence/fluorescence; optically excited emission; electroluminescence; Laser emission of quantum dot; photo fragmentation & Coulombic explosion; phonons in nano structures. Luminescent quantum dots for biological labelling

UNIT IV **Magnetic Properties of Nano Materials**

Introduction of magnetic materials; basics of ferromagnetism; ferro-magnetic resonance & relaxation; magnetic properties of bulk nano structures; magnetic clusters; dynamics of nano magnets; nano-pore containment of magnetic particles; nano-carbon ferro magnets; giant & colossal magneto resistance; ferro fluids; electron transport in magnetic multi-layers; particulate nano magnets; geometrical nano magnets. Spintronics; spin polarized electron unnelling; interlayer exchange coupling; spin relaxation in magnetic metallic layers & multi-layers; non-equilibrium spin dynamics in laterally defined magnetic structures

UNIT V **Biomaterials in Nanotechnology**

Metal nano particles; dendrimers; liposomes; property of nano materials in biosensor fabrication; near-field optics & nanofibers; bioreceptor (Antigen/Antibody, Enzymes, Nucleic acids/DNA, cellular structure/cells, biomimetic); nanocapsules; nanorods, DNA nano wires and other drug

9

9

9

9

delivery vehicles; nano-crystalline structures of bone and calcium phosphate cements. Cobalt-based alloys; Titanium and its alloys; nano particles relating to Aluminum oxides; Hydroxyapatite; glass ceramics; ceramic implants; carbon implants. Nano shells – Tectodendrimers Nano particle drug systems; inorganic particle incorporated bionanocomposites.

LECTURETUTORIALPRACTICALTOTAL450045TEXT1.Askeland D.R.,& P. P. Fullay (2007), The Science and Engineering of Matrials – 7thCengage Learning Publishers
 TEXT 1. Askeland D.R.,& P. P. Fullay (2007), The Science and Engineering of Materials – 7thCengage Learning Publishers. 2. William D. Callister, Jr (2008), Callister"s Materials Science and Engineering, (Adopted by R. Balasubramaniam) Wiley-Eastern REFERENCES 1. "Amorphous & Nano crystalline Materials: Preparation, Properties & Applications,"
 Askeland D.R.,& P. P. Fullay (2007), The Science and Engineering of Materials – 7thCengage Learning Publishers. William D. Callister, Jr (2008), Callister"s Materials Science and Engineering, (Adopted by R. Balasubramaniam) Wiley-Eastern REFERENCES "Amorphous & Nano crystalline Materials: Preparation, Properties & Applications,"
 Learning Publishers. William D. Callister, Jr (2008), Callister"s Materials Science and Engineering, (Adopted by R. Balasubramaniam) Wiley-Eastern REFERENCES "Amorphous & Nano crystalline Materials: Preparation, Properties & Applications,"
 William D. Callister, Jr (2008), Callister"s Materials Science and Engineering, (Adopted by R. Balasubramaniam) Wiley-Eastern REFERENCES 1. "Amorphous & Nano crystalline Materials: Preparation, Properties & Applications,"
Balasubramaniam) Wiley-Eastern REFERENCES 1. "Amorphous & Nano crystalline Materials: Preparation, Properties & Applications,"
REFERENCES 1. "Amorphous & Nano crystalline Materials: Preparation, Properties & Applications,"
1. "Amorphous & Nano crystalline Materials: Preparation, Properties & Applications,"
A. Inoue & K. Hashimoto (Eds.), Springer, 2001.
E REFERENCES
1. <u>www.nptel.ac.in</u>
2. <u>www.mit.co.in</u>

COURSE CODE	YNT104D		L	Т	P	С
COURSE NAME	NANOTOXICOLOGY		3	0	0	3
PREREQUISITES			L	Т	Р	Н
			3	0	0	3
UNIT I Possible	e Health Impact of Nanoma	terials			1	9
Sources of Nanoparti	cles; Epidemiological Evider	nce; Entry Routes into the H	Iumar	ı Body	y – I	Lung,
Intestinal Tract, Sking	; Nano particle Size - Surf	ace and Body Distribution	n; Eff	ect of	f Size	and
Surface Charges; N	anoparticles, Thrombosis an	d Lung Inflammation ;Nand	oparti	cles ar	nd Ce	llular
Uptake; Nanoparticle	s and the Blood-Brain Barrier	ſ				
UNIT II Nanom	aterials for Environmental	Remediation				9
Introduction- Nanor	particle-based Remediation	Materials - Acid-Base	Cher	nistry	- R	edox
Chemistry - Field I	Deployments of ZVI - A	bsorption Chemistry - H	ybrid	Nano	ostruc	tured
Remediation Mater	ials - Self-assembled Mo	onolayers on Mesoporous S	Suppo	orts (S	AMN	(S) -
Functional CNTs .						
UNIT III Biotoxi	city of Metal Oxide Nanopa	rticles and Carbon Nanotu	ibes			9
Introduction; Nanopa	articles in the Environment	Nanoparticles in Mamma	lian	Syster	ns; H	lealth
_	als and Biotoxicity; Iron	-		-		
Irradiation Studies;Ot	ther Metal Oxides; Toxicolog	ical Studies and Toxicity of	Man	ufactu	red C	NTs-
case study; Toxicity of	of CNTs and Occupational Ex	posure Risk; Toxicity of M	WCN	Ts/SW	/CNT	s and
Impact on Environme	ental Health					
UNIT IV Toxicol	ogy of Nanopartiles in Envi	ronmental Pollution				9
Air Pollution; Introd	uction to Air Pollution Parti	cles; Adverse Effects of Pl	M in	Epide	miolo	gical
Studies; Role of Nat	nopartides in Mediating the	Adverse Pulmonary Effect	cts of	PM;	Effec	ts of
Nanopartides on the	Cardiovascular System; Na	nopartide Translocation	and	Direct	Vas	cular
Effects; Endothelial	Dysfunction and Endoge	enous Fibrinolysis; Coagula	tion	and T	hromt	osis;
Cardiac Autonomie I	Dysfunction; Effects of Nano	opartides on the Liver and	Gastr	ointest	inal 7	Tract;
Effects of NP on the l	Nervous System.					
UNIT V Dosime	try, Epidemiology and Toxi	cology of Nanoparticles				9
Epidemiological Evi	dence for Health Effect	Associations with Ambien	t Pa	rticula	te M	atter;
Toxicological Evider	nce for Ambient Particula	te Matter Induced Adve	erse	Health	n Ef	fects;
Inhaled Nanopartic	le Dosimetry; Toxicolog	gical Plausibility of Health	h Eff	ects (Cause	d by
Nanoparticles; Integra	ated Concept of Risk Assessm	nent of Nanoparticles				
LECTURE	TUTORIAL	PRACTICAL		T	OTAI	
45	0	0			45	
TEXT						
	R. Kumar, -Nanomaterials	s - Toxicity, Health and E	Enviro	nment	tal Iss	sues∥,
•	publisher (2006).					
-	onteiro-Riviere, C. Lang Tr		aracte	rizatio	on, D	osing
and Health E	EffectsI, Informa healthcare (2	.007)				

REFERENCES

- 1. D. Drobne, —Nanotoxicology for safe and Sustainable Nanotechnologyl, Dominant publisher (2007).
- 2. M. Zafar Nyamadzi, —A Reference handbook of nanotoxicologyl, Dominant publisher (2008).

E REFERENCES

www.nptel.ac.in

www.mit.co.in

COURSE CO	DE	YNT203A		L	Т	P	С
COURSE NA	ME	GREEN MANUFACTUR	ING TECHNOLOGY	3	0	0	3
PREREQUIS	ITES			L	Т	Р	Η
				3	0	0	3
UNIT I (Green Ma	anufacturing Trends					9
Green Manua	facturing	: Fundamentals and Ap	oplications - basic defin	nition	s an	d i	ssues
surrounding g	reen man	ufacturing at the process, m	achine and system - governme	ment	motiv	vatior	ns for
green manufac	cturing -	- traditional manufacturing	to green manufacturing	-ecc	onomi	c is	sues-
surrounding g	reen mai	nufacturing - the areas of	automotive, semiconductor	and	med	ical	areas
as well as in	the supp	oly chain and packaging a	reas Green Manufacturing.				
UNIT II S	Sustainat	ble Green Manufacturing					9
Introduction -	sustaina	able green manufacturing	-green manufacturing susta	ainab	ility	proce	esses,
requirements,	and risk	- The sustainable lean	and green audit process.	Inte	rnatio	nal g	green
-		-	pid prototyping and rapid m			-	
flexible autom	ation. Gr	een collaboration processes	. Alternative energy resource	ces.	Globa	lly g	green
manufacturing	supply	chains and logistic netw	orks. Sustainable green m	anufa	acturi	ng sy	rstem
design.							
UNIT III	Waste Ma	anagement					9
Sustainability a	and globa	al conditions - Material and	l solid waste management -	Ener	gy ma	inage	ment
-chemical wast	te manage	ement and green chemistry	- Climate change and air en	nissio	ns ma	inage	ment
- Supply water	r and was	te water management - Envi	ironmental business manager	nent			
UNIT IV I	ndustria	l Ecology					9
Introduction-M	laterial f	lows in chemical manufac	cturing-Industrial parks-Ass	essin	g opp	ortu	nities
for waste excl	hanges a	and by product synergies-	Life cycle concepts-Produc	ct sh	eward	lship	and
green enginee	ering-Reg	gulatory, social and busir	ness environment for gre	en 1	nanuf	factu	ring
			nsPresent state of green ma	nufac	turing	g.	
UNIT V (Green Pla	astics Manufacturing					9
Introduction to	commer	cial plastics and elastomers	-Natural Rubber (NR), modi	fied N	VR an	d ble	nds -
Polyesters from	m microl	bial and plant biofactories	(polylactic acid and poly	hyroz	kyalka	anoat	es) -
Plastics from	vegetabl	e oils -Cellulose and star	rch based materials -Na	tural	fille	rs, fi	ibers,
reinforcements	and clay	nanocomposites -Biodegr	adability, life cycle assessme	ent an	d eco	nomi	cs of
using natural n							
LECTU	RE	TUTORIAL	PRACTICAL		T	DTA	Ĺ
45		0	0			45	
TEXT							
			engineering, Prentice Hall N.		,		
	mfeld, Gr	een manufacturing fundame	ntal and applications, Prentic	e hal	1		
(2002).							
•	•	-	d manufacturing, Prince publ	icatio	ons, (2	2008)).
		chemistry, Blackwell publi	shing (2008)				
REFERENCE	ES						

- 1. Paulo Davim, Sustainable Manufacturing, Wiley publications (2010).
- 2. Frank Kreith, George Tchobanoglous, Solid waste management, McGraw Hill (2002).
- 3. E. S. Stevens, Green plastics, Princeton university press (2002).
- 4. U. Robert Ayres, A Handbook of Industrial Ecology, Edward elgar publishing (2002).

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. <u>www.mit.co.in</u>

TE PREREQUISITES UNIT I Crystal Gro	VANCED CRYSTAL GROWTH				
PREREQUISITES UNIT I Crystal Gro		3	0	0	3
UNIT I Crystal Gro	CHNIQUES				
J		L	Т	Р	Н
J		3	0	0	3
Introduction Nucleation					9
	on – Gibbs – Thomson equation fo				
	imitation of classical nucleation – Rate	of nucleatio	$n - D_1$	ifferent	shapes
	ap shaped and cylindrical.				<u> </u>
UNIT II Growth fro					9
•	ropolous method - Czochralski method -				-
	ux – Slow cooling method – Temper			ethod	– High
-	ent evaporation method – Top seeded sol	ution growth	1		
UNIT III Growth fro	om Vapor Phase				9
Physical vapor deposition	on – Chemical vapor transport –	Open and	Close	d syste	em –
Thermodynamics of chei	mical vapor deposition process - Physi	cal and The	ermo-ch	emical	factors
affecting growth process.					
UNIT IV Growth fro	om Solutions				9
Solvent and solutions –	Solubility – Preparation of a solution –	Saturation	and sup	ersatur	ation –
	turation – Expression for supersaturat		-		
			· · I ·		0
solution growth – Slow c	cooling method – Manson iar method – F	vaporation 1	nethod -	– Temr	perature
-	cooling method – Manson jar method – E tro crystallization Growth from gels	-		-	
gradient method – Elect	ro crystallization. Growth from gels	– Exper	imental	meth	ods –
gradient method – Elect Chemical reaction metho	tro crystallization. Growth from gels od – Reduction method – Complex d	– Exper	imental	meth	ods –
gradient method – Elect Chemical reaction methor reduction method – Grow	ro crystallization. Growth from gels	– Exper	imental	meth	ods – lubility
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY	tro crystallization. Growth from gels od – Reduction method – Complex d th by hydrothermal method.	– Exper	imental n metho	meth od – Sc	ods – Jubility 9
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy –	tro crystallization. Growth from gels od – Reduction method – Complex d th by hydrothermal method. Liquid phase epitaxy – Molecular beam	– Exper ecompositio	imental n metho Atomic I	meth od – Sc	ods – Jubility 9
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta	tro crystallization. Growth from gels od – Reduction method – Complex d th by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical	– Exper ecompositio epitaxy – A beam epitax	imental n metho Atomic I	meth od – So ayer ep	ods – Jubility 9 Ditaxy –
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta LECTURE	tro crystallization. Growth from gels od – Reduction method – Complex d th by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA	– Exper ecomposition epitaxy – A beam epitax CTICAL	imental n metho Atomic I	meth od – Sc ayer ep TO'	ods – Jubility 9 Ditaxy – TAL
gradientmethod–ElectChemicalreactionmethodreductionmethod–GrowUNITVEPITAXYVaporphaseepitaxyElectro-epitaxy–MetaLECTURE45	tro crystallization. Growth from gels od – Reduction method – Complex d th by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical	– Exper ecompositio epitaxy – A beam epitax	imental n metho Atomic I	meth od – Sc ayer ep TO'	ods – Jubility 9 Ditaxy –
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P	tro crystallization. Growth from gels od – Reduction method – Complex d oth by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growth 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vapor 1 st 1 P. and Ramasamy. P., —Crystal growth and p	– Exper ecompositio epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar	Atomic 1 y. 4). un and Ha	meth od – Sc ayer ep TO'	ods – Jubility 9 Ditaxy – TAL
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P Publications, (2000).	tro crystallization. Growth from gels od – Reduction method – Complex d oth by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growth 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vapor 1 st 1 P. and Ramasamy. P., —Crystal growth and p	– Exper ecompositio epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar	Atomic 1 y. 4). un and Ha	meth od – Sc ayer ep TO'	ods – Jubility 9 Ditaxy – TAL
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P Publications, (2000). REFERENCES	tro crystallization. Growth from gels od – Reduction method – Complex d oth by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growth 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vapor 1 st 1 P. and Ramasamy. P., —Crystal growth and p	– Exper ecompositio epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar rocessl, 1 st Ed	Atomic 1 y. 4). an and Ha	meth od – Sc ayer ep TO'	ods – Jubility 9 Ditaxy – TAL
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P Publications, (2000). REFERENCES 1. Ramasamy. P., ISTE S	tro crystallization. Growth from gels od – Reduction method – Complex d oth by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growth 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vapor 1 st P. and Ramasamy. P., —Crystal growth and p Summer School Lecture Notes, —Crystal Gr	– Exper ecompositio epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar rocessl, 1 st Ed	Atomic 1 y. 4). an and Ha	meth od – Sc ayer ep TO'	ods – Jubility 9 Ditaxy – TAL
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P Publications, (2000). REFERENCES 1. Ramasamy. P., ISTE S University, Chennai, (1)	tro crystallization. Growth from gels od – Reduction method – Complex d th by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growth 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vapor 1 st P. and Ramasamy. P., —Crystal growth and p Summer School Lecture Notes, —Crystal Gr 1991).	– Exper ecomposition epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar rocessl, 1 st Ed owth Centrell,	Atomic I y. 4). In and Ha I., KRU Anna	meth od – Sc ayer ep <u>TO'</u> all,	ods – Jubility 9 Ditaxy – TAL
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Metal LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P Publications, (2000). REFERENCES 1. Ramasamy. P., ISTE S University, Chennai, (1 2. Brice, J. C., —Crystal	tro crystallization. Growth from gels od – Reduction method – Complex d oth by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growth 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vapor 1 st P. and Ramasamy. P., —Crystal growth and p Summer School Lecture Notes, —Crystal Gr	– Exper ecomposition epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar rocessl, 1 st Economic owth Centrel, ions, New Yo	Atomic I Atomic I y. 4). In and Ha I., KRU Anna ork, (198	meth od – Sc ayer ep <u>TO'</u> 4 all,	ods – Jubility 9 Ditaxy – TAL
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Metal LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P Publications, (2000). REFERENCES 1. Ramasamy. P., ISTE S University, Chennai, (1 2. Brice, J. C., —Crystal	tro crystallization. Growth from gels od – Reduction method – Complex d oth by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growthl 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vaporl 1 st 1 P. and Ramasamy. P., —Crystal growth and p Summer School Lecture Notes, —Crystal Gr 1991). growth processl, 1 st Ed., John Wiley Publicat lern Crystallography: III – Crystal Growthl, 1	– Exper ecomposition epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar rocessl, 1 st Economic owth Centrel, ions, New Yo	Atomic I Atomic I y. 4). In and Ha I., KRU Anna ork, (198	meth od – Sc ayer ep <u>TO'</u> 4 all,	ods – Jubility 9 Ditaxy – TAL
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P Publications, (2000). REFERENCES 1. Ramasamy. P., ISTE S University, Chennai, (1 2. Brice, J. C., —Crystal 3. Chernov. A. A., —Mod	tro crystallization. Growth from gels od – Reduction method – Complex d oth by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growthl 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vaporl 1 st 1 P. and Ramasamy. P., —Crystal growth and p Summer School Lecture Notes, —Crystal Gr 1991). growth processl, 1 st Ed., John Wiley Publicat lern Crystallography: III – Crystal Growthl, 1	– Exper ecomposition epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar rocessl, 1 st Economic owth Centrel, ions, New Yo	Atomic I Atomic I y. 4). In and Ha I., KRU Anna ork, (198	meth od – Sc ayer ep <u>TO'</u> 4 all,	ods – Jubility 9 Ditaxy – TAL
gradient method – Elect Chemical reaction methor reduction method – Grow UNIT V EPITAXY Vapor phase epitaxy – Electro-epitaxy – Meta LECTURE 45 TEXT 1. Sangwal. K., —Eler 2. Faktor. M. M. and G (1988). 3. Santhana Ragavan. P Publications, (2000). REFERENCES 1. Ramasamy. P., ISTE S University, Chennai, (1 2. Brice, J. C., —Crystal 3. Chernov. A. A., —Mod Solid State, New York,	tro crystallization. Growth from gels od – Reduction method – Complex d oth by hydrothermal method. Liquid phase epitaxy – Molecular beam lorganic vapor phase epitaxy – Chemical TUTORIAL PRA 0 mentary Crystal Growthl 1 st Ed., Saan Publis Garet. I., —Growth of crystal from vaporl 1 st 1 P. and Ramasamy. P., —Crystal growth and p Summer School Lecture Notes, —Crystal Gr 1991). growth processl, 1 st Ed., John Wiley Publicat lern Crystallography: III – Crystal Growthl, 1	– Exper ecomposition epitaxy – A beam epitax CTICAL 0 her, UK, (199 Ed., Chapmar rocessl, 1 st Economic owth Centrel, ions, New Yo	Atomic I Atomic I y. 4). In and Ha I., KRU Anna ork, (198	meth od – Sc ayer ep <u>TO'</u> 4 all,	ods – Jubility 9 Ditaxy – TAL

COURSE COD	E	YNT203C		L	Т	Р	С
COURSE NAM	IE (CARBON NANOTUBE EL	ECTRONICS	3	0	0	3
		AND DEVICES					
PREREQUISIT	ГES			L	Т	Р	Н
				3	0	0	3
UNIT I Ba	asics of	Carbon Nanotubes					9
Carbon material	ls – Al	lotropes of carbon - Struct	ure of carbon nanotu	bes – '	Types	of CN	Ts –
Electronic prope	erties of	f CNTs - Band structure o	f Graphene – Band	structu	re of S	SWNT	from
graphene – Ele	ectron tr	ransport properties of SWNT	s – Scattering in SWI	NTs – O	Carrier	mobil	ity in
SWNTs.							
•		and Integration of SWNT					9
	•	nthesis – Method – Direct	*				
-		etal electrodes - Lowering	• •				-
-		ion, Orientation, Chirality –	•				•
	•	or different CVD processes	- Selective removal	of the	metalli	c nano	tubes
in FET devices -	U						
UNIT III Ca	arbon N	Nanotube Field-Effect Trans	sistors				9
Schottky barrie	er heig	hts of metal S/D contac	ts – High k-gate	dielect	ric in	tegratio	on –
Quantum capac	itance -	- Chemical doping - Hystere	esis and device passiva	tion –	Near i	deal, N	letal-
contaced MOSF	ETs – S	SWNT MOSFETs – SWNT b	and-to-band tunnelling	g FETs			
UNIT IV A	C Respo	onse and Device Simulation	Of Swnt Fets				9
Assessing the	AC re	esponse of Top gated SW	NT FETs - Power	meas	ureme	nt usi	ng a
spectrum analyz	zer –He	omodyne detection using SV	WNT FETs – RF cha	aracteri	zation	using	a two
tone measureme	ent – A	AC gain from a SWNT FET	common source amp	lifier –	Device	e simu	lation
of SWNT FETs	– SWN	NT FET simulation using NE	EGF – Device charact	eristics	at t	he Ba	llistic
limit – Role of	Phono	on scattering - High frequen	ncy performance limi	ts –			
Optoelectronic p							
UNIT V Ca	arbon N	Nanotube Device Modeling a	and Circuit Simulatio	n			9
Schottky barrier	SWNT	Г-FET modeling – Compac	et model for circuit	simula	tion -	- Mod	el of
the intrinsic SW	/NT cha	annel region – Full SWNT	-FET model – App	lication	s of t	the SV	VNT-
=		Performance modeling for c					
for SWNTs – C	'ircuit m	nodels for SWNT bundles –	Circuit models for MV	WNTs -	- Carb	on nan	otube
interconnects – A							
LECTUR	E	TUTORIAL	PRACTICA	L		TOT	AL
45		0	0			45	;
TEXT							
-	-	Kong, —Carbon Nanotube El					
		ell, —Carbon nanotubes: Prop	perties and Application	ıs∥, CR0	C/Tayl	or &	
Francis, (20	06).						
REFERENCES	j						

- 1. Francois Leonard, —The Physics of Carbon Nanotube Devices, William Andrew Inc., (2009).
- 2. R. Saito and M. S. Drbselmus, —Physical properties of Carbon Nanotubes IImperial College Press, (1998).

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. <u>www.mit.co.in</u>

COURSE CODE	YNT203D		L	Т	Р	С
COURSE NAME	NANOSCALE INTEGRATED CO	OMPUTING	3	0	0	3
PREREQUISITES			L	Т	Р	Н
			3	0	0	3
UNIT I An Intro	duction to Nanocomputing					9
Micro computing era	- Transistor as a switch, difficul	ties with transist	ors	at the	nano	meter
scale – Nanoscale de	vices – Molecular devices – Nanotub	es – Quantum dot	s - V	Vave o	comput	ing –
Quantum computing.						
UNIT II Quantui	n Computing					9
Reversible computatio	ns – Quantum computing models	s – Complexity	boı	inds f	for qua	intum
computing – Quantur	n compression – Quantum error cor	recting codes –	Quan	tum c	ryptog	raphy
- Computing with q	uantum dot cellular automata – Qu	antum dot cellu	ılar	auton	nata c	ell –
Ground state computi	ng - Clocking - QCA addition -	- QCA multiplica	tion	– QCA	A mem	ory –
4-bit processor						
UNIT III Spin-Wa	ave Architectures					9
Spin wave crossbar	- Spin wave reconfigurable mes	h – Spin wave	ful	ly int	erconn	ected
cluster – Multi-scale	Hierarchical architecture – Spin	wave based log	gic	device	es –]	Logic
functionality - Parall	el computing with spin waves –	Parallel algorithm	n des	sign te	echniqu	ies –
Parallel routing and bro	badcasting – On-Spin wave crossbar	- OnSpin wave	reco	nfigur	able m	esh –
On-Spin wave fully int		-		•		
UNIT IV Molecula	ar Computing					9
Switching and memor	y in molecular bundles – molec	cular bundle swit	ches	_	Circui	t and
architectures in molecu	ılar computing – Molecular graftin	g for silicon co	mput	ing –	- Mole	ecular
grafting on intrinsic s	ilicon nanowires – Self assembly of	f CNTs				
UNIT V Comput	ational Tasks In Medical Nanorobo	tics				9
Medical Nanorobot de	signs – Microbivores – Clottocytes	- Chromallocytes	s – C	Commo	on func	ctions
requiring onboard c	omputation – Nanorobot contro	ol protocols: O	perat	ion p	protoco	ols –
Biocompatibility proto	cols - Theater protocols -Nanoscale	image processing	g: La	beling	g probl	em –
Convex Hull problem -	- Nearest neighbor problem					
LECTURE	TUTORIAL	PRACTICAL			TOT	AL
45	0	0			45	5
TEXT	· ·			•		
1.Nielsen M. A. and Isa	aac L. Chuang, —Quantum computat	ion and quantum i	nforr	nation	ıl,	
Cambridge Universit	ty,Press, (2000).					
2.Jain A. K., -Fundan	nentals of Digital Image Processing,	Prentice-Hall, (19	88)			
REFERENCES						
1. Schroder D. K., -S	emiconductor Material and Device Ch	naracterization, N	ew Y	ork, ((2006).	
2. Zhou C. and New H	aven, —Atomic and Molecular wires	, Yale University	Press	s, (199	99).	
E REFERENCES		-				
1. <u>www.nptel.ac.in</u>						

COURSE CODE	YNT204A		L	Т	Р	С
COURSE NAME	MICRO / NANO DEVICES	AND SENSORS	3	0	0	3
PREREQUISITES			L	Т	Р	Н
			3	0	0	3
UNIT I Introdu	iction			L		9
MEMS and NEMS	definitions, Taxonomy of Na	no-and Microsyste	ems-Sv	ynthesi	is and	Design.
Classification and	considerations, Biomimetics, B	iological analogies	s, and	desig	n–Bio	mimetics
	metics for NEMS and MEMS, N	0 0		0		
	ng of Micro And Nano Scale E		-			9
	eling, analysis and simulation,		•		appli	cation to
	nodeling developments of mich		0		••	
	nathematical models of MEMS,			-		-
	nic and Organic Enabled Senso					9
Introduction-types of	f sensors-Mechanical, optical,	spintronic, bioel	ectron	ic an	d bio	magnetic
sensors-surface modi	fication-surface materials and int	eractions and its ex	ample	S		
UNIT IV Sensor	Characteristics and Physical B	ffects				9
Introduction to sens	ors, static Characteristics and	dynamic characteri	stics,	Physic	cal eff	ects : -
Photoelectric Effect,	Photoluminescence Effect, Elec	troluminescence E	ffect,	Cher	nilumi	nescence
Effect, Doppler Effe	ct, Hall Effect, thermoelectric e	ffect, magneto-opti	cal ph	enome	na	
UNIT V Future	Nanosystems					9
Nano machines, na	no robots, electronics based	on CNT, molecu	ılar E	lectro	nics.	Quantum
Computation: Future	of Meso/Nanoelectronics? -Inter-	erfacing with the	Brain	, tow	ards r	nolecular
medicine, Lab-or	-BioChips- Guided evoluti	on for challenge	es an	d the	solu	tions in
NanoManufacturing	echnology					
LECTURE	TUTORIAL	PRACTICA	L		TC	DTAL
45	0	0				45
TEXT						
	vshevski, Lyshevski Edward Lysh				nd	
	lechanical Systems, Fundamental o	f Nano-and Micro-Er	igineer	ing - 2	IIu	
Ed., CRC Press, (20	Cammarata, Nanomaterials: Syntl	agia Dronantias and	Annl	instian	~	
	Bristol, Philadelphia: Institute of I	· ·	і Аррі	leation	8	
•	ro manufacturing and Nanotechnolo	•	Heidell	erg Ne	W	
York (2006).	· · · · · · · · · · · · · · · · · · ·	/8/, ~p~				
REFERENCES						
1. Mark J. Jackson, Mi	ro and Nanomanufacturing, (2007)					
	ication, Principles, Capabilities and					
3. Kalantar–Zadeh K, N	lanotechnology Enabled Sensors, S	pringer, (2008).				
	Xu, Alex Zaslavsky, Future trends i	n MicroElectronics, J	lohn W	ïley &		
Sons, Inc. Hoboken,	New Jersey (2007).					
E REFERENCES						
www.nptel.ac.in						
www.mit.co.in						

COURSE CODE	YNT204B		L	Т	P	С
COURSE NAME	SPECTROSCOPIC TECH	NIQUES FOR	3	0	0	3
	NANOMATERIALS					
PREREQUISITES			L	Т	Р	Н
			3	0	0	3
UNIT I Nano C)ptics					9
Basic Concepts-Sp	ontaneous Emission- Clas	ssical Bound- Ra	diating	g Ele	ctron-	Quantum
Mechanical Radiati	ive Decay-Absorption and	Emission - Abs	sorptio	n Co	oefficie	ent and
Absorption Cross-Se	ection,Absorption and Induce	ed Emission-Nano-opt	tics an	d local	l specti	roscopy -
Scanning plasmon ne	ar-field optical spectroscopy (SPNM)-near-field op	tical sp	pectros	scopy-	nearfield
nonlinear optics						
UNIT II Molecu	llar Spectroscopies Of Nanoa	assemblies				9
Simplified model for	or vibrational interactions-C	haracteristic bands	for o	rganic	comp	ounds -
Attenuated-total refle	ction (ATR) and grazing in	ncidence angle techn	iques-	Reflec	tion-al	bsorption
IR spectroscopy (R	AIRS)-The Raman Effect-	Lateral and in-depth	Resolu	ition o	of Con	ventional
µRS- Resonant Ram	an Spectroscopy (RRS) - Na	nospecific Modes-	Surfa	ce-Enł	nanced	Raman
Spectroscopy (SEF	RS)- Nano-Raman- Phase	e Identification a	ind l	Phase	Trans	itions in
Nanoparticles- Chara	cterizing Carbon Materials wi	th Raman Spectroscoj	ру			
UNIT III Nonline	ear Spectroscopies					9
Absorption saturatio	n and harmonic generation	,Second-harmonic ge	enerati	on (S	HG) ;	and sum
frequency spectrosco	py (SFG)- Luminescence up	conversion-The use o	of nonl	inear o	optical	methods
to obtain infrared spe	ctra of ultra-thin assemblies co	onfined to surfaces				
UNIT IV Lumin	escence Spectroscopies					9
Optical properties	of assembled nanostructures	s-interaction between	n nan	opartic	les-Di	rect and
indirect gap transitio	ns-, -Single molecule and s	ingle nanoparticles s	spectro	scopy-	-Dynar	mic light
scattering spectrosc	opy Fluorimetry and chemilu	iminescence - X-ray	fluore	scence	e spect	trometry-
Atomic emission spec	ctroscopy.					
UNIT V Electro	n Spectroscopies for Nanom	aterials				9
X-Ray Beam Effect	s,Spectral Analysis -Core L	evel Splitting Linew	idths-	Elem	ental .	Analysis:
Qualitative and Qua	intitative -Secondary Struct	ure ,XPS Imaging	-Ang	le-Reso	olved	- Basic
Principles of AES-	Instrumentation Experimental	Procedures Includi	ing Sa	ample	Prepa	aration -
AES Modifications	and Combinations with o	other Techniques -A	uger	Spectr	a: Di	rect and
Derivative Forms an	d Applications-Electron ener	rgy loss spectroscop	y of na	anoma	terial	
LECTURE	TUTORIAL	PRACTICA	L		TO	DTAL
45	0	0				45
TEXT						
1. Vladimir G. Bordo	and Horst-Günter Rubahn; –	-Optics and Spectrosc	opy at	Surfa	ces and	1
Interfaces" John-V	Viley and Sons, Inc., (2005).					
2. William W. Parson	n, Modern Optical Spectroscop	py, Springer, (2007).				
3. Collin Banwell, M	lc Cash, Fundamentals of Mol	ecular Spectroscopy,	McGra	w Hill	l (1994	4).
4. Harvey Elliot Whi	te, Introduction to Atomic Spe	ectra, McGraw Hill, (1	1934).			

REFERENCES

1. Francis Rouessac and Annick Rouessac, Chemical Analysis-Modern Instrumentation Methods and Techniques,(2000)

- 2. Joseph. R. Lakowicz Principles of fluorescence spectroscopy, Springer, (2010).
- 3. Pavia, Lampman, Kriz, Vyvyan, Introduction to spectroscopy, Cengage learning, (2009).
- 4. Jin Jhong Jhang, Optical properties and spectroscopies of Nanomaterials, World Scientific Publishing (2009).

E REFERENCES

1. <u>www.nptel.ac.in</u>

2. <u>www.mit.co.in</u>

COURSE CODE	YNT204C		L	Т	Р	С
COURSE NAME	THIN FILM SCIENCE AN	D TECHNOLOGY	3	0	0	3
PREREQUISITES			L	Т	Р	Η
			3	0	0	3
UNIT I Thin Fil	m Deposition Techniques					9
Introduction - Kinetic	c theory of gases - Physical	vapour deposition tec	chniqu	ies – I	Physics	and
Chemistry of Evapora	ation - Thermal evaporation	- Pulsed laser deposi	tion -	- Mol	ecular	beam
epitaxy – Sputterin	g deposition –DC, RF, Ma	gnetron, Ion beam and	d read	tive s	putterii	ng -
Chemical methods -	Thermal CVD – Plasma en	nhanced CVD – Sprag	y Pyr	olysis	– Sol	Gel
method - Spin and	Dip coating – Electro p	ating and Electrole	ss pla	ating	–Depo	sition
mechanisms.						
UNIT II Charact	erization Techniques					9
Surface analysis tech	niques – Auger Electron s	pectroscopy – Photoe	lectro	n Spec	ctrosco	ру –
Secondary Ion Mas	s Spectroscopy – X-ray	Energy Dispersive A	Analys	is –	Ruthe	erford
Backscattering spectro	oscopy - Imaging Analysis	Fechniques – Scanning	g Elect	ron M	icrosco	ру –
Transmission Electron	n Microscopy – Optical a	nalysis Techniques -	-Ellips	sometr	y – Fo	ourier
Transform Infrared Spe	ectroscopy – Photoluminescen	ce Spectroscopy				
UNIT III Adsorpt	ion And Diffusion In Thin F	ilms				9
Physisorption - Che	misorption - Work function	on changes induced	by a	dsorbat	tes –	Two
dimensional phase trai	nsititions in adsorbate layers -	- Adsorption kinetics -	- Dese	orption	techni	ques.
Fundamentals of diffu	sion –Grain Boundary Diffu	sion – Thin Film Dif	fusior	Coup	les -	Inter
Diffusion -Electromig	ration in thin films – Diffusion	on during film growth				
UNIT IV Stress in	n Thin Films					9
Origin of Thin film str	ess - Classifications of stress	- Stress in epitaxial f	ilms -	- Grov	vth Str	ess in
polycrystalline films -	- Correlation between film	stress and grain struc	cture	– Mec	chanisn	ns of
stress evolution - fi	lm stress and substrate curv	ature – Stoney formula	– Me	thods	of curv	vature
measurement – Scanni	ng laser method					
UNIT V Modifica	ation of Surfaces And Films					9
Introduction - Laser	and their Interactions with	Surfaces – Laser m	nodific	ation	effects	and
applications – Laser	sources and Laser scanni	ng methods - Therr	nal a	nalysis	s of	Laser
annealing - Laser st	urface alloying - Ion impla	ntation effects in soli	ids –	Energ	gy los	s and
structural modification	n – compositional modifica	tion - Ion beam mod	ificatio	on phe	nomena	a and
applications						
LECTURE	TUTORIAL	PRACTICA	L		TOT	AL
45	0	0			45)
ТЕХТ						
•	, Thin Films - High density Pla	· · ·	U			,
	nshah, Hand Book of Depositi	_				gs by
	ology and Applications, Secor					
3. Milton Ohring.	, Materials Science of Thin film	ns Published by Acade	mic Pr	ess Lii	nited(1	.991)

REFERENCES

1. L.B. Freund and S.Suresh, Thin Film Materials, (2003). L.B. Freund and S.Suresh, Thin Film Materials, (2003).

- 2. Hans Luth, Solid surfaces, Interfaces and Thin Films' 4th edition, Springer Publishers (2010).
- 3. Harald Ibach, Physics of Surfaces and Interfaces, Springer Publishers (2006).AM

E REFERENCES

www.nptel.ac.in

www.mit.co.in

COURSE CODE	YNT204D	L	Т	Р	С
COURSE NAME	MICRO AND NANO EMULSIONS	3	0	0	3
PREREQUISITES		L	Т	Р	Η
		3	0	0	3
UNIT I Introducti	on				9
Definition of nano- an	d micro- emulsions - Reason for their long	term	kinetio	stabil	lity –
Practical application in	personal care products and cosmetics	hea	lthcare	e pro	oducts,
pharmaceuticals and	agrochemicals - Schematic representation of	f oil/v	vater a	and wa	ater/oil
emulsions - Comparise	on with micelles and macroemulsions - Method	ls of e	mulsifi	ication:	Pipe
flow, static mixers and	d general stirrers, high-speed mixers, colloid	mills	and h	igh pr	ressure
homogenizers - continue	bus and batch-wise preparations – turbulent flow.				
	m of Emulsification				9
Role of interfacial energy	y – Explanation of the high energy required for fo	rmatio	n of na	anoemu	ilsions
- The Laplace pressure	concept - Role of surfactants: Reduction in in	nterfaci	ial ten	sion a	nd the
effect on dro plet size	- Gibbs adsorption equation - Interfacial dilat	ional n	nodulu	s and c	lroplet
deformation - Interfac	cial tension gradients and the Marangoni effect	- Solu	ıbiliza	tion th	eories:
Concept of a duplex fil	m and bending of the interface to form o/w or	w/o e	emulsic	ons –	Phase
diagrams of ternary syste	ems of water, surfactant and cosurfactant - Cond	cept of	norma	l and i	nverse
micelles - Quarternary	phase diagrams of oil/water surfactant and cosurfactant	actant	– Sol	ubiliza	tion of
oil by nonionic surfactan	t				
UNIT III Formulati	on of Emulsion				9
	on of Emulsion zation and efficiency of preparation – The Pha	ise Inv	ersion	Tempe	-
High pressure homogen				-	erature
High pressure homogeni (PIT) principle –Variati	ization and efficiency of preparation – The Pha	ase dia	grams	as a fu	erature
High pressure homogent (PIT) principle –Variati of temperature – For	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha	ase dia roemu	grams lsions:	as a fu Hydro	erature nction ophilic
High pressure homogent (PIT) principle –Variati of temperature – For	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha nulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (ase dia roemu	grams lsions:	as a fu Hydro	erature nction ophilic
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha nulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (ase dia roemu	grams lsions:	as a fu Hydro	erature nction ophilic
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha mulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept	ase dia roemu	grams lsions:	as a fu Hydro	erature nction ophilic hesive
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha mulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept ization of Emulsions	ase dia croemu PIT) c	grams lsions: concept	as a fu Hydro t – Co	erature nction ophilic hesive
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character Scattering techniques: 7	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha nulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept ization of Emulsions Fime average light scattering – Neutron scatter	nse dia <u></u> proemu PIT) c	grams lsions: concept Quas	as a fu Hydro t – Co	erature nction ophilic hesive 9 c light
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character Scattering techniques: T scattering (Photon Con	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha mulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept ization of Emulsions Time average light scattering – Neutron scatter rrelation Spectroscopy(PCS)) – Conductivity	nse dia proemu PIT) c ing – and	grams lsions: concept Quas NMR	as a fu Hydro t – Co i-elastic techr	erature anction ophilic ahesive 9 c light hiques:
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character Scattering techniques: T scattering (Photon Con Conductivity of water/oi	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha nulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept ization of Emulsions Time average light scattering – Neutron scatter rrelation Spectroscopy(PCS)) – Conductivity I microemulsions, percolating and non-percolatin	ing – and and g emu	grams lsions: concept Quas NMR lsions,	as a fu Hydro t – Co i-elastic techr bicont	9 c light inuous
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character Scattering techniques: T scattering (Photon Con Conductivity of water/oi	ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha mulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept ization of Emulsions Time average light scattering – Neutron scatter rrelation Spectroscopy(PCS)) – Conductivity	ing – and and g emu	grams lsions: concept Quas NMR lsions,	as a fu Hydro t – Co i-elastic techr bicont	9 c light inuous
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character Scattering techniques: T scattering (Photon Con Conductivity of water/oi emulsions – Viscosity components in emulsions	 ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha nulation of microemulsions – Selection of mic. B) concept – Phase Inversion Temperature (cept ization of Emulsions Fime average light scattering – Neutron scatter rrelation Spectroscopy(PCS)) – Conductivity 1 microemulsions, percolating and non-percolatin of emulsions – NMR technique for measurements and explanation of the various structures 	ing – and and g emu	grams lsions: concept Quas NMR lsions,	as a fu Hydro t – Co i-elastic techr bicont	9 c light niques: of all
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character Scattering techniques: Scattering (Photon Con Conductivity of water/oi emulsions – Viscosity components in emulsions UNIT V	 ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha mulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept ization of Emulsions Fime average light scattering – Neutron scatter relation Spectroscopy(PCS)) – Conductivity l microemulsions, percolating and non-percolatin of emulsions – NMR technique for measurements and explanation of the various structures f Emulsion 	ing – and g emu ent of	grams lsions: concept Quas NMR lsions, self di	as a fu Hydro t – Co i-elastic techr bicont ffusion	9 c light inques: of all
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character Scattering techniques: Scattering (Photon Con Conductivity of water/oi emulsions – Viscosity components in emulsions UNIT V	 ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha nulation of microemulsions – Selection of mic. B) concept – Phase Inversion Temperature (cept ization of Emulsions Fime average light scattering – Neutron scatter rrelation Spectroscopy(PCS)) – Conductivity 1 microemulsions, percolating and non-percolatin of emulsions – NMR technique for measurements and explanation of the various structures 	ing – and g emu ent of	grams lsions: concept Quas NMR lsions, self di	as a fu Hydro t – Co i-elastic techr bicont ffusion	9 c light inuous of all
High pressure homogeni (PIT) principle –Variati of temperature – Forn Lipophilic Balance (HL Energy Ratio (CER) con UNIT IV Character Scattering techniques: conductivity of water/oi emulsions – Viscosity components in emulsions UNIT V Stability of	 ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha mulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept ization of Emulsions Fime average light scattering – Neutron scatter relation Spectroscopy(PCS)) – Conductivity l microemulsions, percolating and non-percolatin of emulsions – NMR technique for measurements and explanation of the various structures f Emulsion 	ing – and g emu ent of ntropic	grams lsions: concept Quas NMR lsions, self di repuls	as a fu Hydro t – Co i-elastic techr bicont: ffusion	9 c light inuous of all 9 Total
High pressure homogeni(PIT) principle –Variatiof temperature – ForLipophilic Balance (HLEnergy Ratio (CER) conUNIT IVCharacterScattering techniques:scattering (Photon ConConductivity of water/oiemulsions – Viscositycomponents in emulsionsUNIT VSteric stabilization:Unit VSteric stabilization:Unit of adsorbed lay	 ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha mulation of microemulsions – Selection of mic. B) concept – Phase Inversion Temperature (cept ization of Emulsions Time average light scattering – Neutron scatter rrelation Spectroscopy(PCS)) – Conductivity l microemulsions, percolating and non-percolatin of emulsions – NMR technique for measureme s and explanation of the various structures f Emulsion favourable mixing of the stabilizing chains – En es for sterically stabilized emulsions – Variation er thickness to droplet radius – Thermodynamic 	ing – and g emu ent of ntropic n of the stabil	grams lsions: concept Quas NMR lsions, self di: repuls e energization	as a fu Hydro t – Co i-elastic techr bicont: ffusion ion – gy curv : Reas	9 c light inques: inuous of all 9 Total re with son for
High pressure homogeni(PIT) principle –Variatiof temperature – FornLipophilic Balance (HLEnergy Ratio (CER) conUNIT IVCharacterScattering techniques: T scattering (Photon ConConductivity of water/oiemulsions – Viscositycomponents in emulsionsUNIT VStability ofSteric stabilization: Unitenergy – Distance curvethe ratio of adsorbed laycombining surfactant and	 ization and efficiency of preparation – The Pha on of interfacial tension with temperature – Pha nulation of microemulsions – Selection of mic B) concept – Phase Inversion Temperature (cept ization of Emulsions Fime average light scattering – Neutron scatter rrelation Spectroscopy(PCS)) – Conductivity I microemulsions, percolating and non-percolatin of emulsions – NMR technique for measurements and explanation of the various structures f Emulsion favourable mixing of the stabilizing chains – En- es for sterically stabilized emulsions – Variation 	ing – and g emul ent of stabil tensior	grams lsions: concept Quas NMR lsions, self di repuls e energ ization a – Fo	as a fu Hydro t – Co i-elastic techr bicont: ffusion ion – gy curv : Reas	9 c light inques: inuous of all 9 Total re with son for

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45
TEXT			
1. Seid Mahdi Jafari, —	Encapsulation of nano-emul	sions by spray drying , Lamber	t Academic
Publishing, (2009).			
2. Hans Lautenshlager -	—EmulsionsI, Kosmetik Int	ernational, (2002)	
REFERENCES			
1. Roque Hidalgo-Alvar	ez, —Structure and Functio	nal properties of Colloids , CR	C Press, (2009).
2. Richard J. Fann, -C	hemistry and Technology of	f Surfactants∥, Wiley-Blackwell	, (2006).
E REFERENCES			
www.nptel.ac.in			
www.mit.co.in			

COURSE CODE	YNT301A		L	Т	P	С	
COURSE NAME	NANOTECHNOLOGY BU	SINESS	3	0	0	3	
	APPLICATIONS AND						
	COMMERCIALIZATION						
PREREQUISITES			L	Т	Р	Η	
			3	0	0	3	
UNIT I Overvie	ew					9	
	of nanobusinesses – ease ardization, investors and comm technology			-			
UNIT II Market	Landscape					9	
Nanotechnology land and segment the n applications - Globa	scape and commercially attr anotechnology marketplace I market for nanotechnology th partners - academy-indu	 Potential nanotechno products – Attracting ve 	ology nture	end-u capital	users l —Ho	and ow to	
UNIT III Comme	erce and Regulation					9	
PublicperceptionorEnvironment,healthDevelopmentsthat coUNITIVBusinesRelationshipb/wtechtechnology–newoppoand closedcorporation		impact of Regulation of chnology industry– gy market – Impact for Fu business creation– the co	of Na iture i mpan	anotech cechnol y conc	ogies epts–	gy – 9 new ional	
	als Processing Economics		<u> </u>			9	
calculate and estimate alternate approache	jection of yield– manufacturi e costs – relative performan es– Identification of equ ds– Tools to estimate the ec its benefits	nce enhancements for miniment– facilities and	mater overh	ials pi leads -	rocess – spe	sing– ecific	
LECTURE	TUTORIAL	PRACTICAL			TOT	TAL	
45	0	0					
TEXT							
Press, Taylor & Fr	lanotechnology: Business Apprancis group, London (2012). a Nanotechnology Regulation a						
1.Nanotechnology dev	velopments in India – A status i	report, The Energy and Re	esour	es Inst	itute		

(TERI), India (2009).

2.Nanotechnology: a Realistic Market Assessment, Report Code: NAN031B, BCC Research, Market

Forecasting (2006).

3. Michael T. Burke, Nanotechnology: The Business, Perspectives in Nanotechnology, CRC Press, Colorado, USA (2008).

E REFERENCES

www.nptel.ac.in

www.mit.co.in

COURSE CODE	YNT301B	L	Т	Р	С
COURSE NAME	NANO – CMOS CIRCUITS AND PHYSICAL	3	0	0	3
	DESIGNS				
PREREQUISITES		L	Т	Р	Η
		3	0	0	3
UNIT I Nano-C	mos Scaling Problems And Implications				9
Design Methodology	in the Nano-CMOS Era - Scaling - Overview	of Su	b-100-	nm So	caling
Challenges and Sul	bwavelength Optical Lithography – Back-I	End-of-	Line	Challe	enges
(Metallization) - Fro	nt-End-of-Line Challenges (Transistors) – Process	Contr	ol and	Relia	bility
Lithographic Issues	and Mask Data Explosion - New Breed of Circ	uit and	Physic	al Des	ign –
Modeling Challenges -	 Need for Design Methodology Changes 				
UNIT II Practica	lities of Subwavelength Optical Lithography				9
Simple Imaging Theor	ry - Challenges for the 100-nm Node - e-Factor	for the	e 100-r	nm No	ode –
Corner Rounding Rad	lius – Resolution Enhancement Techniques: Special	ized Ill	uminat	ion Pa	tterns
– Optical Proximity C	Corrections – Subresolution Assist Features – Alter	nating	Phase-	Shift N	/ lasks
- Physical Design S	Style Impact on RET and OPC Complexity -	Specia	lized	Illumir	ation
Conditions – Two-Di	mensional Layouts – Alternating Phase-Shift Mask	s –Mas	sk Cost	S	
UNIT III Process	Scaling Impact on Design Mixed-Signal Circuit D	esign			9
Design Considerations	s - Device Modeling - Passive Components -	Desig	n Met	nodolo	gy –
Benchmark Circuits	-Design Using Thin Oxide Devices - Desig	gn Usi	ng T	nick (Dxide
Devices - Low-Volt	age Techniques - Current Mirrors - Input Sta	ges –	Outpu	t Stag	ges –
Bandgap References	- Design Procedures - Electrostatic Discharge	e Protec	ction -	– Mul	tiple-
Supply Concerns –	Noise Isolation - Guard Ring Structures - Iso	lated N	MOS	Devic	ces –
Epitaxial Material vers	sus Bulk Silicon – Decoupling – Power Busing -	- Integ	ration	Proble	ms –
Corner Regions –Neig	ghboring Circuitry				-
	static Discharge Protection Design				9
	Models - ESD Protection Design - ESD Protection				
Uniformity of ESD	Protection Devices - ESD Implantation and Si	licide	Block	ng –	ESD
Protection Guidelines	- Low-C ESD Protection Design for High-Spee	d I/O	– ESE	Prote	ection
0 1	or Analog Pins - Low-C ESD Protection Desi	0	-	-	
Calculations – ESD	Robustness - Turn-on Verification - ESD Prot	ection	Design	for M	ixed-
Voltage I/O – Mixed-	-Voltage I/O Interfaces – ESD Concerns for Mixed	l-Voltag	ge I/O	Interfa	ces –
ESD Protection Devic	e for a Mixed-Voltage I/O Interface - ESD Protect	tion Ci	rcuit I	Design	for a
Mixed-VoltageI/O Inte	erface – ESD Robustness – Turn-on Verification	– SCH	R Devi	ces for	ESD
Protection – Turn-on	Mechanism of SCR Devices - SCR-Based Devices	for CM	IOS O	n-Chip	ESD
Protection					
	ntegrity Problems in On-Chip Interconnects				9
Interconnect Figures of	of Merit – Interconnect Parasitics Extraction –	Circuit	Repre	sentati	on of
Interconnects – RC	Extraction – Inductance Extraction – Signa	l Integ	grity	Analys	is –
	Models – RC Interconnect Analysis – RLC Interco		•		
Aware Timing Analys	sis – Design Solutions for Signal Integrity –Phys	ical De	sign T	echnig	ues –

Circuit Techniques			
LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45
TEXT			
1. Ban P. Wong,	Anurag Mittal, Yu CaoGr	eg Starr, "Nano-CMOS Circu	it and physical
design", John W	Viley & Sons, Inc.Hoboken,	New Jersey. (2000)	
REFERENCES			
1. Charles chiang, J	amil Kawa, "Design for mar	ufacturability and yield for Nan	io - Scale
CMOS", Springe	r, (2007).		
E REFERENCES			
1. <u>www.nptel.ac.in</u>			
2. <u>www.mit.co.in</u>			

	CODE	YNT301C				L	Τ	P	С
COURSE I	NAME	NANOMA	NIPULATION	& ASSEMBLY		3	0	0	3
PREREQU	JISITES					L	Т	Р	Η
						3	0	0	3
UNIT I	Introduo	ction				•			9
Concept of	manipulat	ion in nanost	tructures & nano	assembly, experi	mental reali	izatio	n, lin	nitati	on of
present-day	instrumer	ntation, futur	e out look						
UNIT II	Nanoma	nipulation							9
Buckling, T	Transport &	& Rolling at t	the nano scale. In	strumentation S	ystems: the	nano	mani	pula	tor &
	nicroscopy	v tools; nano	manipulation for	mechanical prop	perties				-
UNIT III				ctrostatic Forces					9
				ions of dielectro	phoresis on	the n	anoso	cale;	
		le dielectrop							-
UNIT IV	_	-		Artificial Nanos					9
-		•		ns of self-assemt	oly; biologic	cal lin	kers;	state	e-of-
			ly; future direction						
UNIT V				Molecular Buil	ling Blocks	5			9
Bonding &	connectiv	ity; molecula	r building block						
						CAT		TOT	ГAL
			LECTURE	TUTORIAL	PRACTI	CAL			
			45	1010RIAL 0	PRACII 0	CAL		4	
TEXT			45	0	0				
1. Electroc		Janotechnolo	45		0				
1. Electroo Publica	tions.		45 ogy by W.J. Lore	0 nz and W.Pleith,	0 IUPAC, W	ïley		4	.5
 Electroo Publica Handbo 	tions. ok of Mici		45 ogy by W.J. Lore	0	0 IUPAC, W	ïley		4	.5
 Electroo Publica Handbo publish 	tions. ok of Mici - 2005.		45 ogy by W.J. Lore	0 nz and W.Pleith,	0 IUPAC, W	ïley		4	.5
 Electroo Publica Handbo publish REFEREN 	tions. ok of Mice - 2005. I CES	roscopy for r	45 ogy by W.J. Lore nanotechnology b	0 nz and W.Pleith, py Nanyo, Zhong	0 IUPAC, W Lin Wang.	'iley Kluv	ver ad	4 cader	.5
 Electroo Publica Handbo publish REFEREN 1."Handboo 	tions. ok of Mica - 2005. I CES ok of Nanc	roscopy for r	45 ogy by W.J. Lore nanotechnology b	0 nz and W.Pleith,	0 IUPAC, W Lin Wang.	'iley Kluv	ver ad	4 cader	.5
 Electroo Publica Handbo publish REFEREN "Handboo Academi 	tions. ok of Mice - 2005. I CES ok of Nanc c Press, 20	roscopy for r	45 ogy by W.J. Lore nanotechnology b faterials & Nano	0 nz and W.Pleith, by Nanyo, Zhong technology," H	0 IUPAC, W Lin Wang. ari Singh Na	ïiley Kluv alwa	ver ad	4 cader	5
 Electroo Publica Handbo publish REFEREN 1."Handboo Academi 2."Scanning 	tions. ok of Mica - 2005. ICES ok of Nanc c Press, 20 g Probe M	roscopy for r ostructured M 000. icroscopy &	45 ogy by W.J. Lore nanotechnology b faterials & Nano	0 nz and W.Pleith, py Nanyo, Zhong	0 IUPAC, W Lin Wang. ari Singh Na	ïiley Kluv alwa	ver ad	4 cader	5
 Electrod Publica Handbo publish REFEREN 1."Handboo Academi 2."Scanning A Bonne 	tions. ok of Mice - 2005. ICES ok of Nanc c Press, 20 g Probe M ll, Wiley-V	roscopy for r ostructured M 000. icroscopy & VCH, 2001.	45 ogy by W.J. Lore nanotechnology b faterials & Nano Spectroscopy: T	0 nz and W.Pleith, by Nanyo, Zhong technology," H heory, Technique	0 IUPAC, W Lin Wang. ari Singh Na es & Applic	filey Kluv alwa	ver ad	4 cader	5
 Electrod Publica Handbo publish REFEREN 1."Handboo Academi Scanning A Bonne "Micro/N 	tions. ok of Mica - 2005. I CES ok of Nanc c Press, 20 g Probe M II, Wiley-V anotechno	roscopy for r ostructured N 000. icroscopy & VCH, 2001. logy and its	45 ogy by W.J. Lore nanotechnology b faterials & Nano Spectroscopy: T Applications," B	0 nz and W.Pleith, by Nanyo, Zhong technology," H heory, Technique . Bhushan, Kluw	0 IUPAC, W Lin Wang. ari Singh Na es & Applic er Publishe	iley Kluv alwa ation	ver ac (Ed.) s," D	4 cader	5
 Electrod Publica Handbo publish REFEREN 1."Handboo Academi 2."Scanning A Bonne 3."Micro/N 4. Robot H 	tions. ok of Mice - 2005. CES ok of Nance c Press, 20 g Probe M Il, Wiley-V anotechno ands & Me	roscopy for r ostructured N 000. icroscopy & VCH, 2001. logy and its	45 ogy by W.J. Lore nanotechnology b faterials & Nano Spectroscopy: T Applications," B	0 nz and W.Pleith, by Nanyo, Zhong technology," H heory, Technique	0 IUPAC, W Lin Wang. ari Singh Na es & Applic er Publishe	iley Kluv alwa ation	ver ac (Ed.) s," D	4 cader	5
 Electrod Publica Handbo publish REFEREN "Handboo Academi "Scanning A Bonne "Micro/N Robot H MIT Pre 	tions. ok of Mice - 2005. ICES ok of Nanc c Press, 20 g Probe M II, Wiley-V anotechno ands & Me ess, 1985.	roscopy for r ostructured N 000. icroscopy & VCH, 2001. logy and its echanics of N	45 ogy by W.J. Lore nanotechnology b Materials & Nano Spectroscopy: T Applications," B Manipulation," M	0 nz and W.Pleith, by Nanyo, Zhong technology," H heory, Technique . Bhushan, Kluw latthew T. Mason	0 IUPAC, W Lin Wang. ari Singh Na es & Applic er Publishe n & J. Kenn	filey Kluv alwa alwa rs. eth S	ver ac (Ed.) s," D	4 cader	5
 Electrod Publica Handbo publish REFEREN 1."Handboo Academi Scanning A Bonne "Micro/N Robot H MIT Pre 	tions. ok of Mice - 2005. CES ok of Nanc c Press, 20 g Probe M II, Wiley-V anotechno ands & Ma ess, 1985. Nano man	roscopy for r ostructured N 000. icroscopy & VCH, 2001. logy and its echanics of N	45 ogy by W.J. Lore nanotechnology b Materials & Nano Spectroscopy: T Applications," B Manipulation," M	0 nz and W.Pleith, by Nanyo, Zhong technology," H heory, Technique . Bhushan, Kluw	0 IUPAC, W Lin Wang. ari Singh Na es & Applic er Publishe n & J. Kenn	filey Kluv alwa alwa rs. eth S	ver ac (Ed.) s," D	4 cader	5
 Electrod Publica Publica Handbo publish REFEREN "Handboo Academi "Scanning A Bonne "Micro/N Robot H MIT Pre Micro & 	tions. ok of Mice - 2005. ICES ok of Nanc c Press, 20 g Probe M II, Wiley-V anotechno ands & Me ess, 1985. Nano man	roscopy for r ostructured N 000. icroscopy & VCH, 2001. logy and its echanics of N	45 ogy by W.J. Lore nanotechnology b Materials & Nano Spectroscopy: T Applications," B Manipulation," M	0 nz and W.Pleith, by Nanyo, Zhong technology," H heory, Technique . Bhushan, Kluw latthew T. Mason	0 IUPAC, W Lin Wang. ari Singh Na es & Applic er Publishe n & J. Kenn	filey Kluv alwa alwa rs. eth S	ver ac (Ed.) s," D	4 cader	5