FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT DEPARTMENT OF CHEMISTRY

Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT

DEPARTMENT OF CHEMISTRY

CURRICULUM AND SYLLABUS (I - IV SEMESTER)

M.Sc. CHEMISTRY (FULL TIME – 2 Years)

REGULATION 2022

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT DEPARTMENT OF CHEMISTRY Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

CURRICULUM & SYLLABUS (I to IV Semester) FOR M.Sc. CHEMISTRY

(FULL TIME – 2 Years)

REGULATION 2022

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

CURRICULUM AND SYLLABUS FOR MASTER OF SCIENCE M.Sc. (Chemistry) - (TWO YEARS - FULL TIME) REGULATION - 2022

(Applicable to the students admitted from the academic year 2022-2023 onwards)

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & <u>TECHNOLOGY</u>

VISION

To be a institution of global dynamism with excellence in knowledge and innovation ensuring social responsibility for creating an egalitarian society.

MISSION

- UM1: Offering well balanced programmes with scholarly faculty and state of art facilities to impart high level of knowledge.
- **UM2:** Providing student centered education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
- UM3: Involving progressive and meaningful research with concern for sustainable development.
- **UM4:** Enabling the students to acquire the skills for global competencies.
- UM5: Inculcating Universal values, Self-respect, Gender equality, Dignity and Ethics

DEPARTMENT OF CHEMISTRY

VISION

To prepare the students with basic scientific knowledge in Chemistry for technological development and to provide resources for industry and society through education and research to achieve environmental protection, energy generation and drug development.

MISSION

- **DM1.** To provide in-depth knowledge in Chemistry to impart technology.
- **DM2.** To create new idea to improve the technology by offering Doctoral programme.
- DM3. To undertake project in thrust areas with societal requirements.
- **DM4.** To develop novel method for clean technology, Bio energy and drug development. Programme Educational Objectives (PEOs)

PEO1	Proficient in applying a broad understanding of the basic principles of chemistry to the
	solution of chemical problems
PEO2	Able to become a highly professional teacher/professor or renowned scientist
PEO3	Able to plan, coordinate, communicate, organize, make decision and lead a team to
	solve problems and develop application using chemistry.
PEO4	Professional, ethical, responsible and will contribute to society through active
	management.

Mapping of Department Mission with University Mission:

	DM1	DM2	DM3	DM4	Total
UM1	3	3	2	1	9
UM2	3	2	3	1	9
UM3	2	2	3	3	10
UM4	3	2	3	2	10
UM5	2	2	3	3	10

3-High Relation, 2-Medium Relation, 1-Low Relation, 0-No Relation

CURRICULUM -M.Sc. (Chemistry) - (TWO YEARS - FULL TIME) REGULATION - 2022

SEMESTER I								
Category	Course Code	Course Name	L	Т	SS	Р	Н	C
Core Course-I	YCY101	Organic Chemistry I	4	1	0	0	5	5
Core Course-II	YCY102	Inorganic Chemistry I	4	1	0	0	5	5
Core Course-III	YCY103	Physical Chemistry I	4	1	0	0	5	5
Core Course-IV (Lab)	YCY104	Inorganic Chemistry Practical I	0	0	0	6	5	3
Core Course-V (Lab)	YCY105	Physical Chemistry Practical I	0	0	0	6	5	3
Elective Core - I	YCYE01 YCYE02	(A) Green Chemistry/(B) Industrial Chemistry	3	1	0	0	4	4
		Library					1	
	1	Total	15	4	0	12	30	25

	SEMESTER- II							
Category	Course Code	Course Name	L	Т	SS	Р	Н	С
Core Course-VI	YCY201	Inorganic Chemistry II	4	1	0	0	5	5
Core Course-VII	YCY202	Physical Chemistry II	4	1	0	0	5	5
Core Course-VIII	YCY203	Physical Methods in Chemistry-I	4	1	0	0	5	5
Core Course- IX (Lab)	YCY204	Inorganic Chemistry Practical II	0	0	0	6	5	3
Core Course- X (Lab)	YCY205	Organic Chemistry Practical -I	0	0	0	6	5	3
Elective Core - II	YCYE03 YCYE04	(A) Pharmaceutical Chemistry/(B) Electro-Organic Chemistry	3	1	0	0	4	4
		Library					1	
		Total	15	4	0	12	30	25

	SEMESTER -III							
Category	Course Code	Course Name	L	Τ	SS	Р	Н	С
Core Course - XI	YCY301	Organic Chemistry II	4	1	0	0	5	5
Core Course - XII	YCY302	Physical Methods in Chemistry-II	4	1	0	0	5	5
Core Course – XIII (Lab)	YCY303	Organic Chemistry Practical -II	0	0	0	6	5	3
Core Course – XIV (Lab)	YCY304	Physical Chemistry Practical II	0	0	0	6	5	3
Elective Compulsory-I	YEC305	Analytical Chemistry	3	1	0	0	4	4
Elective Compulsory-II	YCYON33	MOOC / NPTEL Course / Applications of Nanoscience	1	1	0	0	2	4
Elective Core -III	YCYE05 / YCYE06	 (A) Selected topics in Chemistry / (B) Chemistry of Nanoscience and Nanotechnology 	3	1	0	0	4	4
		Total	15	5	0	12	30	28

SEMESTER- IV									
Category	Course Code	Course Name		L	Т	SS	Р	Η	С
Course -XV	YCY401	Dissertation – Project work		0	0	0	20	20	10
Elective Core -IV	YCYE07 / YCYE08	(A) Solid State Chemistry /(B) Supramolecular Chemistry		3	1	0	0	4	4
		Т	Fotal	3	1	0	20	24	14

M.Sc. CHEMISTRY (2022 - 2023)

Courses	Total No. Of courses	Total Marks	Total Credits
Core Course	08	800	40
Core Practical	06	600	18
Elective Core	04	400	16
Elective Compulsory	02	200	08
Project	01	100	10
Total	21	2100	92

SEMESTER - I							
COURSE CODE	COURSE NAME	L	Т	Р	С		
YCY101	ORGANIC CHEMISTRY- I	4	1	0	5		
C:P:A	4.5: 0: 0.5						
		L	Т	Р	Η		
		4	1	0	5		

Learning Objectives:

- 1. To learn the concept of organic reactive intermediates.
- 2. To learn and understand the theories and mechanism of aliphatic nucleophilic substitution reactions.
- 3. To learn and understand the theories and mechanism of aromatic electrophilic substitution reactions.
- 4. To understand the concepts of addition and elimination reactions.
- 5. To learn and understand the concept of stereochemistry and conformational analysis

COURSE OUTCO	OMES- On the successful completion of the	DOMAIN	LEVEL	
course, students v	vill be able to			
CO1	<i>Identify</i> the various types of reactive	Cognitive	Remember	
	intermediates and <i>explain</i> their reactivity in organic reactions.		Understand	
CO2	<i>Describe</i> the mechanism of nucleophilic substitution reaction	Cognitive	Understand	
CO3	<i>Illustrate</i> the mechanism of electrophilic substitution reactions.	Cognitive	Understand	
CO4	<i>Explain</i> the fundamental concepts of various	Cognitive	Understand	
	addition and elimination reactions	Affective	Receive	
CO5	Describe and give example of stereo	Cognitive	Remember	
	chemistry of organic compounds		Understand	
UNIT I -REA	CTIVE INTERMEDIATES		15	
Organic reacti	ve intermediates: Generation, stability and reac	tivity of carbo	ocations, carbanions,	
free radicals, o	carbenes, carbenoids, benzynes and nitrenes.			
UNIT II - N	UCLEOPHILIC SUBSTITUTION REACTION	ONS	15	
Aliphatic nucl	eophilic substitution – mechanisms – SN1, SN2,	SNi-ion-pai	r inSN1 mechanisms	
– neighbourin	ng group participation, non-classical carbocati	ons – substitu	itions at allylic and	
vinvlic carbor	s. Reactivity – effect of structure, nucleophile.	leaving group	and stereochemical	

factors – correlation of structure with reactivity – solvent effects – rearrangements involving carbocations – Wagner-Meerwein and dienone-phenol rearrangements. Aromatic nucleophilic substitutions – SN1, SNAr, Benzyne mechanism – reactivity orientation – Ullmann, Sandmeyer and Chichibabin reaction – rearrangements involving nucleophilic

- Ulimann, Sandmeyer and Chichibabin reaction – rearrangements involving nucleoph substitution – Stevens – Sommelet- Hauser and von-Richter rearrangements.

	SUBSTITUTION R	REACTIONS	15					
Aromatic electrophilic substitution	reaction - orientation	on, reactivity and m	nechanisms based or					
transition state theory with suitable reactions – substitutions in thiophene and pyridine – N-oxide								
quantitative treatment of the structural effects on reactivity. Substituent effects - origins of								
Hammett equation – principles of Hammett correlation – effect of structure on reaction								
mechanisms Hammett parameters – σ and ρ , modified forms of Hammett equation, Taft								
Equation.								
Aliphatic electrophilic substitution $-$ SE2. SEi and SE1 mechanisms $-$ diazonium								
$\alpha_{\rm coupling}$ reactions – metals as electrophile in substitution reactions and decomposition of								
diazonium salts								
ulazoillulli saits.								
LINIT IV ADDITION AND EI	I IMINATION DE /	ACTIONS	15					
UNIT IV - ADDITION AND EI								
Addition to carbon-carbon multiple	bonds – electrophili	ic, nucleophilic and	tree radical additions					
– orientation of the addition – stere	eochemical factors	influencing the addi	tion of bromine and					
hydrogen bromide, hydroxylation, 1	1,2- dihydroxylation	– hydroboration lea	dingto formation of					
alcohols – oxidation and ozonolys	sis. Addition to car	bonyl and conjugate	ed					
carbonyl systems – mechanism	- Grignard reager	1,2-1,2- and $1,4$	4-additions (lithium					
dimethylcuprate) – addition tocarb	oon-oxygen double	bond – Benzoin, K	noevenagel, Stobbe					
Darzens glycidic ester condensatior	n and Reformatsky r	eactions.						
Elimination reactions – mechanisms	s; E1, E2, E1cB – ste	ereochemistry of elir	nination, Hofmann's					
and Zaitsev's rules - competitio	on between elimina	tion and substitution	on – pyrolytic cis-					
elimination, Chugaev reaction – ex	xamples such as Ho	fmann degradation,	Cope elimination -					
Bredt's rule with examples								
UNIT – V STEREOCHEMISTF	RY AND CONFOR	MATIONAL ANA	LYSIS 15					
Stereoisomerism – symmetry – enar	ntiomers and diaster	eomers – R and S no	menclature _ ontica					
Stereoisomerism – symmetry – enantiomers and diastereomers – R and S nomenclature – optical								
activity and chirality – types of mo	lecules exhibiting o	ptical activity – abso	olute configuration -					
activity and chirality – types of mo chirality in molecules with non- ca	lecules exhibiting of rbon stereocenters (ptical activity – abso N. S and P) – molec	olute configuration - cules with more that					
activity and chirality – types of mo chirality in molecules with non- car one chiral centre – atropisomerism.	lecules exhibiting o rbon stereocenters (Molecular chirality	ptical activity – abso N, S and P) – molec – allenes, spiranes.	olute configuration - cules with more that biphenvls – methods					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E	lecules exhibiting o rbon stereocenters (Molecular chirality and Z nomenclatu	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination	olute configuration – cules with more than biphenyls – methods of configuration of					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis	blecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and					
activity and chirality – types of mo chirality in molecules with non- car one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa	blecules exhibiting of rbon stereocenters (. Molecular chirality and Z nomenclatu stry of addition and e	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis –					
activity and chirality – types of mo chirality in molecules with non- car one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa	Allohevane cyclobev	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring					
activity and chirality – types of mo chirality in molecules with non- car one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyclopent	blecules exhibiting of rbon stereocenters (. Molecular chirality and Z nomenclatu stry of addition and e rry examples]. Basic clohexane, cyclohex compounds	ptical activity – abso N, S and P) – molect –allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring					
activity and chirality – types of mo chirality in molecules with non- car one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic	blecules exhibiting of rbon stereocenters (. Molecular chirality and Z nomenclatu stry of addition and e ury examples]. Basic clohexane, cyclohex compounds.	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic	blecules exhibiting or rbon stereocenters (. Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic	 blecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatustry of addition and early examples]. Basic clohexane, cyclohex compounds. LECTURE 60 	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic	 Alecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatustry of addition and eary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, M Macheniame and Structure	Alecules exhibiting of rbon stereocenters (. Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 rganic Chemistry: R	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions,					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane,	Allecules exhibiting of rbon stereocenters (. Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New run Vol II. 7th Ed. P	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 rganic Chemistry: R v York, 2013.	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions,					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, N Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistra	Alecules exhibiting of rbon stereocenters (. Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 prganic Chemistry: R v York, 2013. earson education Lto	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions, d, New Delhi, 2009.					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, N Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistr 3. R. T. Morrison and R. N. Bo	Advanced Opposite of the formation of th	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 Trganic Chemistry: R v York, 2013. Tearson education Lto stry, 7th Ed., Pearson	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions, d, New Delhi, 2009. n, New Delhi, 2011.					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, M Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistr 3. R. T. Morrison and R. N. Bo 4. F. A. Carey and R. J. Sundbo Sprin conformation control	Alecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu stry of addition and e ry examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga	ptical activity – abso N, S and P) – molect – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (not TUTORIAL 15 rganic Chemistry: R v York, 2013. earson education Lta stry, 7th Ed., Pearson nic Chemistry; Parts	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions, d, New Delhi, 2009. n, New Delhi, 2011. s A and B, 5th Ed.,					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, N Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistriation 3. R. T. Morrison and R. N. Book 4. F. A. Carey and R. J. Sundbook Springer, Germany, 2007.	Alecules exhibiting of rbon stereocenters (. Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga	ptical activity – abso N, S and P) – moleco – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 rganic Chemistry: R v York, 2013. rearson education Lto stry, 7th Ed., Pearson nic Chemistry; Parts	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions, d, New Delhi, 2009. n, New Delhi, 2011. s A and B, 5th Ed.,					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, N Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistr 3. R. T. Morrison and R. N. Bo 4. F. A. Carey and R. J. Sundbo Springer, Germany, 2007. 5. T. H. E. Lowry and K. S. Rid	Alecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga chardson, Mechanis	ptical activity – abso N, S and P) – moleco – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 organic Chemistry: R v York, 2013. Pearson education Lto stry, 7th Ed., Pearson nic Chemistry; Parts m and Theory in Or	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions, d, New Delhi, 2009. n, New Delhi, 2011. s A and B, 5th Ed., ganic Chemistry;					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, M Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistri 3. R. T. Morrison and R. N. Book 4. F. A. Carey and R. J. Sundbe Springer, Germany, 2007. 5. T. H. E. Lowry and K. S. Rig Addison-Wesley, USA, 1999	Alecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga chardson, Mechanis 8.	ptical activity – abso N, S and P) – moleco – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 rganic Chemistry: R v York, 2013. Pearson education Lto stry, 7th Ed., Pearson nic Chemistry; Partson m and Theory in Or	olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions, d, New Delhi, 2009. n, New Delhi, 2011. s A and B, 5th Ed., ganic Chemistry;					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, M Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistri 3. R. T. Morrison and R. N. Bo 4. F. A. Carey and R. J. Sundbo Springer, Germany, 2007. 5. T. H. E. Lowry and K. S. Ri Addison-Wesley, USA, 1999 6. P. S. Kalsi, Stereochemistry	Alecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu stry of addition and e ry examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga chardson, Mechanis 8. ; Wiley eastern limit	ptical activity – abso N, S and P) – moleco – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 rganic Chemistry: R v York, 2013. Pearson education Lto stry, 7th Ed., Pearson nic Chemistry; Parts m and Theory in Or ted; New Delhi, 199	A and B, 5th Ed., ganic Chemistry;					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, N Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistri 3. R. T. Morrison and R. N. Bo 4. F. A. Carey and R. J. Sundbe Springer, Germany, 2007. 5. T. H. E. Lowry and K. S. Rid Addison-Wesley, USA, 1999 6. P. S. Kalsi, Stereochemistry 7. D. Nasipuri, Stereochemistry	Allecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga chardson, Mechanis 8. ; Wiley eastern limit y of Organic Compo	ptical activity – abso N, S and P) – moleco – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 rganic Chemistry: R v York, 2013. Pearson education Lto stry, 7th Ed., Pearson nic Chemistry; Parts m and Theory in Or ted; New Delhi, 199 punds - Principles an	online field till (1997) olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions, d, New Delhi, 2009. n, New Delhi, 2011. s A and B, 5th Ed., ganic Chemistry; 3. ad Applications; 2nd					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, M Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistri 3. R. T. Morrison and R. N. Bo 4. F. A. Carey and R. J. Sundbe Springer, Germany, 2007. 5. T. H. E. Lowry and K. S. Rig Addison-Wesley, USA, 1999 6. P. S. Kalsi, Stereochemistry 7. D. Nasipuri, Stereochemistry 7. D. Nasipuri, Stereochemistry 6. P. S. Kalsi, New Age International,	Alecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga chardson, Mechanis 8. ; Wiley eastern limit y of Organic Compo New Delhi, 1994.	ptical activity – abso N, S and P) – molec – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 Trganic Chemistry: R v York, 2013. Tearson education Lto stry, 7th Ed., Pearson nic Chemistry; Parts m and Theory in Or ted; New Delhi, 199 punds - Principles an	Image: Second Structure Structure Configuration - Structure Struc					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, M Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistri 3. R. T. Morrison and R. N. Bo 4. F. A. Carey and R. J. Sundbe Springer, Germany, 2007. 5. T. H. E. Lowry and K. S. Rie Addison-Wesley, USA, 1999 6. P. S. Kalsi, Stereochemistry 7. D. Nasipuri, Stereochemistry 8. E. L. Eliel, and S. H. Wilen,	Alecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu stry of addition and e ary examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga chardson, Mechanis 8. ; Wiley eastern limit y of Organic Compo New Delhi, 1994. Stereochemistry of	ptical activity – abso N, S and P) – moleco – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 rganic Chemistry: R v York, 2013. vearson education Lto stry, 7th Ed., Pearson nic Chemistry; Parts m and Theory in Or ted; New Delhi, 199 ounds - Principles an Organic Compound	online field till of phenal olute configuration – cules with more than biphenyls – methods of configuration of s – stereospecific and rmational analysis – orbornane type) ring TOTAL 75 Reactions, d, New Delhi, 2009. n, New Delhi, 2011. s A and B, 5th Ed., ganic Chemistry; 3. id Applications; 2nd s; John Wiley, New					
activity and chirality – types of mo chirality in molecules with non- ca one chiral centre – atropisomerism. of determining configuration – E geometrical isomers – stereochemis stereoselective synthesis [elementa conformations of cyclopentane, cyc systems –anomeric effect in cyclic TEXT BOOKS 1. J. March and M. B. Smith, M Mechanisms, and Structure; 2. I.L. Finar, Organic Chemistr 3. R. T. Morrison and R. N. Book 4. F. A. Carey and R. J. Sundbox Springer, Germany, 2007. 5. 5. T. H. E. Lowry and K. S. Riv Addison-Wesley, USA, 1999 6. P. S. Kalsi, Stereochemistry 7. D. Nasipuri, Stereochemistry 7. D. Nasipuri, Stereochemistry 8. E. L. Eliel, and S. H. Wilen, York, 1994. York, 1994.	Alecules exhibiting of rbon stereocenters (Molecular chirality and Z nomenclatu stry of addition and e ry examples]. Basic clohexane, cyclohex compounds. LECTURE 60 March's Advanced O 7th Ed., Wiley, New ry; Vol.II, 7th Ed., P byd, Organic Chemis erg, Advanced Orga chardson, Mechanis 8. ; Wiley eastern limit y of Organic Compo New Delhi, 1994. Stereochemistry of	ptical activity – abso N, S and P) – moleco – allenes, spiranes, re – determination elimination reactions c concepts of confo ene and bridged (no TUTORIAL 15 rganic Chemistry: R v York, 2013. Pearson education Lto stry, 7th Ed., Pearson nic Chemistry; Parts m and Theory in Or ted; New Delhi, 199 punds - Principles an Organic Compound	And Applications; 2nd s; John Wiley, New					

REFE	RENCE BOOKS
1.	R. K. Bansal, Organic Reaction Mechanisms; 11th Ed., Tata McGraw Hill,
	Noida, 2006.
2.	J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry; 1st
	Ed., Oxford University Press, UK, 2000.
3.	R. O. C. Norman and J. M. Coxon, Principles of Organic Synthesis, Chapman
	& Hall, 3rd Ed, 1993.
4.	7. Stuart Warren, Organic Synthesis: Disconnection Approach, Wiley India (P)
	Ltd, 2007.
5.	M. B. Smith, Organic Synthesis, Academic Press, 3rd Ed, 2011.
E RES	OURCES
1.	http://nptel.ac.in/courses/104103071/21
2.	https://www.youtube.com/watch?v=Ih7tQ7rY2Wc
3.	http://nptel.ac.in/courses/104101005/
4.	https://www.youtube.com/watch?v=12hmgzeiGo4
5.	https://www.youtube.com/watch?v=WEeFhsjn-lo

COURSE CODE	COURSE NAME	L	Т	Р	С
YCY102	INORGANIC CHEMISTRY- I	4	1	0	5
C:P:A	4.5: 0 : 0.5				
		L	Т	Р	H
		4	1	0	5
Learning Object	tives:				
1. To learn the chem	nistry of boron, silicon, P-N compounds, S-N o	compounds a	and oth	ner main	group
elements.	protond the bonding theories which describe th	a handing in	acord	lination	
2. 10 learn and unus complexes.	erstand the boliding theories which describe th		COOIC	iniation	
3. To understand the	e theoretical aspects of electronic spectra and i	ts applicatio	n for t	he struct	ural
elucidation of coo	ordination compounds				
4. To understand the	e reaction kinetics mechanisms involved in co	ordination co	ompley	kes.	
S. 10 learn and under Spectroscopy	erstand the concepts of photochemistry and lea	atures of Pho	noeiec	tron	
		DOMAIN		IEVE	T
COURSE OUICO	MES- On the successful completion of the	DOMAIN			L
CO1	<i>Recall</i> the basics of main group elements and	Cognit	ive	Reme	mber
	explain the structure-property relations of	U		Unde	rstand
	main group compounds				
CO2	Discuss the theories and bonding nature of	Cogniti	ive	Unde	rstand
	Coordination compounds.				
003	<i>Describe</i> the theory and <i>interpret</i> electronic	Cogniti	lve	Understand	
	spectra of Coordination compounds		Λ		'PI'y
CO4	<i>Identify</i> and <i>understand</i> the type and nature	Cognitiv	e	Underst	tand
	of electron transfer reactions in four and six	Affectiv	e	Receive	2
C05	<i>Rewrite</i> the basics of photochemistry	Cognit	ive	Unde	rstand
	and <i>explore</i> its applications towards	Cogine		onde	Istund
	coordinated compounds.				
UNIT – I Inor	ganic Chain and Cluster Compounds			15	
Chemistry of bo	oron – boranes, higher boranes, borazines, b	oron nitride	s, hyd	roborate	ions –
properties and	Structure Metal clusters: Chemistry of low	s muo-cioso molecularity	, arach meta	no-prepa 1 cluster	aration,
Structure of Re2	Cl ₈ ; multiple metal-metal bonds.	morecularity	meta	i ciustei	s onry,
Types of inorgani	c polymers, comparison with organic polymer	rs, silanes, hi	gher s	ilanes, n	nultiple
bonded systems	, silicon nitrides, siloxanes. P-N comp	ounds, cyc	lopnos	sphazene	s and
bonding of 6- an	d 12 - isopoly and heteropoly anions. Struc	ture of silic	actus	applicat	ions of
Paulings rule of	electrovalence - isomorphous replacements ir	n silicates –	ortho,	meta ar	id pyro
silicates – one dir	nensional, two dimensional and three dimensional	onal silicates	5.	_	10
UNIT – II Stat	oility of Complexes and Theories of Metal-L	igand Bond	ing	15	
Stability of Comp	plexes: Studies of coordination compounds in s	solution – de	tection	n of com	plex
formation in solu	tion –stability constants – stepwise and overall	l formation c	onstar	nts. Simp	ole
methods (Potentic	ometric, pH metric and photometric methods)	of determini	ng the	tormatic	on
constants. Factor	s arrecting stability – statistical and cherate eff	iects – force	u conf	iguration	15.

Metal-Ligand Bonding: Crystal field theory – splitting of d-orbitals under various geometries – factors affecting splitting – CFSE and evidences for CFSE (structural and thermodynamic effects). Spectrochemical series – Jahn-Teller distortion – spectral and magnetic properties of complexes – site preferences. Limitations of CFT – ligand field theory – MO theory – sigma and pi-bonding in complexes – Nephelauxetic effect – the angular overlap model.

UNIT – III Electronic Spectra of Coordination Complexes 15

Spectroscopic term symbols for d^n ions – derivation of term symbols and ground state term symbol, Hund's rule, Selection rules – breakdown of selection rules, spin orbit coupling, band intensities, weak and strong field limits – correlation diagram, Energy level diagrams. Orgel diagram for weak field Oh and Td complexes – Splitting of energy level due to Jahn-Teller distortion. Modified orgel diagram – Limitiations of orgel diagram Tanabe–Sugano(T-S) diagrams – Evaluation of Dq and B values for $d^2 - d^8$ complexes charge transfer spectra. Complications in band classification between Lf(d-d) and CT bands. Comparison between d-d bands and CT bands – Numerical problems, Lanthanides and Actinides- Spectral properties.

UNIT –IV Reaction Mechanism in Coordination Complexes	15

Kinetics and mechanism of reactions in solution – labile and inert complexes – ligand displacement reactions in octahedral and square planar complexes – acid hydrolysis, base hydrolysis and anation reactions. Trans effect – theory and applications – electron transfer reactions – electron exchange reactions – complementary and non-complementary types –inner sphere and outer sphere processes – application of electron transfer reactions in inorganic complexes – isomerisation and racemisation reactions of complexes. Molecular rearrangements of four- and six-coordinate template effect and its applications for the synthesis of macrocyclic ligands.

Unit-V: Inorganic Photochemistry and Photoelectron Spectroscopy

15

Photophysical and photochemical processes of coordination compounds. Unimolecular chargetransfer photochemistry of cobalt(III) complexes, photoreduction – ligand-field photochemistry of chromium(III) complexes – Adamson's rules, photoactive excited states, Photochemistry of organometallic compounds – metal carbonyl compounds – compounds with metal-metal bonding – Reinecke's salt, chemical actinometer.

Photoelectron Spectroscopy (PES) - Theory, Types, origin of fine structures - shapes of vibrational fine structures – adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N₂, O₂) and heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules (H₂O, CO₂, CH₄, NH₃) – evaluation of vibrational constants of the above molecules, Koopman's theorem- applications and limitations.

LECTURE	TUTORIAL	TOTAL	
60	15	75	

TEXT BOOKS

- 1. Day, J.Selbinand H.H.Sisler, Theoretical Inorganic Chemistry; Literary Licensing(LLC), Montana, 2012.
- 2. N. H. Ray, Inorganic Polymers, Academic Press, 1978.
- F.A.Cotton and G.Wilkinson, C.A.Murillo and M.Bochmann, Advanced Inorganic Chemistry; 6thEd., A Wiley - Interscience Publications, John Wiley and Sons, USA, 1999.
- 4. J.E.Huheey, Inorganic Chemistry; 4th Ed., Harper and Row publisher, Singapore, 2006.
- 5. W.Adamson, Concept of Inorganic Photochemistry; John Wiley and Sons, NewYork, 1975.
- 6. S.F.A.Kettle, Physical Inorganic Chemistry A Coordination Chemistry Approach , Spectrum; Academic Publishers, Oxford University Press, New York, 1996.
- 7. R. S. Drago, Physical methods in chemistry; Saunders college publications, Philadelphia, 1992

REFERENCE BOOKS

- 1. A. W. Adamson and P. D. Fleischauer, Concepts of Inorganic Photochemistry; R. E. Krieger Pubs, Florida, 1984.
- 2 J. Ferraudi, Elements of Inorganic Photochemistry; Wiley, New York, 1988.
- 3 F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions; 2nd Ed., John Wiley, New York, 1967.
- 4 R. K. Sharma, Inorganic Reactions Mechanism; Discovery Publishing House, New Delhi, 2007.

E RESOURCES

- 1. <u>https://www.youtube.com/watch?v=YChUH_XSZJ0</u>
- 2. <u>https://www.youtube.com/watch?v=7gNByyjaYrY</u>
- 3. <u>https://www.youtube.com/watch?v=Ox3pnVN47gw</u>
- 4. <u>https://www.youtube.com/watch?v=wq4XHcNBBgg</u>

COURSE CODE	COURSE NAME	L	Т	Р	С
YCY103	PHYSICAL CHEMISTRY- I	4	1	0	5
C:P:A	4.5: 0: 0.5				
		L	Т	Р	Η
		4	1	0	5

Learning Objectives:

- 1. To understand the kinetics of chemical reaction and mechanisms involved in catalysis.
- 2. To gain on understanding of the Ionic activity, ionic interactions, Debye-Hückel-Bjerrum model, Debye-Hückel limiting law and Debye-Hückeleory of strong electrolytes.
- 3. To learn and understand the Electro kinetic phenomena, voltammetry and
- 4. design, applications of the batteries and Fuel Cells, Corrosion and its Protection
- 5. To understand the concept of different laws of thermodynamics and describe the theories of classical thermodynamics.
- 6. To understand about the various applications of Quantum Statistics

COURSE OUTCO	MES- On the successful completion of the	DOMAIN	LEVEL
course, students with	ill be able to		
CO1	<i>Recognize</i> and <i>explain</i> the features of various	Cognitive	Remember
	kinetic theories involved in chemical reactions		Understand
	and Catalysis.		
CO2	<i>Illustrate</i> the ionic activity, ionic interactions,	Cognitive	Understand
	Debye-Hückel-Bjerrum model, Debye-Hückel		
	limiting law and Debye-Hückeleory of strong		
	electrolytes.		
CO3	Apply the Electro kinetic phenomena for the	Cognitive	Understand
	development of Batteries and Fuel Cells and for		Apply
	the application of Corrosion Protection		
CO4	<i>Explain</i> the concept of different laws of	Cognitive	Understand
	thermodynamics and <i>describe</i> the theories of	Affective	
	classical thermodynamics.		
CO5	Summarize the various applications of	Cognitive	Understand
	Quantum Statistics.		

UNIT - I CHEMICAL KINETICS AND CATALYSIS	15
Absolute reaction rate theory -Thermodynamic terms-Significance of entrop	y and volume of
activation. Reactions in solution: factors determining reaction rates in so	lutions, effect of
dielectric constant and ionic strength, - Bronsted –Bjerrum equation-Primary a	nd Secondary sal
effect, influence of solvent on reaction rates. Acid base catalysis-Bronsted r	elations, catalytic
coefficients and their determination. Enzyme catalysis and its mechanism, N	Aichaelis-Menter
equation, effect of pH and temperature on enzyme catalysis, Mechanism of e	nzyme inhibition
kinetics of surface reactions- unimolecular reactions-Bimolecular re-	actions-Langmui
Hinshelwood and Elay-Rideal mechanism.	
Chemical dynamics: Study of fast reactions by stopped flow techniques- relexa	tion method,
flash photolysis and the nuclear magnetic resonance method. Linear free energy	relationship-
Hammett equation, Taft equation-Separation of polar, resonance and steric effe	cts.
UNIT – II ELECTROCHEMISTRY - I	15
Deviation from ideal behaviour.ion-solvent and ion-ion interactions. Debye	-Hückel-Bjerrur
model, Ion association and triple ion formations. Expression for the	e mean activit
coefficient.Debye-Hückel limiting law and its applications -Diverse ion effect.	Van't Hoff facto
and its relation to colligative properties. Debye-Hückel theory of strong el-	ectrolytes.Debye
Hückel length and potential around a central ion, its interpretation. Transport o	f ions in Solutior
Electrolytic conduction- Debye - Hückel-Onsager treatment of strong e	lectrolytes- ioni
atmosphere- Anomalous conductance of non aqueous electrolytes	
UNIT – III ELECTROCHEMISTRY- II	15
Electrical double layer - Electrocapillary phenomena - Surfactants - Lipman	n's equation,
Electrokinetic phenomena. Zeta potential and its applications. Structure of elec	trical double
layer - Helmholtz-Perrin, Guoy-Chapmann and Stern models. Butler-Volmer	equation for
one electron transfer reaction - equilibrium and exchange current densities- a	nd symmetry
factor - transfer coefficient. Cyclic voltammetry and Stripping voltammetry	- principle –
instrumentation- Corrosion and passivation of metals - Pourbaix diagram - Ev	ans diagram
-Batteries and Fuel cells-Ion selective electrodes	
UNIT- IV CLASSICAL THERMODYNAMICS	15
Third law, thermodynamics, need for it, Nernst heat theorem and other forms of	f stating the third
law. Thermodynamic quantities at absolute zero, apparent exceptions to t	he third law -
thermodynamics of systems of variable composition, partial molar prop	erties, chemical
potential, relationship between partial molar quantities, Gibbs Duhem er	quation and its
applications (the experimental determination of partial molar properties n	ot included) -
thermodynamic properties of real gases, fugacity concept, calculation of	fugacity of real
gas, activity and activity coefficient, concept, definition, standard states a	nd experimental
determinations of activity and activity coefficient of electrolytes.	
UNIT -V STATISTICAL THERMODYNAMICS	15

Objectives of statistical thermodynamics, Concept of distributions, Types of ensembles. Thermodynamic probability, Most probable distribution Law- Classical statistics-Maxwell-Boltzmann (MB) statistics-Quantum statistics-Bose-Einstein (BE) and Fermi-Dirac (FD) statistics-Derivation of distribution function-MB, BE and FD statistics-comparison-Partition functions-Translational, rotational, vibrational and electronic partition function –Calculation of thermodynamic parameters and equilibrium constants in terms of partition function; Debye and Einstein heat capacity of solids.

	LECTURE	TUTORIAL	TOTAL
	60	15	75
TEXT BOOKS			

1	K I I aidler	Chemical Kinetics	· 3rd Ed	Tata McGraw	Hill Noida	1987
1.	IX. J. Landior,	, Chemical Mileties	, Jiu Lu.,		min, monua,	, 1707.

- 2. J. W. Moore and R. G. Pearson, Kinetics and Mechanism; 3rd Ed., John Wiley and Sons, New York, 1981.
- 3. M. Mortimer and P. G. Taylor, Chemical Kinetics and Mechanism; 1st Ed., Royal Society of Chemistry, UK, 2002.
- 4. J. N. Gurtu and A. Gurtu, Advanced Physical Chemistry; 5th Ed., Pragathi Prakashan, Meerut, 2006.
- 5. J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics; 2nd Ed., Prentice Hall, New Jersey, 1999.
- 6. P. W. Atkins, Physical Chemistry; 7th Ed., Oxford University Press, Oxford, 2001.
- 7. J. Rajaram and J. C. Kuriacose, Thermodynamics for Students of Chemistry Classical, Statistical and Irreversible; Pearson Education, New Delhi, 2013.
- 8. Horia Metiu, Physical Chemistry, Thermodynamics; Taylor and Francis, Singapore, 2006.

REFERENCE BOOKS

- 1. M. C. Gupta, Statistical Thermodynamics, Wiley Eastern, New Delhi, 1990.
- 2. Yi-Chen Cheng, Macroscopic and Statistical Thermodynamics, World Scientific, 2006.
- 3. D. A. McQuarrie, Text Book of Physical Chemistry, University Science Books, Mill Valley, California, 1983.
- 4. R. A. Alberty and R. J. Silbey, Physical Chemistry, John Wiley and Sons, New York, 1992.

E RESOURCE

- 1. https://www.youtube.com/watch?v=pGerRhxNQJE
- 2. <u>https://www.youtube.com/watch?v=R-x9KdNjQmo</u>
- 3. <u>https://www.youtube.com/watch?v=F_NmS-Wy2IE</u>
- 4. <u>https://www.youtube.com/watch?v=6QXtnmB1vqk</u>
- 5. https://www.youtube.com/watch?v=1zZ6rvh1cgw

COU	JRSE CODE	CORSE NAME	L	Т	Р	С
	YCY104	INORGANIC CHEMISTRY	0	0	6	3
		PRACTICAL I				
PRE	REQUISITE	Nil	L	Т	Р	H
	C:P: A	1: 1.2:0.8	0	0	6	3
COURSE OUTCOMES		DOMAIN		L	EVEL	
CO1	Recognize the separation of i experiment and	e chemical reaction takes place in the norganic mixture and in the colorimetric li <i>relate</i> the results.	Cognitiv Psychor	ve and notor	Reme Perce	mber ption
CO2	<i>Identify</i> the var mixture and <i>es</i> the whole of th	tious cations and anions present in the given <i>timate</i> the amount of metal ion present in e given solution by colorimetrically.	Cognitive and Psychomotor		Understand Set	
CO3	<i>Interpret</i> the reions present in	esults and <i>labels</i> the various specific metal the given solution.	Cognitiv Affectiv Phsycor	ve and ve notor	Apply Recei Mech	ve anism
Inorga	nic Chemistry P	ractical I			6	hours each

To perform the semi-micro qualitative analysis.

To estimate the metal ions using photoelectric colorimeter.

Semi-micro qualitative analysis of a mixture containing two common cations (Pb, Bi, Ca, Cd, Fe, Cr, Al, Co, Ni, Mn, Zn, Ba, Sr, Ca, Mg, NH₄) and two less common cations (W, Tl, Se, Te, Mo, Ce, Th, Zr, Ti, V, U, Li).

Semi-micro qualitative analysis of a mixture containing anions with interfering radicals (carbonate, sulphide, sulphate, nitrate, chloride, bromide, fluoride, borate, oxalate, arsenite, arsenate and phosphate).

Estimation of copper, iron, nickel, chromium and manganese ions using photoelectric colorimeter

HOURS	LECTURE	TUTORIAL	PRACTICALS	TOTAL
noons	0	0	90	90

TEXT BOOKS

1. Venkateswaran V. Veerasamy R. Kulandaivelu A.R., Basic principles of Practical Chemistry, 2nd edition, New Delhi, Sultan Chand & sons (1997).

2. G. Svehla, Vogel's Qualitative Inorganic Analysis, 7th Edition, , Pearson Education India, 2008.

3. Dr.V.V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, The National Publishing Company, Chennai.

COL	URSE CODE	YCY105	L	1	Т	Р	C	
COF	RSE NAME	PHYSICAL CHEMISTRY	LAB 0		0	6	3	
PREF	REQUISITE	NIL		ı	T	<u>Р</u>		
	C:P:A	1: 1.2:0.8	0	0 0		6	3	
COUR	SE OUTCOM	IES		DO	MAIN	LEV	EL	
CO1	Describe the	definition and significance of	physical Cog	gniti	ve and	Remember		
	parameters lik	te rate constant, activation energy	gy, order Psy	choi	notor	Percept	ion	
<u>CO2</u>	Estimate the	two and also <i>relate</i> the results.	ions and Cos	miti	ve and	Unders	tand	
02	explain the re	lation between these parameter	S Psv	choi	notor	Set	tanu	
CO3	Interpret the	results and <i>recognize</i> the relation	$\frac{1}{2}$ on of Cos	miti	ve and	Apply		
	physical para	ameters and its significance	in the Affe	ectiv	/e	Receiv	е	
	reaction		Phs	VCOI	notor	Mecha	nism	
Expe	riments to be e	vercised	1115	<i>J</i> c 01		11100IIu	2	
1. Kine	tics-acid hvdro	lysis of ester-comparison of st	rengths of acid	ls.				
2. Kine	tics-acid hydro	lysis of ester-determination of	energy of activ	vatio	on (Ea).			
3. Kine	tics-saponificat	tion of ester-determination of e	thyl acetate by		nductometry	_		
4. Kine	tics-persulfate-	iodine reaction – determination	of order. effe	ctiv	e of ionic st	ength o	n	
rate co	nstant					8		
5. Dete	rmination of m	olecular weight of substance by	v transition ten	nper	ature metho	d.		
6. Dete	rmination of m	olecular weight of substances h	v Rast method	1.				
7. Dete	rmination of C	ritical Solution Temperature (C	ST) of phenol	-wat	er system at	nd effec	t of	
impurit	v on CST.							
8. Stud	v of phase diag	ram of two components formin	g a simple eut	ectio	C.			
9. Stud	y of phase diag	ram of two compounds forming	a compound.					
10. Stu	dy of phase dia	gram of three components systemet	em.					
11. Det	ermination of r	nolecular weight of substances	by cryoscopy.					
12. Def	ermination of i	ntegral and differential heat of	solutions by c	olor	imetry			
13. Pol	vmerization-rat	e of polymerization of acrylam	ide.	0101	line try t			
14. Dis	tribution law –	study of Iodine-Iodine equilibr	ium.					
15 Dis	tribution law –	study of association of benzoid	acid in benze	ne				
16 Ad	sorption – oxali	c acid/acetic acid on charcoal 1	ising Freundlig	ch is	otherm			
TEXT	BOOKS							
1. V. V 1988	. Ramanujam, I 3.	norganic Semimicro Qualitativ	e Analysis; 3rc	ł Ed	., National P	ubs, Lo	ndon,	
2. G. S	vehla, Text Boo	ok of Macro and Semimicro Qu	alitative Inorg	anic	: Analysis; 5	th Ed.,		
Long	gman group Ltd	l, London, 1987.				_		
3. A. I.	Vogel, Text Bo	ook of Quantitative Inorganic A	Analysis; 6th E	d., I	Longman, N	ew Delł	ni,	
2000			LECTUDE	DE		TOT		
				00	AUTICAL		AL	
			V	20		20		

COURSI	E CODE	COURSE NAME		L	Т	C	
YCYE	E01	GREEN CHEMISTRY		4	1	5	
				L	Т	Н	
C:P:A		4.2:0:0.8		4	1	5	
COURSI	E OUTCOMES	: On the successful completion of	DOM	IAIN		LEVE	Ĺ
the cours	se, students will	be able to	Carrit		Da		
COI	chemistry and	<i>Explain</i> the concepts of green their principles	Cognit	ive	Re Ur	derstand	1
	enemistry and		Psycho	motor	Se	t	-
CO2	Summarize	and Report the addition and	Cognit	ive	Un	derstand	1
	condensation	reactions along with their	Affecti	ve	Re	spond	
CO3	<i>Explain</i> the ox	idation- reduction reactions and	Cognit	ive	Ur	derstand	1
0.00	<i>Identify</i> the me	echanism of these chemical	008		Ap	ply	-
	reactions.		Affecti	ve	Re	spond	
CO4	Categorize the	various types of the polymers	Cognit	ive	An	alyze	
CO5	<i>Examine</i> the p	rinciples of nuclear chemistry	Cognit	ive	Ar	alvze	
000		interpres of nucleur chemistry	Psycho	motor	Pe	erception	L I
SYLLAP	BUS:						
UNIT I	INTRODI	ICTION TO CREEN CHEMISTRY	V				
			• 				
Introduct	ion to green che	mistry – twelve principles of green ch	emistry	- plann	ing a	a green	
synthesis	ment addition	substitution elimination and pericyc	or react	ctions S	nvo. elec	tion of	15
appropria	ite solvent – ad	ueous phase reaction – reactions in	n ionic	liauids	- (organic	
synthesis	in solid state -	solid supported organic synthesis –	selection	n of sta	rting	5	
materials	- use of protect	ing group – use of catalyst – use of m	icrowave	es and s	onic	cation.	
UNIT II	ADDITIO	N AND CONDENSATION REACT	TIONS			T	
Addition	reactions - Mia	had addition in faquatus madium an	daalida	totol -T	Viala	Alder	
reactions	in aqueous pha	se Condensation reactions – Aldol of	u sonu s condensa	tion of	ald	ehvdes	1-
with nitro	alkanes and nitr	iles – Aldol condensation in solid pha	se – ben	zoin co	ndei	nsation	15
under cat	alytic conditions	s – applications.					
UNIT III	I OXIDATI	ON AND REDUCTION REACTIO	NS				
Oxidatior	n reactions – Ba	aeyer-Villiger oxidation in aqueous	phase a	and sol	id s	tate –	
enzymati	c Baeyer-Villig	er oxidation. Reduction reactions -	Clemme	ensen re	educ	tion -	15
mechanis	m – limitations	– applications					
UNIT IV	PHASE-T	RANSFER CATALYST REACTIO	ONS				
Phase-tra	nsfer catalyst re	actions - Heck reaction - Michael ad	dition re	eaction	-oxi	idation	
of toluene	e to benzoic aci	d – Reimer-Tiemann reaction Baker -	– Venka	taramaı	ı syı	nthesis	15
– William	nson ether synthe	esis – Dozen reaction.			-		

UNIT V	SONICATION REACTIONS		
Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith 1 reaction – Strecker synthesis – Ullmann coupling reaction – Wurtz reaction – Bouveault reaction.			
REFERENC	CE BOOKS:		
$1 V K \Delta h$	huwalia Green Chemistry: 2nd Ed Ane Books Pyt I to New Delhi 2016		

- V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016. 1.
- 2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.
- 3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.

	LECTURE	TUTORIAL	SELF-STUDY	TOTAL HOURS
Hours	60	15	-	75

COURSE CODE		COURSE NAME		L	Т	С	
YCYE02		INDUSTRIAL CHEMISTRY		4	1	4	
				L	Т	Н	
C:P:A		4.2:0:0.8		4	1	5	
COURSI	E OUTCOMES	: On the successful completion	DON	AAIN	L	EVEL	
of the cou	irse, students w	ill be able to					
CO1	Illustrate the	basic ideas of an industry and	Cogniti	ve	Reme	mber	
	industrial wast	es.	Psycho	motor	Unde	rstand	
					Set	Set	
CO2 <i>Rephrase</i> ar		d <i>Report</i> the preparation and	Cognitive		Understand		
properties of p		etroleum and petrochemicals.	Affective F		Respo	Respond	
CO3		Cognit		ve	Unde	rstand	
	<i>Identify</i> the rol	le and functions of portland cement.			Apply	/	
			Affecti	ve	Respo	ond	
CO4	List the vario	us process involved in the paper	Cognitive		Analyze		
	industry		Psycho	motor	Perce	eption	
CO5	CO5 <i>Outline</i> the preparation and mode of action of			ve	Analy	/ze	
soaps, detergents and perfumes.			Psycho	motor	Perce	eption	
SYLLAP	SYLLABUS:						
UNIT I	BASIC ID	EAS AND INDUSTRIAL WASTES					

Basics idea about unit operation - flow chart - chemical conversion - batch versus continuous processing – chemical process selection – design – chemical process control. 15 Types of industrial wastes - treatment of wastes or effluent with organic impurities treatment of wastes or effluent with inorganic impurities - treatment of some important chemical wastes. UNIT II PETROLEUM AND PETROCHEMICALS Introduction – saturated hydrocarbons from natural gas – uses of saturated hydrocarbons - unsaturated hydrocarbons - acetylene, ethylene, propylene, butylene - aromatic 15 hydrocarbons - toluene and xylene. Preparation of rectified spirit from beat - methylated spirit – preparation of absolute alcohol from rectified spirit – petrochemicals in India. **UNIT III MANUFACTURE OF CEMENT** Introduction – types of cement – high alumina cement, water proof cement, slag cement, acid resisting cement, white cement, coloured cement, Pozzolana cement. Setting of 15 cement - properties of cement - testing of cement - uses of cement - concrete - cement industries in India. **UNIT IV** PULP AND PAPER AND MANUFACTURE OF PAPER Introduction – manufacture of pulp – types of pulp – sulphate or craft pulp, soda pulp, Rag pulp – beating, refining, filling, sizing and colouring. Calendaring – uses – paper 15 industries in India.

UNIT V SOAPS, DETERGENTS AND PERFUMES						
Introduction	- types o	f soaps – hard and	l soft soaps – man	ufacture of soap	(hot and	
continuous process only) – cleansing action of soap – detergents – surface active agents				ive agents 15	, I	
– biodegrada	bility of si	irfactants, amphoter	ric detergents.			
Introduction	 producti 	on of natural perfur	nes – flower perfun	nes – jasmine, ros	se and lily	
– production	of synthet	ic perfumes – musc	one and nitro-musk	s.		
REFERENC	E BOOK	S:				
 B. K. Sharma, Industrial Chemistry; 8th Ed., Goel Publishing House, New Delhi, 1997. R. N. Shreve, and J. A. Brink Jr. Chemical Process Industries; 4th Ed., McGraw Hill, Toronto, 1977. 						
3. A.C.S.I	Brain, Proc	luction and Properti	es of Industrial Che	emicals; Reinhold	l, New York,	
1989.						
		LECTURE	TUTORIAL	SELF-	TOTAL	
				STUDY	HOURS	
Hour	S	60	15	-	75	

	SEMESTER II							
COURSE CODE	COURSE NAME	L	Т	P	С			
YCY201	INORGANIC	4	1	0	5			
	CHEMISTRY-II							
	45005	т	T	D				
C:P:A	4.5:0:0.5		1	P	H -			
		4	1	U	5			
Learning Object	ives:							
1. To learn the conce	pts, structure and bonding of orga	anometallic o	compound	s.				
2. To understand the	reaction mechanisms and catalyth	ic role of org	anometall	ic comp	pounds.			
3. To understand the	concepts of bioinorganic chemist	try and its ap	plications	•				
4. To understand the	structure and packing in solids	and a second		a af ma	liciantones			
5. To learn and unde	rstand the concepts of nuclear ch	DOMA		is of rad	LEVEL			
COURSE OUTCON	VIES: On the successful	DOMA	111		LEVEL			
COL P eagl and	discuss the basic concepts of	Comitivo		Dot	nombor			
COI <i>Recall</i> and	and bonding of organometallic	Cognitive		Kei	dorstand			
structure a	Demonstrate the possible	Develomotor			uerstand			
synthetic	methods of organometallic	c Set						
complexes	which are very useful in the							
modern era	which are very userul in the							
		Q		TT	1 / 1			
CO2 Summaria	ze and <i>Report</i> the reaction	Cognitive		Un	derstand			
mechanisi	ns and catalytic role	Affective		Res	spona			
organome	tallic compounds.	Comitivo		I In	daustau d			
Describe	the basic of bioinorganic	Affective						
chemistry	and applications of various	Allective		Ap Do	pry			
concepts.	<i>Identify</i> the various			KC.	spond			
metalloen	zymes/ metalloporphyrins							
and their s	structure-function relations.							
CO4 Analyze a	nd <i>Explain</i> the various types of	Cognitive		Un	derstand			
solid state	packing and the types of	Psychomot	or	An	alyze			
chemical i	torces	a		Pe	rception			
CO5 <i>Recite</i> the	principles of nuclear chemistry	Cognitive		Rei	nember			
and <i>illusti</i>	ate the applications of	Affective		Un				
radioisotopes Apply								
SYLLABUS:								
UNIT I – ORGANO	METALLICS-I: STRUCTUR	E AND BO	NDING					

Types of organometallic compounds on the basis of the nature of M-C bond. EAN rule: 18e- and 16e- rules – determinator of oxidation state, configuration, coordination number of the metal centre – Types and application 18e- / 16e- rules. Carbonyls – isolated concept Structure of carbonlys (simple and polynuclear) Nitrosyls – bridging and terminal nitrosyls, bent and linear nitorsyls. Dinitrogen compounds donors – Alkyl and Aryl – preparation and properties; chain carbon donors – olefins, acetylene and allyl complexes – synthesis, structure and bonding; cyclic carbon donors – (metallocene) – synthesis, structure and bonding.	15
UNIT II -ORGANOME FALLICS-II: REACTIONS; CATALYSIS AND CARBENES	
Ligand substitution-oxidative addition and reductive elimination-1,1 and 1,2-insertion- addition and elimination reactions-alkene isomerization - hydroboration hydrocyanation – hydrogenation of olefins -Wilkinson's catalyst - hydroformylation of olefins- Wacker- Schmidt synthesis- Monsanto acetic acid process- Eastman Halcon process- Fischer- Tropsch process- hydrosilylation.	15
Fischer and Schrock carbenes - bonding and reactivity- Grubbs catalyst- carbenes structure, synthesis and reactions-alkene metathesis – mechanism- C-H and C-C activation- agnostic bonds -Ziegler-Natta polymerization of olefins- Ene reaction.	
UNIT III- BIOINORGANIC CHEMISTRY:	
Function and transport of alkali and alkaline earth metal ions: characterization of K ⁺ , Na ⁺ , Ca^{2+} and Mg^{2+} – complexes of alkali and alkaline earth metal ions with macrocycles – ion channels – ion pumps, catalysis.	15
Metalloporphyrins/Metalloenzymes: Dioxygen transport and storage-hemoglobin and myoglobin: electronic and spatial structures-hemeythrin and hemocyanine- synthetic oxygen carriers, model systems-blue copper proteins (Cu)-iron-sulfur proteins (Fe)-cytochromeselectron transport chain- carbon monoxide poisoning- iron enzymes-peroxidase, catalase and cytochrome P-450, copper enzymes- superoxide dismutase, vitamin B_{12} and B_{12} coenzymes, photosynthesis- photosystem-I &II, nitrogen fixation, cisplatin	
UNIT IV- CHEMISTRY OF SOLID STATE: STRUCTURE	
Weak Chemical forces: van der Waals forces, Hydrogen bonding, Close packing of atoms and	
ions HCP and BCC types of packing voids, radius ratio - derivation - its influence on	
structures. Lattice energy – Born-Lande equation - Kapustinski equation, Madelung constant.	15
Representative structures of AB and AB_2 types of compounds - rock salt, cesium chloride,	
wurtzite, zinc blende, rutile, fluorite, antifluorite, cadmium iodide and nickel arsenide.	
Structure of graphite and diamond. Spinels -normal and inverse types and perovskite	
structures.	

Band theory of solids- non-stoichiometry- point defects – linear defects- effects due to dislocations-electrical properties of solids-conductor, insulator, semiconductor-intrinsic-impurity semiconductors-optical properties-lasers and phosphors-elementary study of liquid crystals.

UNIT V - NUCLEAR AND RADIATION CHEMISTRY

Properties of nucleus – different types of nuclear forces , Nuclear structure and nuclear **15** stability, Nuclear models- – liquid drop model, shell model of nucleus, Radioactivity and nuclear reactions, nuclear reactions induced by charged particles – Q value – nuclear reaction cross section, significance and determination – theory of nuclear fission, nuclear fusion, stellar energy. Hot atom chemistry, Nuclear fission and fusion reactors. The interaction of nuclear radiations with matter. Radiation hazards and therapeutics. Detectors and their principles. Tracer Application of radioisotopes in agriculture, industry and medicine. Isotope dilution and radio-activation methods of analysis.

	LECTURE	TUTO RIAL	PRACTICAL		TOTAL HOURS		
Hours	60	15	-		75		
DEFEDENCES BOOKS							

REFERENCES BOOKS

- 1. J. E. Huheey, Inorganic Chemistry; 4th Ed., Harper and Row Publishers, Singapore, 2006.
- 2. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; Thomson Learning, Boston, 1980.
- 3. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry; Panima Publishing Company, New Delhi, 1997.
- 4. W. Kaim and B. Schewederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John Wiley and Sons, New York, USA, 2013.
- 5. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry; 6th Ed., John Wiley and Sons,
- 6. A. R. West, Basic Solid State Chemistry, John Wiley, **1991**
- 7. H. J. Arniker, Essentials of Nuclear Chemistry, 2nd Ed, Wiley Eastern Co, 1987.
- 8. G. Friedlander, J. W. Kennedy and J. M. Miller, Nuclear and Radiochemistry, Wiley, 1964

New York, 1999.

- 9. R. C. Mehrotra and A. Singh, Organometallic Chemistry; 2nd Ed., New Age International Ltd. New Delhi, 2014.
- 10. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals; 3rd Ed., John Wiley and Sons, New York, 2001

TEXT BOOKS

- 1. A. W. Parkins and R. C. Poller, An Introduction to Organometallic Chemistry; 1987, Oxford University Press, Chennai.
- 2. I. Haiduc and J. J. Zuckerman, Basic Organometallic Chemistry; Walter De Gruyter Inc, USA, 1985.
- 3. P. Powell, Principles of Organometallic Chemistry; 2nd Ed., Chapman and Hall, London, 1988.
- 4. B. Douglas, D. H. McDaniel and J. J. Alexander, Concepts and Models of Inorganic Chemistry; 3rd Ed., John Wiley and sons, New York, 1994.
- 5. M. Bochmann, Organometallics 1: Complexes with transition metal-carbon bonds; Oxford Chemistry Primers Series, No. 12, and M. Bochmann, Organometallics 2: Complexes with transition metal-carbon bonds; No. 13, 1994.
- 6. David L. Nelson and Michael M. Cox, Leninger Principles of Biochemistry, WH Freeman, 2017.

E-Resources

- 1. https://nptel.ac.in/courses/104103069/33
- 2. https://nptel.ac.in/courses/104105038/21
- 3. https://onlinecourses.nptel.ac.in/noc18_cy09/preview

COURSE CODE	COURSE NAME	L	Т	Р	С
YCY202	PHYSICAL CHEMISTRY-II	4	1	0	5
C:P:A	4.5:0:0.5	L	Т	Р	Η
		4	1	0	6

Learning Objectives:

- 1. To learn the concepts and applications of symmetry elements and symmetry operations.
- 2. To learn and under the concepts of quantum mechanics to apply for the energy calculations in simple and multielectron systems.
- 3. To understand the concepts of molecular spectroscopy and interaction of electromagnetic radiation with monoatomic and diatomic molecules.
- 4. To understand the photo physical properties of various type of chemical reactions.
- 5. To learn the various concepts of adsorption and free energy reaction at interphase.

COUR	SE OUTCOMES: On the successful completion of the	DOMAIN	LEVEL			
course	course, students will be able to					
CO1	Explain rules and concepts of group theory for the	Cognitive	Understanding			
	determining of type of vibrations and hybridizations.					
CO2	Describe the principles and postulates of quantum	Cognitive	Understand			
	mechanics and <i>illustrate</i> the wave mechanical treatment		Apply			
	for simple, multielectron systems and predict the energy					
	level in the molecular systems.					
CO3	Describe the physical aspects of molecular spectroscopy	Cognitive	Remember			
	and interaction of electromagnetic radiation					
	with diatomic and polyatomic molecules					
CO4	Generalize the photo physical properties of chemical	Cognitive	Understand			
	reactions.					
CO5	Apply and <i>identify</i> the various concepts of adsorption	Cognitive	Apply			
	and free energy reaction at interphase.		Remember			

SYLLABUS:	
UNIT- I GROUP THEORY AND ITS APPLICATIONS	
Symmetry elements and operations – point groups – assignment of point groups to molecules – group postulates and types of groups – group multiplication tables, sub groups, similarity transformations – conjugate elements and classes. Matrix representation of symmetry operations and point groups – reducible and irreducible representations – properties of irreducible representation. The great orthogonality theorem – construction of character table – direct product – projection operators – symmetry of hybrid orbitals. Applications of group theory- Determination of representations of vibrational modes in non-linear molecules such as water, ammonia, BF ₃ , CH ₄ and XeF ₄ . Determination of Hybrid orbitals in non-linear molecules – Examples: H ₂ O, NH ₃ , BF ₃ , CH ₄ and XeF ₄ .	15
Principle. Operators-linear, commutation, Hermitian and Hamiltonian operators. Eigen functions and Eigen values-Postulates of quantum mechanics. Derivation of Schrodinger's time-independent wave equation and its application to particle in a one dimensional box, particle in a three dimensional box, quantum tuneling, harmonic oscillator, rigid rotor and hydrogen atom. Born-Oppenheimer approximation-Hydrogen molecule ion. LCAO-MO and VB treatments of the hydrogen molecule. Antisymmetry and Pauli's exclusion principle. Slater detrimental wave function, term symbols and spectroscopic states-Russell Saunders coupling. The variation theorem and Perturbation theory.Applications of variation method and perturbation theory to the helium atom.	15
UNIT-III MOLECULAR SPECTROSCOPY	
Micro wave spectroscopy- Theory- selection rules, –Instrumentation, Principle of micro wave oven; Energy levels in atoms and molecules- Fourier transformation Rotational spectra of diatomic and polyatomic molecules–P,Q,R branches- effect of isotopic substitution. Non- rigid rotator- Linear molecules. Theory of Rotational Raman spectra. Electronic spectra -electronic spectra of molecules -Born Oppenheimer approximation -vibrational coarse structure -Franck-condon principle -dissociation energy -fortrat diagram -Pre- dissociation -various types of transitions -solvent effect on spectra. Vibrational spectra of diatomic molecules – selection rules –overtones, combination and hot bands - Fermi resonance Energy of diatomic molecule, simple harmonic and unharmonic oscillator, rotational character of vibration spectra, Theory of Vibrational Raman spectroscopy- Coherant Antistokes Raman Spectroscopy (CARS).	15
UNIT IV- PHOTOCHEMISTRY AND RADIATION CHEMISTRY	
Photophysical processes of electronically excited molecules – Jablonski diagram, Primary and Secondary Processes, quantum yield and its determination-chemical actinometer. Excimers and exciplexes-Kinetics of collisional quenching-Stern Volmer equations. Photosensitization, Chemiluminescence. Photosynthesis, solar energy conversions. Semiconductor photo catalysis, lasers. Radiation Chemistry-linear energy transfer, G-value, dosimeters, radiolysis of water, solvated electrons.	15

UN	IT-V SURFACE P	HENOMENA				
Ads	sorption and free e	energy reaction at	interphase -pote	ential energy diag	gram -	15
Len	nard-Jones plot -su	rface area determir	nation -heats of ac	lsorption -determi	ination -	
ads	orption from solutio	on -Gibbs adsorptio	on theorem -solid-	liquid interface -V	Vetting	
and	contact angle -soli	d-gas interfaces -s	oluble and insolu	ble films. Surface	e tension:	
met	hods of measuring su	urface tension -elect	trical phenomena a	t interface includir	ng electro	
kinetic phenomenon -Micelles and reverse micelles -solubilisation -microemulsion or						
mic	ellar emulsions	neenes and revers	e internes soluti	insution interoction	uision oi	
mile		LECTURE	TUTOPIAI	PRACTICAL	ΤΟΤΑΙ	HOURS
	Hours	60	1010KIAL 15	INACTICAL	TOTAL	75
DI	TIVUIS	00	15	-		13
1	ETERENCE DOORS	visal Application of	Crown Theory Io	hn Wiley and Can	a Ina Na	v. Vorle
1.	F.A. Collon, Chem	lical Application of	Group Theory, Jo	in whey and Son	s mc. ne	w fork,
	19/1.	.1 1.	1			1 1. 1 .
2.	K.V. Raman, Grou	p theory and its app	plications to Chem	istry, Tata McGra	w-Hill Pu	iblishing
	Company, 1990					
3	A.K. Chandra, Intro	oductory Quantum	Chemistry, 4th ed	., Tata McGraw H	ıll, 1994.	
4	R. K. Prasad, Quan	tum Chemistry, 2nd	d ed., New Age In	ternational Publish	nes (2000),
5	I. N. Levine, Quant	tum Chemistry, 4th	ed., Prentice Hall	of India Pvt Ltd.,	(1994),	
6	S. Glasstone, Introd	duction to Theoretic	cal Chemistry, Aff	iliated East-West	Press	
7	G. N. Barrow, Intr	oduction to Molecu	ular Spectroscopy,	International Mc.	Graw Hil	l Edition
	(1993),					
8	G. Friedlander, J. V	<i>N</i> . Kennedy and J. I	M. Miller, Nuclear	and Radiochemis	stry, Wile	y, 1964.
9	K. K. Rohatgi-Muk	cherjee, Fundament	als of Photochemi	stry; 3rd Ed., New	Age Inte	rnational
	Pvt. Ltd., New Del	hi, 2014.				
TE	EXT BOOKS		1 0			~ 1
1.	G. N. Barrow, Intro	oduction to Molecu	lar Spectroscopy,	International McG	raw Hill	Student
	Edition (1984),					
2.	B. P. Straughan and	d S. Walker, Spectr	oscopy, Vol.I to II	I, Chapman Hall,	London (1976),
3.	D. A. McQuarrie, O	Quantum Chemistry	y, University Scien	ce Books (1998),		
4.	R. L. Flurry, Jr, Sy	mmetry Groups: Th	neory and Chemica	al Applications; Pr	rentice Ha	all, New
	Jersy, 1980.					
5.	2. S. F. A. Kettle, S	Symmetry and Struc	cture; 2nd Ed., Joh	n Wiley and Sons,	, Chiches	ter, 1995.
E-	Resources					
htt	ps://www.youtube.cor	n/watch?v=R-x9KdN	VjQmo			
htt	ps://onlinecourses.npt	el.ac.in/noc18_cy15/j	preview			
nu	ps://www.youtube.com	$\underline{n}/watch?v=6QXtnml$	<u>BTVQK</u>			

COURSE CODE		COURSE NAME	L	Т	Р	С	
YCY2	203	PHYSICAL METHODS IN CHEMISTRY-I	4	1	0	5	
PREF	REQUISITE	NIL	L	Т	Р	H	
	C:P:A	4.5:0:0.5	4	1	0	5	
COUI	RSE OUTCO	MES: On the successful completion of the	DO	MAIN	LE	VEL	
course	e, students wi	ll be able to					
CO1	<i>Explain</i> the	basic principles of molecular spectroscopy.	Cog	nitive	Understand		
Relate the f		ndamentals of NMR spectroscopy and	Cognitive		Remember		
002	interpret the	interpret the NMR spectra of organic compounds.			Understand		
CO3	<i>Explain</i> the	principles of UV, and IR spectroscopy &	Cognitive		Understand		
005	Identify the	entify the IR and UV active organic compounds			Apply		
COA	Apply the tec	hniques of ESR, ORD and Mass	Cognitive		Apply		
spectroscop		of organic compounds.	Affective		Respo	nd	
COF	Examine the	X-ray, electron, neutron diffractions of	Cog	nitive	Analy	ze	
005	simple comp	ounds.	Affe	ctive	Receiv	ve	
UNIT I PRINCIPLES OF MOLECULAR SPECTROSCOPY					15		

Interaction of electromagnetic radiation with molecular systems, Microwave spectroscopy – rotational spectra of diatomic molecules, rigid and non-rigid rotors – intensity of spectral lines – effects of isotopic substitution – microwave spectra of polyatomic molecules – linear and symmetric top molecules – infrared spectra – diatomic molecules, simple harmonic and anharmonic oscillators – diatomic vibrating rotator rotation – vibration spectrum of carbon monoxide – interaction of rotation and vibration (breakdown of Born-Oppenheimer approximation) – influence of the rotation on the spectrum of polyatomic molecules, linear and symmetric top molecules, parallel and perpendicular vibrations – influence of nuclear spin. Raman spectra – rotational Raman spectra of linear and symmetric top molecules – vibrational fine structure – electronic spectra of diatomic molecules – vibrational coarse structure – intensity of vibrational lines in electronic spectra – rotational fine structure – fortrat diagram.

UNIT II	NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY	15
¹ H NMR Sp	ectroscopy - multiplicity - coupling constant - spin-spin splitting -	vicinal and
geminal cou	pling constants - Karplus equation - long range coupling constants, i	nfluence of
stereochemic	cal factors on chemical shift of protons. Simplification of complex spect	tra –double
resonance te	echniques, shifts reagents - chemical spin decoupling of rapidly ex	changeable
protons (OH	, SH,COOH, NH, NH ₂) – an elementary treatment of NOE phenomenor	n. 13 C NMR
Spectroscop	y – broad band decoupling – off resonance decoupling – chemical shifts	of common
functional gr	oups – FT NMR and its importance-DEPT spectra – identificatio	on of small
compounds l	based on NMR data – 2D techniques: 1H–1H COSY, ¹ H– ¹³ C HETCOSY	– NOESY.
_	-	
UNIT III	UV-VISIBLE AND IR SPECTROSCOPY	15

27

UV-Visible spectroscopy – introduction – instrumentation, sampling techniques – Woodward-Fieser and Scott's rules for conjugated dienes and polymers, ketones, aldehydes, α , β -unsaturated acids, esters, nitriles, and amides – differentiation of geometrical isomers and positional isomers – disubstituted benzene derivatives – study of steric effect in aromaticity. Infrared spectroscopy – Introduction – instrumentation, sampling techniques – factors influencing group frequencies – quantitative studies – hydrogen bonding (intermolecular and intramolecular).

UNIT IV ESR, ORD AND MASS TECHNIQUES

 ESR – basic principles – comparison between ESR and NMR spectra – hyperfine splitting – applications to organic free radicals.

15

15

Optical rotatory dispersion and circular dichroism – introduction to theory and terminology – cotton effect – ORD curves – axial halo-ketone rule and its applications – the octant rule – its applications – applications of ORD to determine absolute configuration of monocyclic ketones – comparison between ORD and CD – their interrelationships.

Mass Spectrometry – instrumentation – resolution – ESI, EI, CI and FAB methods – base peak, isotopic peaks, metastable peaks – importance of metastable peaks, parent peak, recognition of molecular ion peak – fragmentation – general rules – pattern of fragmentation for various classes of compounds, McLafferty rearrangement – nitrogen rule.

UNIT V X-RAY DIFFRACTION

X-Ray diffraction by single crystal method – space groups – systematic absences in X-ray data and identification of lattice types, glide planes and screw axes – X-ray intensities – structure factor and its relation to intensity and electron density – phase problem – structure solution by heavy atom method and direct method – determination of absolute configuration of molecules – a brief account of Cambridge Structural Database (CSD) and Protein Data Bank (PDB).

Electron diffraction by gases – scattering intensity vs. scattering angle, Wierl equation – measurement techniques. Neutron diffraction by crystals – magnetic scattering – measurement techniques – elucidation of structure of magnetically ordered unit cell.

1		0		
LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL
60	15	-	-	75
TEVT BOOKS				

TEXT BOOKS

- 1. C. N. Banwell, Fundamentals of Molecular Spectroscopy; 4th Ed., McGraw Hill Education, Noida, 1994.
- 2. B. P. Straughan and S. Walker, Spectroscopy; Vol.3, Halstead Press, Sydney, 1978.
- 3. G. M. Barrow, Introduction to Molecular Spectroscopy; McGraw Hill, New York, 1964.
- 4. P. K. Ghosh, Introduction to Photoelectron Spectroscopy; John Wiley, New York, 1989.
- 5. P. M. Silverstein and amd F. X. Western, Spectroscopic Identification of Organic Compounds; 8th Ed., John Wiley, New York, 2014.

REFERENCES

- 1. W. Kemp, Organic Spectroscopy; 3rd Ed., Palgrave, New York, 1991.
- 2. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, PHI Learning, New Delhi, 2009.
- 3. Y. R. Sharma, Elementary Organic Spectroscopy Principles and Chemical applications; S. Chand, New Delhi, 1992.
- 4 . P. S. Kalsi, Spectroscopy of Organic Compounds; 6th Ed., New Age International Publishers, New Delhi, 2004

- 5. W. Clegg, Crystal Structure Determination; Oxford University press, UK, 1998.
- 6. G. H Stout and L. H. Jensen, X-ray Structure Determination: A Practical Guide; John Wileyand Sons, New York, 1992.
- 7. J. P. Glusker and K. N. Trueblood, Crystal Structure Analysis: A Primer; 3rd Ed., OxfordUniversity Press, UK, 2010.
- 8. D. N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques; University Press, Hyderabad, 2001.

E REFERENCES

- 1. Web Pages: Cambridge Structural Database (CSD)http://www.ccdc.cam.ac.uk/products/csd/Protein Data Bank (PDB)
- 2. http://www.rcsb.org/pdb/home/home.do

COURSE CODE COURSE NAME			L	Τ	Р	С		
YCY20	04	INORGANIC	CHEM	ISTRY	0	0	6	3
		PRACTICAL-	II					
C:P:A		1: 1.5:0.5			L	Τ	Р	Н
					0	0	6	6
Learn	ing Objectives:							
1. To le	earn and understand t	he volumetric and g	gravimetric anal	ysis of m	etal i	ons	pres	ent in
solution	n.							
5.1016	earn the synthetic pro	cedure of various in	organic compo	unds.	ЛАТ	NT		
		M-4-1- : : : :			VIAL	N	D	
COI	<i>Taentify</i> the various	s Metals ions in the	solution using	Cogniti	ve		R	emember
<u> </u>	Fatimeter the second			Psychol	ΠΟΙΟ	ſ		
02	<i>Estimate</i> the amo	unt of Metal 10n	s present in	Cognitiv	ve noto	r		nderstand
CO2	Solution using grav		a da	Camiti		1	5	
COS	Syninesis of variou	s morganic compou	nas.	Psychor	ve noto	r	A	рргу
				Affectiv	noto ve	1	Ъ П	
					-		ĸ	ecerving
1.	Titrimetry (V) an	d Gravimetry (G)						
	A mixture of soluti	ion(s) should be giv	en for estimation	on				
	1. Cu (V) and Ni (2 Cu (V) and Zn (2	G);						
	2. Cu (V) and Zn (3. Fe (V) and Zn (G);						
	4. Fe (V) and Ni (0	G);						
	5. Zn (V) and Cu (G).						
2.	Preparation of the	e following compo	unds:					
	1. Tetrammineco	pper (II) sulphate.						
	2. Potassium triox	kalatochromate (III)						
	3. Potassium triox	kalatoaluminate (III).					
	4. Trithioureacopp	per (I) chloride.						
	5. Trithioureacopp	per (I) sulphate.						
	<u> </u>	LECTURE	TUTORIAI	/ P	RAC	TIC	AL	TOTAL
					_	-		HOURS
	Hours 90 90							90
REFE	CRENCE BOOK			-				
1.	A. I. Vogel, "Quant	itative Inorganic An	nalysis", ELBS,	3 rd Edit	ion,	1971	l .	
2.	V. V. Ramanujam,	Inorganic Semimic	ro Qualitative	Analysis;	3rd	Ed.,	Na	tional Pubs,
	London, 1988.	1 () () ()						
3.	G. Svehla, Text Boo	ok of Macro and Se	emimicro Qualit	ative Ino	rgan	ic A	naly	sis; 5th Ed.,
	Longman group Ltd, London, 1987.							

COURSE CODE C		COURSE NAME	L T P		С				
YCY2	05	ORGANIC CHEMISTRY PRACTICAL –I	0 0 6		3				
PRER	EQUISITE	Nil	L	Т	Р	Н			
C:P:A		1: 1.4:0.6	0	0	6	6			
COUR	SE OUTCOM	IES	L	OMAI	N	LEVEL			
CO1	<i>Interpret</i> the in the given o	<i>Interpret</i> the individual organic components present Cognitive Psychomotor			Understand Perception				
CO2	CO2 <i>Estimate</i> the melting point/boiling point of the synthesized compounds /individual component present in the mixture.				Cognitive Psychomotor				
CO3	CO3 Predict the nature of functional group present in the given mixture. Cognitive Psychomotor Affective					Apply Set Receive			
ORGANIC CHEMISTRY PRACTICAL –I 1. Qualitative analysis of an organic mixture containing two components									
Mixtur	Mixtures containing two components are to be separated (pilot separation) and purified (bulk								

separation) – The physical constants are to be reported (analysis).

2. Preparation of organic compounds (single stage)

- 1. Methyl-*m*-nitrobenzoate from methylbenzoate (nitration)
- 2. Glucose pentaacetate from glucose (acetylation)
- 3. Resacetophenone from resorcinol (acetylation)
- 4. Benzophenone oxime from benzophenone (addition)
- 5. *o*-Chlorobenzoic acid from anthranilic acid (Sandmayer reaction)
- 6. *p*-Benzoquinone from hydroquinone (oxidation)
- 7. Phenylazo-2-naphthol from aniline (diazotization)

	LECTURE	TUTORIAL	PRACTICAL	TOTAL	
HOURS	0	0	90	90	

TEXT BOOKS

- 1. J. Mohan, Organic Analytical Chemistry: Theory and Practice; Narosa, (2003).
- 2. V. K. Ahluwalia, P. Bhagat, and R. Agarwal, Laboratory Techniques in Organic Chemistry; I. K. International, (2005).
- 3. N. S. Gnanaprakasam and G. Ramamurthy, Organic Chemistry Lab Manual; S.V.Printers, (1987).
- 4. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford and P. W. G. Smith, Vogel's Textbook of Practical Organic Chemistry; 5th Ed., Prentice Hall, (1989).

COURSE CODECOURSE NAMELTF					P	С	
YCYI	E03	PHARMACEUTICAL CHEMIST	ſRY	4	1	0	4
PRERE	QUISITES	Nil		L	Т	Р	Η
C:P:A	C:P:A 4.2:0:0.8				1	0	5
COURS	COURSE OUTCOMES: On the successful completion of DOMAI				LE	VEL	1
thecour	se, students wi	ll be able to					
CO1 <i>Recall</i> the various terminology of pharmaceuticalCognitiveRe			Rer	nemt	ber		
000	chemistry.		<u> </u>		Und	lersta	and
CO2	Outline the s	tructural aspects of antibiotics and	Cogni	tive	Und	lersta	and
<u> </u>	<i>relate</i> their full	nctions	Carrie	4:	D	1	
003	<i>Illustrate</i> the	biological activities of analgesic	Cogni	tive	Ker	nemt	ber
	and antipyren	US.	Affect	ivo			ma
<u>CO4</u>	Summarize th	e activities of anaesthetics and local	Cogni	tive	Lind	lerete	and
0.04	anaesthetics	a activities of anaesticities and local	Affect	ive	Res	nond	
CO5	<i>Inference</i> the	various concepts of clinical	Cogni	tive	Ana	alvze	
000	chemistry.		Affect	ive	Res	pond	1
UNIT I	BASICS C	F PHARMACEUTICALCHEMIS	TRY		1	5	
Definitio	ons – the terms	- drugs, pharmacology, pharmacy, ch	nemothe	erapy,	ther	apeut	tics –
pharmac	cologically activ	e principles in plants – first aid – impo	ortant ru	iles of	first	aids,	, cuts,
fractures	s, bleeding for b	plood, maintaining breathing burns and	d first ai	id box	k − tu	bercu	ılosis
(t.b.), ja	undice, piles,	typhoid, malaria, cholera - causes	– sym	ptom	s, di	agno	sis –
preventi	on and treatmer	nt – medicinally important compounds	s of iron	– fer	rous	gluco	onate,
ferrous s	sulphate and fer	ric ammonium citrate.					
UNIT I	I ANTIBIO	TICS				15	
Definition	on – introduc	ction – classification and biologi	ical ac	tions	– p	enici	llin,
chloram	phenicol, strep	tomycin and tetracycline – structure,	proper	ties a	ind the	herap	eutic
uses - c	chemical structu	are and pharmacological activity – e	med and	unsa	turat	ion, o	chain
Ingun, I	Somerism, naio	SIC AND ANTIPVETTICS	and act	a gro	ups.	15	
Norootic		algosic action of morphing derive	tives of	fmor	phine	15 h	arain
and anot	morphine – syn	thetic analysics $-$ pethidine method	n n e = n	onnar	cotic	anal	gesic
– aspiri	n paracetamol	and phenacetin – analgin – prepara	tion pr	onert	ies a	nd us	ses –
ibuprofe	en and ketoprofe	en – structure and uses.	uon, pi	open	105 u	iid di	505
UNIT I	V ANAEST	HETICS AND LOCAL ANAESTH	ETICS	5		15	
Characte	eristics of anae	sthetics – classification of anaestheti	cs – ge	neral	anae	sthet	ics –
volatile	anaesthetics – e	ether, chloroform and halothane – ad	vantage	s and	disa	dvan	tages
– non-volatile anaesthetics (intravenous anaesthetics) – methohexitone and propanidid –							
structure	structure and uses - cocaine and amethocaine - structure and uses - benzocaine and					e and	
procaine	e – structure,						
synthesi	s and uses.						
UNIT V	CLINICA	AL CHEMISTRY				15	
Determi	nation of sugar	(glucose) in serum – o-toluidine m	nethod -	- diag	gnost	ic tes	st for
sugar in	urine – Benedi	ct's test – detection of diabetes – dete	ction of	t chol	ester	ol in	urine
– detecti	- detection of anaemia - estimation of haemoglobin (Hb concentration) - red cell count.						

LECTU	RE	TUTORIAL	SELF STUDY	PRAC	TICAL	- T	OTA	L	
60		15	-		-		75		
TEXT BOO 1. Jayashree Company	KS Ghosh, A Ltd., New	A Text Book of I v Delhi, (2014).	Pharmaceutical Ch	emistry;	5th Ed	., S.Ch	and a	ind	
1. S. Lakshn Delhi, (1 2. Bhagavat	ni; Pharm 995). thi Sunda	aceutical Chemis	stry; 1st Ed., S. Ch histry; 1st Ed., MJP	and and Publishe	Compa ers, Che	ny Lto ennai, (d., Ne (2006)	₩).	
COURSE C	ODE	COURSE NAM	ME		L	Т	Р	С	
YCYE04		ELECTR-OR	GANIC CHEMIS'	ГRY	4	1	0	5	
PREREOU	SITES	Nil			L	Т	Р	Н	
C:P:A		4.4:0:0.6			4	1	0	5	
COURSE O	UTCOM	ES: On the succ	cessful completion	of	DOM	IAIN	LI	EVEL	
thecourse, st	tudents v	vill be able to							
CO1	Describ reaction electroc	<i>e</i> the basic conce is and also the fur hemical methods	pts of electron tran ndamentals aspects	ts of Cognitive Rem				member derstand	
CO2	Illustra	te the structure ar	nd activity of enzyr	nes and	Cogni	tive	Und	lerstand	
	cofactor	rs.			Affect	ive	Res	pond	
CO3 <i>Identify</i> the properties of lipids and nucleic acids.				Cognitive Affective		Und App Resj	lerstand oly pond		
CO4	Summa	<i>rize</i> the concept	of bioenergetics.		Cogni	tive	Und	lerstanc	
CO5	Company synthesi	<i>re</i> the principles is.	of lead and an	alogue	Cogni Affect	tive tive	Ana Rec	lyze eive	
UNIT I	BASIC	CONCEPTS O	F ELECTRO OR	GANIC	SYNTI	HESIS		15	
Introduction, vs electron tr : Mechanism electrode pho reaction, ads steady state e	fundame cansfer real and theo enomena, orption p electroche	ental aspects of ele actions in organic ory of outer sphere monitoring a ha obenomena – Ma emical methods, T	ectron transfer reac c chemistry and ele e electron transfer alf-reactions, gener uss transfer in elec Fransient electroche	tion : oxi ectrochem reactions ral view trochemi emical m	dation, nistry - s – Fund of an e istry, fu nethods.	reduct Standa lament lectroc indame	tion re ard po tal asp de ental a	eactions otentials bects of aspects	
UNIT II	METH	ODS FOR S	STUDIES OF	ELECT	FROCE	IEMI	CAL	15	
Introduction, electrotransfe limiting expe chronocoulor determination	REAC linears s er reaction erimental metry, ch n of numb	TIONS weep voltammetr n, electron transfe factors – potenti ronopotentiometr ber of electrons.	ry and cyclic voltar er reaction followed ial step and curren ry – polarography –	nmetry, []] l by chem t step m - method	Experin nical rea ethod,c ls for	nental action a hronoa	setup, and so amper	simple lutions ometry	
UNIT III	CATH	HODIC REDUC	TIONS					15	

Introduction, formation of radical anions, dianions and polyanions, experimental aspects, thermodynamics kinetics, addition of electrophilic reagents and related reaction, dimerization. Electrochemical reduction of halogenated compounds: monohalogenated alkanes, halogenated aromatic compounds, acyl halides, aliphatic alpha – halo carbonyl compounds, cathodic reduction of nitro and related compounds, Aliphatic nitro compounds, aromatic nitro compounds prevention of para amino phenol nitrobenzenes, nitramines and azides). Eletrochemical reduction of carbonyl compounds general aspects

aziucs). Lieuo	energie reduction of carbonyl compounds, general aspects.
UNIT IV	ANODIC OXIDATION OF ORGANIC COMPOUNDS

Introduction, general mechanistic consideration, directs anodic oxidation, indirect anodic oxidation. Anodic oxidation of hydrocarbons, nitrogen containing compounds. Electrosynthesis of Bioactive materials Introduction, simple Kolbe oxidation: application to synthesis of (+) - α onxerin and (+) - pentacyclosqualene, Kolbe cyclisation and Tandem cyclization.

UNIT V SPECIAL TOPIC IN ELECTRO ORGANIC SYNTHESIS

15

15

15

Paired electro organic synthesis, simple examples – electrogenerated reagents Homogeneous redox catalysts – General aspects of indirect electron exchanges, pure redox catalysis (general case) – use of indirect electrochemical reactions in sythesis, oxidations, reductions – Electrogenarated superoxides. Electrochemical partial fluorination: Introduction, Anodic fluorination of aromatic compounds, olefins, carbonyl compounds, heterocyclic compounds. Electro enzymatics synthesis: Introduction, principles of redox catalytic enzyme activation and co-factor regeneration – electroenzymatic reductions and oxidation (simple examples only).

LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL
60	15	-	-	75

TEXT BOOKS

- 1. Organic electrochemistry by Henning Lund & Ole Hammerich, , 4th edition, Publisher: Marcel Dekker, Inc, New York
- 2. S. Warren, Designing Organic Synthesis: The Disconnection Approach; 2nd Ed., Wiley, New York, 2008.

REFERENCES

- 1. N. C. Price and L. Stevens, Fundamental of Electrochemistry; Oxford UniversityPress, UK, (1999)
- 2. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry: Part-A and Part-B; 5th Ed., Springer, Germany, (2008).
- 3. H. B. Kagan, Asymmetric Synthesis; Thieme Medical Publishers, Germany, (2009)

UNIT IV – HETEROCYCLES

Nomenclature: Trivial, systematic and replacement nomenclature – nonaromatic heterocycles – synthesis of tetrahydrofurans – pyrrolidines – tetrahydropyrans – piperidines. Synthesis and reactivity of heterocycles: aziridines – oxiranes – thiiranes – azetidines – oxetanes – oxazoles – imidazoles – thiazoles – isooxazoles. Synthesis and reactivity of aromatic heterocycles: pyrazoles – isothiazoles – triazoles – pyrimidines – purines – triazines – pyridazines – pyrazines.

				13
LECTURE	TUTORIALS	SELF STUDY	PRACTICAL	TOTAL

		SEMESTER III	L	Т	Р	С
COUF	RSE CODE	COURSE NAME	4	1	0	5
YCY3	01	ORGANIC CHEMISTRY II	L	Т	Р	Η
C: P:	A	4.5:0:0.5	4	1	0	5
COUF	RSE OUTCON	MES: On the successful	DOMA	IN	LEV	VEL
compl	etion of the co	ourse, students will be able to				
CO1	Outline the re	eaction mechanisms of various	Cogniti	ve	Remen	nber
	rearrangemen	t reactions.	Coginti	ve	Unders	stand
	<i>Identify</i> the o	xidation and reducing reagents	Cognit	ive	Unders	tand
CO2	for organic sy	vnthesis.			Onders	stand
	Recognize the	e effect of light in organic reactions and	Cogniti	ve	Unders	stand
CO3	<i>understand</i> th	ne mechanism of photochemistry.	Affectiv	ve	Receiv	ing
		1 · ·				0
GOA	<i>Recognize</i> an	d <i>interpret</i> the preparation and properties	Cogniti	ve	TT 1	1
CO4	of various he	terocyclic compounds	Affectiv	ve	Understa	and
<u> </u>			<u> </u>		Receiv	e
CO5	Understand a	and <i>examine</i> the structural components	Cogniti	ve	Analy	yze
	of various of	natural products.	Affectiv	ve	Recei	lve
UNIT	I - MOLECU	LAR REARRANGMENTS & NAME RE	ACTION	15	15	
A study	of mechanism	of the following rearrangements: Beckman	in, Curtiu	s, Ho	ofmann, So	chmidt,
Lossen,	Wolff, Pinace	ol, Wagner Meerwin, Demjanov, Dienone	e-Phenol,	Favo	orski, Ber	nzidine,
Claisen	, Cope, Somm	let-Hauser, Pummerer and Von-Richter re	earrangem	ents	. A study	of the
followiı	ng name reaction	ons: Dieckmann cyclization, Hofmann-Loff	ler Freyta	g rea	ction, Mit	sunobu
reaction	i, Shapiro react	ion, Eschenmoser-Tanabe and Ramburg-Ba	acklund re	eactio	ons.	
UNIT	II - OXIDAT	ION AND REDUCTIONS REACTIONS			1	5
Oxidati	on with Cr (inc	luding PCC, PDC, Jones) and Mn (includir	ng MnO ₂ a	and H	BaMnO ₄)	
reagents	s; Oxidation wi	ith LTA, DDQ and SeO ₂ ; Oxidation using I	OMSO eit	her v	with DCC	or
Ac_2O of	r Oxaloyl chlor	ride; Oxidation using IBX and Dess-Martin	Periodina	ne (l	DMP) rea	gent.
Reduct	tion with NaB	H4, NaCNBH3, Zn(BH4)2 LiAlH4, Li(tBu	ıO)3AlH,	DIB	AL-H, R	ed-Al,
Et ₃ SiH	I and Bu ₃ SnH;	Reduction using selectrides; Birch reductio	n			
UNIT ·	-III ORGANI	C PHOTOCHEMISTRY			15	
Organi	ic photochemi	stry – fundamental concepts – energy	transfer	– cł	naracterist	ics of
photor	eactions – ph	otoreduction and photooxidation, photos	ensitizatio	n.Ph	otoreactio	ons of
ketone	s and enones	- Norrish Type I and II reactions - Pa	terno-Büo	chi r	eaction –	Fries
rearran	igement – pho	tochemistry of alkenes, dienes and aromati	ic compoi	unds	$-$ di- π -m	ethane
rearran	igement- pho	tochemistry of α . β -unsaturated carbony	l compo	ound	s – pho	tolytic
cvcloa	dditions and pl	hotolytic rearrangements – photo additions	– Barton		1	2
Reaction	on	5 6 1				
UNIT I	V – HETERO	DCYCLES				
Nomer	nclature: Trivia	l. systematic and replacement nomenclatur	e – nonar	omat	ic heteroc	vcles
- syntl	nesis of tetrahy	drofurans – pyrrolidines – tetrahydropyran	s – niperi	dines	Synthes	is and
reactiv	ity of heterocy	cles: aziridines – oxiranes – thiranes – aze	etidines –	oxet	anes – ox	azoles
- imid	- imidatoles - thiatoles - isopyatoles. Synthesis and reactivity of aromatic betarocycles:					
nvrazo	- initiazores - inazores - isothiazores - isothiazores - isothiazores - isothiazores - isothiazores - triazores - pyrimidines - pyrimidines - pyrimidines					
Pyrazo	nes	ores unazores pyrimemes purmes	11a211		Pyridazi	1105
TINIT	$\frac{100}{V} = \mathbf{N} \mathbf{A} \mathbf{T} \mathbf{I} \mathbf{D} \mathbf{A}$	I PRODUCTS				
	· - MAIUNA					

Terpenoids: introduction – biosynthesis of menthol, camphor – total synthesis: Takasago synthesis of menthol, Corey's synthesis of longifolene, Curran's synthesis of hirsutene. Steroids: introduction – partial synthesis of androsterone and testosterone (from Cholesterol) – total synthesis: Johnson's synthesis of progesterone and Vollhardt's synthesis of estrone. Alkaloids: introduction – biosynthesis of nicotine, camptothecin – total synthesis: Corey's synthesis of epibatidine, Comin's asymmetric synthesis of Camptothecin and Woodward's synthesis of reserpine

60	15	-	-	75				

TEXT BOOKS

- 1. S. H. Pine and J. B. Hendrickson, D. J. Cram and G. S. Hammond, Organic Chemistry; 5th Ed., McGraw Hill, Noida, (1987).
- 2. T. H. E. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry; 3rd Edition,,Benjamin-Cummings Publishing, USA, (1997).
- 3. J. March and M. B. Smith, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th Ed., Wiley, New York, (2007).
- 4. J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry, 2nd Ed., Oxford University Press, UK, (2012).
- 5. I. L. Finar, Organic Chemistry; Vol.II, 7th Ed., Pearson Education Ltd., New Jersey, (2009).

REFERENCES

- 1. K. Bansal, Reaction Mechanism in Organic Chemistry; Tata McGraw Hill, Noida, (1990)
- 2. F. A. Carey, and R. J. Sundberg, Advanced Organic Chemistry, Parts A and B, 5th Ed., Springer, Germany, (2007).
- 3. E. J. Corey, and X-M. Cheng, The Logic of Chemical Synthesis; 1st Ed., Wiley-Interscience, New York, (1995).
- 4. T. L. Gilchrist, Heterocyclic Chemistry; 3rd Ed., Prentice Hall, New Jersey, 1997.
- 5. R. K. Bansal, Heterocyclic Chemistry; 3rd Ed., Wiley Eastern Ltd, New Delhi, 1999.
- 6. K. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis, Targets, Strategies, Methods; Wiley VCH, Germany, 1996.

Longifolene: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry; Vol.2.

COURSE CODE COURSE NAME			L	Τ	С	
YCY302		PHYSICAL METHODS IN CH	HEMISTRY-II	4	1	5
				L	Т	Н
C:P:A		4:0.5:0.5		4 1 5		
COURSE OUTCOMES: On the successful completion of the course, students will be able to			DOMAIN	I	LEVE	L
CO1	Recall an	d <i>Explain</i> the electronic	Cognitive	Reme	ember	
	spectroscopy	y of metal complexes		Unde	rstand	
			Psychomotor	Set		
CO2	<i>Interpret</i> the	e IR and Raman spectra of	Cognitive	Unde	rstand	_
	inorganic compounds		Affective	Respond		
CO3 <i>Identify</i> the chamical environment of NMP		Cognitive	Understand			
	active nuclei compounds	present in the inorganic	Affective	Appl Resp	y ond	
CO4	Analyze EPI	R, and magnetic properties the	Cognitive	Anal	yze	
	mechanism of	of metal complexes.	Psychomotor	Perc	eption	
CO5	<i>Compare th</i> tin compoun	<i>e</i> Mossbauer spectra of iron and ds.	Cognitive Psychomotor	Analy Perc	yze eption	
SYLLA	BUS:					
UNIT I	UNIT I ELECTRONIC SPECTROSCOPY					
Microsta	tes, terms and	l energy levels for $d^1 - d^9$ ions in d	cubic and square field	s- inte	nsity	

of bands – group theoretical approach to selection rules – effect of distortion and spin- orbit coupling on spectra – evaluation of 10Dq and β for octahedral complexes of cobalt and nickel – applications to simple coordination compounds – charge transfer spectra. Optical rotatory dispersion and circular dichroism and magnetic circular dichroism – applications to metal complexes.

UNIT II INFRARED AND RAMAN SPECTROSCOPY

Vibrations in simple molecules (H₂O, CO₂) and their symmetry notation for molecular vibrations – group vibrations and the limitations – combined uses of IR and Raman spectroscopy in the structural elucidation of simple molecules like N₂O, ClF₃, NO₃⁻, ClO₄⁻ effect of coordination on ligand vibrations – uses of groups vibrations in the structural elucidation of metal complexes of urea, thiourea, cyanide, thiocyanate and dimethyl sulfoxide. Effect of isotopic substitution on the vibrationalspectra of molecules – vibrational spectra of metal carbonyls with reference to the nature of bonding –geometry and number of C-O stretching vibrations (group theoretical treatment) – applications of Raman spectroscopy – resonance Raman spectroscopy. SERS

UNIT III NMR SPECTROSCOPY

Examples for different spin systems - chemical shifts and coupling constants (spin-spin coupling) involving different nuclei (1H, 19F, 31P, 13C) interpretation and 15 applications to inorganic compounds - Effect of quadrupolar nuclei (2H,10B, 11B) on the 1H NMR spectra. Systems with chemical exchange - evaluation of thermodynamic parameters in simple systems - study of fluxional behavior of molecules - NMR of paramagnetic molecules - isotropic shifts contact and pseudo-contact interactions lanthanide shift reagents. UNIT IV | EPR SPECTROSCOPY AND MAGNETIC PROPERTIES Theory of EPR spectroscopy – spin densities and McConnell relationship factors affecting the magnitude of g and A tensors in metal species - zero-field splitting and Kramers degeneracy - spectra of V(II), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) complexes applications of EPR to a few biological molecules containing Cu(II) and Fe(III) ions. Magnetic properties - types of magnetism - dia-, para-, ferro- and anti-ferromagnetismmagnetic properties of free ions – first-order Zeeman effect – second-order Zeeman effect 15 - states KT - states <<< KT - determination of magnetic moments and their applications to the elucidation of structures of inorganic compounds - temperature independent paramagnetism - magnetic properties of lanthanides and actinides - spin crossover in coordination compounds. UNIT V MOSSBAUER AND OTHER SPECTROSCOPIC TECHNIQUES

Isomer shifts – quadrupole splitting – magnetic interactions – applications to iron and tin compounds. NQR spectroscopy – characteristics of quadrupolar nucleus – effects of field gradient and magnetic field upon quadrupolar energy levels – NQR transitions applications of NQR spectroscopy. SPS, Auger electron spectroscopy

REFERENCE BOOKS:

- 1. R. S. Drago, Physical Methods in Inorganic Chemistry; Affiliated East-West Press Pvt. Ltd., New Delhi, 2012.
- 2. R. S. Drago, Physical Methods in Chemistry; Saunders College Publications, Philadelphia, 1992.
- 3. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 6th Ed., Wiley-Eastern Company, New Delhi, 1999.
- 4. P. J. Wheatley, The Determination of Molecular Structure; 2nd Ed., Dover Publications, Mineola, 1981.
- 5. G. J. Leigh, N. Winterton, Modern Coordination Chemistry; Royal Society of Chemistry, UK, 2002.
- 6. E. A. V. Ebsworth, Structural Methods in Inorganic Chemistry; 3rd Ed., ELBS, Great Britain, 1987.
- 7. W. Kemp, Organic Spectroscopy; 3rd Ed., Palgrave, New York, 2011.
- 8. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, PHI Learning, New Delhi, 2009.
- 9. Y. R. Sharma, Elementary Organic Spectroscopy Principles and Chemical Applications; S. Chand and Co., New Delhi, 1992.
- 10. P. S. Kalsi, Spectroscopy of Organic Compounds; 6th Ed., New Age International Publishers,

COUR	RSE CODE	COUR	SE NAME		L T P			С
YCY3	03	ORGA	NIC CHEMIST	'RY	0	0	6	3
		PRAC'	ГІСАL-II					
					L	Т	Р	Н
C:P:A		1: 1.4:0).6		0	0	6	6
COUR	RSE OUTCO	OMES			DO	MAIN		LEVEL
CO1	<i>Identify</i> the a mixture of	ne various fund	ctional groups p	resent in	Cognitiv	nitive Remember		
CON				4 h a	Comitin			
02	mixture by	pilot separatio	onent present in n, bulk separation	n.	Psychon	notor	Se	nderstand et
CO3	Experimen	nts with variou	is reagents and	identify	Cognitiv	'e	A	pplySet
	thecompor	nents.	C	•	Psychon	notor	Re	eceiving
					Affectiv	e		
ORGANIC CHEMISTRY PRACTICAL-II								
1.	Quantitati Estimation Iodine valu Preparation 1. p-bron 2. acetyl 3. 1,3,5-t 4. p-nitro 5. benzill 6. p-amin 7. benzar 8. p-bron 9. m-nitro 10. 1,2,4-t	ive analysis of of phenol, anil the of an oil. On of organic of no acetanilide f salicylic acid fr ribromobenzen baniline from ac ic acid from be no benzoic acid nilide from ben noaniline from n riacetoxy benzo	organic compou ine, ketone, gluc compounds (Dou from aniline (acet rom methyl salic) the from aniline (b cetanilide (nitration enzoin (rearrange from p-nitro tolu zophenone (rearr acetanilide (brom itrobenzene (nitr ene from hydroqu	inds: ose, nitrobe ible stage) ylation and ylate (hydro romination on and hydr ment). uene (oxida angement). nination and re uinone (oxida	enzene, sa l brominat olysis and , diazotiza rolysis). tion and r d hydrolys eduction). dation and	ponificat tion). acetylati ation and reduction sis). d acylatic	ion val ion). hydrol). on).	ue of an oil and ysation).
	1	LECTURE	TUTORIAL	PF	RACTICA	L	TO	TAL HOURS
	Hours		-		90			90

TEXT BOOKS

- 1. J. Mohan, Organic Analytical Chemistry: Theory and Practice; Narosa, (2003).
- 2. V. K. Ahluwalia, P. Bhagat, and R. Agarwal, Laboratory Techniques in Organic Chemistry; I. K. International, (2005).
- 3. N. S. Gnanaprakasam and G. Ramamurthy, Organic Chemistry Lab Manual; S.V.Printers, (1987).
- 4. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford and P. W. G. Smith, Vogel's Textbook of Practical Organic Chemistry; 5th Ed., Prentice Hall, (1989).

COUR	SE CODE	CO	URSE NAME			L	Т	Р	С
YCY30	4	PH PR	YSICAL CHEM ACTICAL-II	IISTRY		0	0	6	3
C:P:A		1:1	.4:0.6			L	Т	Р	Н
						0	0	6	6
Learn	ing Objectiv	ves.							<u> </u>
1. To le	arn and unders	stand the co	onductometric me	thod of analy	vsis of va	rious	types	of solu	tions.
2. To le	arn the determ	ination of	dissociation const	tants, solubili	ty and a	ctivity	v coef	ficients	of
various	ions using pot	tentiometrie	c method.		2				
COUR	SE OUTCOM	1ES			DOM	[AIN		LEV	/EL
CO1	Identify the	strength o	f various types of	of solutions	Cogniti	ive	Re	emembe	r
	using conduc	ctometric m	ethod.		Psycho	motor	Pe	rception	n
CO2	Estimate the	e dissociati	on constants of	acids using	Cogniti	ive	Ur	nderstar	ıd
	conductomet	ric method			Psycho	motor	Se	t	
CO3	<i>Estimate</i> the	e dissociati	on constants, so	lubility and	Cogniti	ive	Aŗ	oply	
	activity co	efficients	of various i	ons using	Psycho	motor	Se	t	
	potentiometri	ic method.			Affecti	ve	Re	ceiving	r >
Any ten experiments (to be decided by the course teacher) out of the following									
experim	nents.	A	-1: .:						
1. Con	ductometry -	Acid- alk	all titrations.						
2. Con	ductometry -	Precipitat	10n tritrations.						
$\frac{5}{4}$ Con	ductometry -	Displace	tion of dissociat	ion constant	of was	k aci	de		
$\frac{4}{5}$ Con	ductometry -	Solubility	product of spar	ingly soluble	of wea	salts	us.		
6 Con	ductometry-	Verification	of Onsager eq	mary solution	511701	sans.			
7. Con	ductometry -	Determina	tion of degree of	of hydrolysis	and hy	drolv	sis co	nstant	of a
subs	stance.	2							
8. Con	ductometry -	To determ	ine the relative	strength of t	wo acid	s.			
9. Pote	entiometric tit	rations - A	Acid alkali titrati	ions.					
10. Pote	entiometric tit	rations - 1	Precipitation titra	ations.					
11. Pote	entiometric tit	rations - I	Redox titrations.						
12. Pote	entiometry - I	Determinati	on of dissociation	on constant of	of weak	acid	5.		
13. Pote	entiometry - I	Determinati	on of solubility	of silver sal	lts.				
14. Pote	entiometry - I	Determinati	on of activity a	nd activity c	coefficie	nt of	ions.		
15. Pote	entiometry - p	H titration	of ortho -phosp	phoric acid.					
16. Pote	entiometry- To	o determin	e the pH of a b	uffer solution	n using	quinl	iydroi	ne elect	trode.
		ECTURE	TUTORIAL	PRA	CTICAL			FOTAL	HOURS
	Hours	-	-		90			ļ) 0
	KENCE:	1.5			1			.1.' T	T
1. J. B	. Yadav, "Adv	Vanced Pra	cucal Physical ch	emistry ² , 20t	in edn. C	JOEL	publi	sning F	10use,
	anna rakasnan	al Dhysical	., (2001). Chomistry? Dow	icad and adit	ad by P	DΙ	wi++ 0	th ad	
	may s Flacille	ai Filysical n 1085	Chemistry Rev	iseu and edito	cu by B.	г. L(sviit 9	ui eu.,	
Lon	gillall, Lolldor	1, 1903.							

3. J. N. Gurtur and R. Kapoor, "Advanced Experimental chemistry", Vol. I. Chand & Co., Ltd

COU	RSE CODE	COURSE NAME		L	Т	P	С
YEC3	05	ANALYTICAL CHEMISTR	Y	4	1	0	5
PRER	PREREQUISITES NIL			L	Т	Р	Н
C:P:A	C:P:A 4.4:0:0.6			4	1	0	5
COURSE OUTCOMES: On the successful DOMAIN			DOMAIN	LEV	/EL		
completion of the course, students will be able to			 	1			
CO1	<i>Describe</i> the basic methods	Cognitive	Remember, Understand				
CO2	<i>Classify</i> the various show their signific	as types of analytical error and ance.	Cognitive	Rem Und	embe erstar	er, 1d	
CO3	<i>Inspect</i> the application chromatography.	ation of various techniques in	Cognitive Affective	Ana Rece	lyze eive		
CO4 <i>Illustrate</i> the principles and instrumentation of thermoanalytical and fluorescence techniques. Cognitive			Cognitive	Und Ana	erstar lyze	ıd,	
Examine the concept of electroanalytical techniques.Cognitive Affective			Ana	lyze, I	Resp	oond	
UNIT I: INSTRUMENTAL METHODS OF ANALYSIS						15	
Princi extend emissi	iples and application led X-ray absorption on spectroscopy (FI	ns of extended X-ray absorption n (SEXAFS) – atomic absorption ES) – turbidimetry – theory and a	on fine structure (on spectroscopy (<i>A</i> applications.	EXAI AS)	FS) – – flar	sur ne	face
UNIT	II: DATA AND E	RROR ANALYSIS					15
Various types of error – accuracy, precision, significant figures – frequency distributions, the binom distribution, the Poisson distribution and normal distribution – describing data, population and sam mean, variance, standard deviation, way of quoting uncertainty, robust estimators, repeatability reproducibility of measurements. Hypothesis testing, levels of confidence and significance, test for an outlier, testing variances, me t-Test, paired t-Test – analysis of variance (ANOVA) – correlation and regression. Curve fitting, fitting of linear equations, simple linear cases, weighted linear case, analysis of residu – general polynomial equation fitting, linearizing transformations, exponential functionfit – r and abuse – multiple linear regression analysis, elementary aspects. UNIT III: CHROMATOGRAPHY Solvent extraction – principles of ion exchange, paper, thin-layer and column chromatogra techniques – columns adsorbents methods Rf values McReynold's constants and their use						binomial d sample, pility and es, means residuals r and its 15 tography ir uses –	
HPTL colum	C, HPLC technique n – GC-MS techniq	es – adsorbents, columns, detectues – methods, principles and us	tion methods, estin	nation	s, pre	epara	ative
UNIT SPEC	IV: THERMOAN TROSCOPY	ALYTICAL METHODS ANI	D FLUORESCEN	CE			15

Principles – instrumentations and applications of thermogravimetry analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning - Calorimetry (DSC) –thermometric titrations – types – advantages. Basic aspects of synchronous fluorescence spectroscopy – spectral hole burning – flow cytometry – fluorometers (quantization) – instrumentation – applications.

UNIT V: ELECTROANALYTICAL TECHNIQUES

15

Electrochemical sensors, ion-sensitive electrodes, glass – membrane electrodes, solid-liquidmembrane electrodes – ion-selective field effect transistors (ISFETs) – sensors for the analysis gases in solution. Polarography – principles and instrumentation – dropping mercury electrode – advantages – Ilkovic equation – applications of polarography – polarographic maxima – oscillographic polarography, AC polarography – cyclic voltammetry – advantages over polarographic techniques – chronopotentiometry – advantages – controlled potential coulometry – amperometric titrations: principles – techniques – applications – estimation of lead.

LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL
60	15	-	-	75

TEXT BOOKS

- 1. D. B. Hibbert and J. J. Gooding, Data Analysis for Chemistry; Oxford UniversityPress, UK, 2006.
- 2. J. Topping, Errors of Observation and Their Treatment; 4th Ed., Chapman Hall, London, (1984).
- 3. A. Braithwaite and J. F. Smith, Chromatographic Methods; 5th Ed., Springer, Germany; (1995).
- 4. V. K. Srivastava and K. K. Srivastava, Introduction to Chromatography; 2nd Ed., HoldenDay, New York, (1985).
- 5 H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, Instrumental Methods of Analysis; 6th Ed., CBS Publishers and Distributors, Chennai, (1986).
- 6 D. A. Skoog, D. M. West and D. J. Holler, Fundamentals of Analytical Chemistry, 7th Ed., Harcourt College Publishers, Singapore, (2004).
- 7 A. Sharma, S. G. Schulman, Introduction to Fluorescence Spectroscopy; Wiley- Interscience, New York, (1999).

REFERENCES

- 1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy; 4th Ed., Tata McGraw-Hill, New Delhi, (1994).
- 2. A. I. Vogel, Text Book of Quantitative Inorganic Analysis; 6th Ed., Longman, New Delhi, (2000).
- 3. D. C. Harris, Quantitative Chemical Analysis; 4th Ed., W. H. Freeman Publications, New York, (1995).
- 4.S. C. Gupta, Fundamentals of Statistics; 6th Ed., Himalaya Publications, Delhi, (2006).

COURSE CODE COURSE NAME				L	Т		С	
YCYI	E 05	SELECTED TOPICS IN CHEM	ISTRY	4	1		5	
				L	Т		Н	
C:P:A		4.5:0:0.5		4	1		5	
COURSI	E OUTCOMES	: On the successful completion of	DOMA	IN		LEV	/EL	
the cours	se, students will	be able to	~					
CO1	Rephrase the	quantum chemical approach to	Cognitiv	e	Ren	nemt	ber	
	chemical bond	ing.	Psychom	otor	Und	ersta	ind	
<u>CO2</u>	CO2 Compare the role of various reagents used in Cognitiv		Cognitiv	0	Jind	orata	nd	
02	organic synthe	sis			Resi	hond	uiu	
~~~	organic synthe	515.	Anective	0	Res	Jona		
CO3	Apply the retro	-synthetic approach in the	Cognitiv	e	Und	ersta	ind	
	synthesis of co	mplex organic molecules.	A 66		Apply			
<u> </u>	Catagoniza the	types of polymor reactions	Cognitive	2 0	Ano			
04	Cognity Categorize the types of polymer reactions. Cognity Psychor		Psychom	e notor	Per	ryze	on	
CO5	<b>CO5</b> <i>Illustrate</i> the principles of nuclear chemistry Cogniti		Cognitiv	e	Und	ersta	erstand	
000			e o Biiliti i	•	Apply			
Affectiv		e	Res	pond				
SYLLAP	BUS:							
UNIT I	QUANTUM O AND MOLEO	CHEMICAL APPROACH TO CH CULARSTRUCTURE	EMICAI	L BON	IDIN	G	15	
Diatomic molecules: Born-Oppenheimer approximation-MO theory (H2 and H2 ⁺ ).								
VBtheory	$(H2 \text{ and } H2^+)$	- comparison HMO calculations - 4	valuation	$\hat{\mathbf{o}}$	offici	onte		
and eigenv	(112  and  112)	molecules – electron density – bot	nd order a	nd fre	e vale	ence		
index.Exte	anded HMO theo	rv - applications to simple systems -	– hvbridiza	ation s	chem	les.		
	NAMED REA	CTIONS AND APPLICATION	S IN O	RGA	NIC		1 5	
UNII II	CONTRECTO						15	
	5111112515							
Bamford-	Stevens reactio	n – Barton-McCombie reaction (E	Barton De	oxyge	natio	1) –		
Baylis-Hi	Illman reaction –	- Biginelli reaction – Corey-Chaykov	vsky react	10n – I	Enam	ines		
Soluroi r	reaction Uuna	diacker reaction Julia elefination	nond its r	uon – nodifi	HOSC	)IIII-		
Mitsunob	u reaction $-$ M	lukaiyama-Aldol addition -Nazarov	v evelizat	ion _	Peter	is –		
olefinatio	n – Prevost rea	ction – Prins reaction – Staudinger	reaction	Ugi r	eactio	on –		
Weinreb	ketone synthes	sis – Wittig reaction and its mo	dification	s –Ya	amag	uchi		
macrolact	tonization – Pall	adium based reactions: Fukuyama c	oupling –l	Heck r	eaction	on –		
Hiyama c	oupling - Sonog	gashira coupling – Stille coupling –	Suzuki co	oupling	g – Ts	suji-		
Trost Rea	ction.							
UNIT III	SYNTHETIC	METHODOLOGY					15	
Introductio	on to disconnecti	ons – synthons and synthetic equival	ents – syn	thonap	pproa	ch –		
electron d	onors (nucleopl	hiles) – electron acceptors (electro	ophiles).	Introdu	uctior	of of		
tunctional	groups – umpol	lung reactions – one group disconne	ections: al	cohols	s, ole	tıns,		
ketones, a	.cias – two gro	up disconnections: 1, 2-, 1,3-, 1,	4- and 1,	3- dit	uncti	onal		

compounds – convergent s addition – carbon-heteroat	syntheses. Function to bonds – method	nal group intercon ods for 3- and 4-n	version – function nembered rings -	nal group synthesis		
of mono- and difunctiona	l open chain mole	ecules – mono an	d bicyclic moleci	ules with		
substituents.			•			
UNIT IV POLYMER	CHEMISTRY				15	
Introduction – structure – classification of polymers – polymerisation methods – importance of polymers. Molecular weight of polymers – number average and weight average – determination of molecular weight by osmometry – light scattering, viscosity and sedimentation methods. Kinetics of polymerisation reactions, polycondensation reactions, ionic and free radical polymerisation, copolymerisation – coordination polymers, conducting polymers,Ziegler-Natta catalyst.						
UNIT V FUNDAMEN	NTAL OF NUCL	EAR CHEMIST	RY		15	
The nucleus – subatomic particles and their properties – nuclear binding energy–nuclear structure – Liquid-drop model and nuclear-shell model – n/p ratio – nuclear forces – modes of radioactive decay – alpha, beta and gamma particles – orbital electron capture – nuclear isomerism – internal conversion. Q-Values of nuclear reaction, coloumbic barrier, nuclear cross section, threshold energy and excitation function – different types of nuclear reactions with accelerated particles. Projectile capture and particles emission, spallation, fragmentation, nuclear fission, nuclear fusion – proportional counter, Geiger-Muller counter, scintillation counter and Cherenkov counter – linear accelerator, cyclotron and synchrotron.						
<b>REFERENCE BOOKS:</b>						
1. R. K. Prasad, Quar	ntum Chemistry; 4	th Ed., New Age 1	International Publ	ishers,		
New Delhi,2009.						
2. A. K. Chandra, Int	roductory Quantu	m Chemistry; 4th	Ed., Tata McGrav	w Hill,		
New Delhi, 1994.				7.1		
3. D. A. Mcquarrie, (	Quantum Chemisti	ry; University Scie	ence Books, 2nd E	20.,		
2007. N. Levine, Q	ako. Stratagio Arr	y, /III Ed., Prenuc	d Pagations in O	ey, 2015.		
4. L. Kulti allu D. CZ Synthesis:Elsevier	2005			rgame		
5 A Hassner and C	, 2005. Stumer Organic S	Synthesis Based or	n Named and Unr	named		
Reactions:Elsevier	Science Ltd., UK	. 1994.		luinea		
6. G. Brahmachari. O	rganic Name Rea	ctions: A Unified	Approach: Alpha	Science		
Intl. Ltd, UK, 2006			rr , r			
7. S. Warren, Design	ing Organic Synth	esis: The Disconn	ection Approach;	2nd		
Ed., Wiley, New Y	ork, 2008.					
8. F. A. Carey and R.	J. Sundberg, Adv	anced Organic Ch	emistry, Parts A	and B,		
5 th Ed.,Springer, G	ermany, 2007.					
9. W. Carruthers and	I. Coldham, Mod	lern Methods of O	rganic Synthesis,	, 4th Ed.,		
CambridgeUnivers	sity Press, Cambrid	age, 2004		TOTAT	HOURC	
	LECTURE	TUTORIAL	SELF-STUDY	TOTAL	HOURS	
Hours	60	15		7	/5	
110015	UU	1.5	-	,	5	

COURS	E CODE	COURSE NAME		L	Т	С
YCYE06		CHEMISTRY OF NANOSCIENCE NANOTECHNOLOGY	AND	4	1	4
				L	Т	Н
C:P:A		3.4:0:0.6		4	1	5
COURS	E OUTCOM	ES: On the successful completion	DOMAIN		LEV	/EL
of the cou	rse, students	will be able to				
CO1	CO1 <i>Outline</i> the synthetic methods of nanomaterials. Cognitive			Rei	er	
			Davishamatan	Un	dersta	nd
<u> </u>	Company th	a properties and characterization of	Cognitivo	Set	domete	nd
02	compare in		Affective		uersta	na
~ ~ ~ ~	Tanomateria	15.	Allective	Rea	spond	
CO3	<b>Predict</b> the 1	reactions of nanoparticles	Cognitive	Un	dersta	nd
			A. 66	Ap	ply	
<u> </u>	Classify the	amplications of carbon alustons and	Affective	Res	spona	
04	<i>Classify</i> the	applications of carbon clusters and	Cognitive	Ana	aryze	on
C05	O5 List the role and significance of paperenticles in Cognitive Analyz			alvze	511	
nanodevice.			Pe	rcenti	on	
SYLLAP	BUS:				<u>-</u>	
UNIT I SYNTHETIC METHODS						
Definition nanosize, nanomate sol-gel an process – synthesis microorg –hydrody TiO ₂ /ZnO	n of nanodime quantum dot erials – hydrot d precipitatio gas-phase con –protein mic anisms and ot mamic cavit D/CdO/CdS, o	ensional materials – historical milestone es, classification of nanomaterials.Gene thermal synthesis, solvothermal synthes n technologies – combustion flame – che ndensation synthesis – reverse micelle sy rotubule-mediated synthesis – synthes her biological agents – sonochemical sy ation. Inorganic nanomaterials – t rganic nanomaterials – examples – rotax	s – unique prop ral methods of is – microwave emical vapour c onthesis – polym sis of nanomat nthesis ypical example kanes and catena	erties synth irrac onde er-m erials es – anes	s due nesis o liatior nsatio ediate s usir - nar	to of 1- 15 15 15 15 16 19 10
UNIT II	CHAR	ACTERISATION OF NANOSCALE	MATERIALS			
Principles Microsco – Scannis (SNOM). probe mic	s of Atom py(TEM) Res ng Tunneling Scanning ion croscopes and	ic Force Microscopy (AFM) – solution and Scanning Transmission Ele Microscopy (STM) – Scanning Near conductance microscope, scanning ther surface plasmon spectroscopy.	Transmission ctron Microscop field Optical M mal microscope	El oy (S' licros , sca	ectror TEM) scopy nning	15
UNIT II	I REAC	FIONS IN NANOPARTICLES				
ONIT III         REACTIONS IN NANOPARTICLES           Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucurbiturils, zeolites, M.O.Fs, porous silicon, nanocatalysis.         1			, 15			

UNIT IV	CARBON CLUSTERS A	AND NANOSTRU	CTURES			
Nature of carbon bond – new carbon structures – carbon clusters – discovery ofC60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes.Carbon nanotubes – synthesis – single walled carbon nanotubes – structure and characterization – mechanism of formation – chemically modified carbon nanotubes –doping – functionalizing nanotubes – applications of carbon nanotubes. Nanowires –synthetic strategies – gas phase and solution phase growth – growth control – properties.						
UNIT V NAI	NOTECHNOLOGY AN	D NANODEVICE	ËS			
DNA as a nanc designed by Sec DNA complexe nanopipettes, n transfection.	omaterial – DNA – knot eman. Force measuremen es–molecular recognition nolecular diodes, self-as	s and junctions, D ats in simple protein n and DNA based sembled nanotrans	NA – nanomech n molecules and j d sensor. Protei istors, nanoparti	anical device <b>15</b> polymerase – n nanoarray, cle mediated		
REFERENCE BOOKS:						
<ol> <li>C. N. R. Rao, A. Muller and A. K. Cheetham (Eds), The Chemistry of Nanomaterials: Vol. and 2; Wiley-VCH;Germany, Weinheim, 2004.</li> <li>C. P. Poole, Jr: and F. J. Owens, Introduction to Nanotechnology; Wiley Interscience, New Jersey, 2003.</li> <li>K. J. Klabunde (Ed), Nanoscale Materials in Chemistry; 2nd Ed., Wiley-Interscience, New York, 2009.</li> </ol>						
4. T. Pradeep,	Nano: The Essentials in U	Understanding Nand	oscience and Nan	otechnology; 1st		
<ol> <li>Pradeep, Nano: The Essentials in Onderstanding Nanoscience and Nanotechnology; 1st Ed., Tata McGraw Hill, New York, 2007.</li> <li>H. Fujita (Ed.), Micromachines as Tools in Nanotechnology; Springer-Verlag, Berlin, 2003.</li> <li>Bengt Nolting, Methods in Modern Biophysics; 3rd Ed., Springer-Verlag, Berlin, 2009.</li> <li>H. Gleiter, Nanostructured Materials: Basic Concepts, Microstructure and Properties, Elsevier, Chennai, 2000.</li> <li>W. Kain and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John-Wiley R Sons, New York, 2013.</li> </ol>						
	LECTURE	TUTORIAL	SELF- STUDV	TOTAL HOUR	S	
Hours	60	15	-	75		

SEMESTER - IV						
COURSE CODE	COURSE NAME	L	Т	Р	С	
YCYE07	SOLID STATE CHEMISTRY	4	1	0	4	
C:P:A	4.5:0:0.5	L	Т	Р	Η	
		4	1	0	5	

#### **Learning Objectives:**

- 1. To learn the concepts of crystal structure and crystal engineering of organic solids.
- 2. To understand the mechanisms involved in the reactions of metallo organic framworks.
- 3. To identify and understand the methods of preparation and crystallization of metallo organic solids.
- 4. To understand the concepts of magnetic and optical properties of inorganic solids.

To learn and understand the various concepts of solid state chemistry with respect to organicsolids.

COURSI	E OUTCOMES: On the successful completion of	DOMAIN	LEVEL
the cours	e, students will be able to		
CO1	Explain the concepts of crystal structure and basics	Cognitive	Understand
	of crystal engineering of organic solids.		
CO2	Summarize and Report the chemical properties of	Cognitive	Understand
	Metallo organic frameworks and their applications.	Affective	Respond
CO3	Interpret various method for preparation and	Cognitive	Apply
	crystallization of solids.	Affective	Receive
<b>CO4</b>	Describe the magnetic and optical properties of	Cognitive	Remember
	inorganic solids.	Affective	Respond
CO5	Apply and Identify the various concepts of solid	Cognitive	Apply
	state chemistry with respect to organic solids.	-	Remember
GVITAD			

#### SYLLABUS:

#### UNIT I- CRYSTAL STRUCTURE AND CRYSTAL ENGINEERING OF ORGANIC SOLIDS

15

Types of close packing – hcp and ccp – packing efficiency – SC, BCC, andFCC, radius ratio rule – applications – polyhedral description of solids – structure types: Na₂O, Cs₂O, rutile, perovskite (ABO₃), ReO₃, K₂NiF₄, spinels and antispinels. Hydrogen bonded supramolecular patterns involving water / carboxyl / halide motifs – concepts of different types of synthons based on non- covalent interactions – principles of crystalengineering and non- covalentsynthesis– polymorphism and pseudopolymorphism–supramolecular isomorphism, polymorphism and crystal engineering of pharmaceutical phases.

#### **UNIT II- METAL ORGANIC FRAMEWORKS**

M.O.Fs (Metal Organic Frameworks) – organometallic systems – combinations of different interactions to design molecular rods, triangles, ladders, networks, etc. Design of nanoporous solids. Interligand hydrogen bonds in metal complexes – implications for drug design – crystal engineering of NLO and OLED materials.

#### UNIT III- PREPARATIVE METHODS IN SOLID STATE CHEMISTRY

15

15

Experimental procedure, coprecipitation as a precursor to solid state reaction, other precursor

methods, kinetics of solid state reactions – crystallizations of solutions, melts, glasses and gels, solutions and gels: zeolite synthesis – precipitation from solution or melt: flux method, epitaxial growth of thin layers, verneuil flame fusion method. Graphite intercalation compounds, transition metal dichalcogenide and other intercalation compounds, ion exchange reaction, synthesis of new metastable phases by 'Chimie Douce'. Vapour phase transport, hydrothermal methods, comparison of different methods – high pressure and hydrothermal methods and dry high pressure methods.

UNIT IV -MAGNETIC MATERIALS AND OPTICAL PROPERTIES	15	
Selected examples of magnetic materials and their properties – metals and alloys, transition metal oxides, spinels, garnets, ilmenite and perovskites. Magnetoplumbites – applications – structure/property relations – transformer, information storage, magnetic bubble memory devices, permanent magnets. Luminescence, Lasers and phosphors – definitions and general comments, configurational coordinate model, some phosphor materials, anti-Stokes phosphors – lasers – the ruby laser, Neodymium lasers		
UNIT V- ORGANIC SOLID STATE CHEMISTRY	15	
To a shaming a set of solid state anonic reactions intermedeanly reactions	formedia	_

Topochemical control of solid state organic reactions – intramolecular reactions – conformational effects – intermolecular reactions – molecular packing effects – photodimerization of 2-ethoxycinnamic acid ( $\alpha$  form,  $\beta$  form,  $\gamma$  form) – photopolymerization of 2,5-distyrylpyrazine – photopolymerizations of diacetylenes. Asymmetric syntheses – dimerization of anthracene – control of molecular packing arrangements.

<b>1</b>	LECTURE	TUTORI	PRACTICA	TOTAL HOURS
Hours	60	15	- -	75

#### **REFERENCE BOOKS**

- 1. R. West, Solid State Chemistry and Its Applications; 2nd Ed., John Wiley and sons, New York, 2014 (Unit III V).
- 2. J. M. Lehn, Supramolecular Chemistry; VCH, Weinheim, 1995.
- 3. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids; Elsevier, Amsterdam, 1989.
- 4. G. R. Desiraju, and T. Steiner, The Weak Hydrogen Bond in Structural Chemistryand Biology; Oxford University Press: Oxford, 2002.

#### TEXT BOOKS

1. J. M. Lehn, Transition Metals in Supramolecular Chemistry; Vol 5, John Wiley and Sons, New York, 1999.

2. G. A. Jeffrey, Introduction to Hydrogen Bonding; Oxford University Press, NewYork, 1997. C. N. R. Rao, Current Science, 2001, 81, 1030.

#### **E-RESOURCES**

- (i) <u>http://www.pubs.acs.org/journals/cgdefu/index.html</u>
  - http://www.rsc.org/Publishing/ Journals /ce/ index.asp

COURSE CODE	COURSE NAME	L	Т	P	С
YCYE08	SUPRAMOLECULAR CHEMISTRY	4	0	0	4
C:P:A	4.2:0:0.8	L	Т	P	Н
		4	0	0	5

#### **Learning Objectives:**

- 1. To learn and describe the basic concepts of supramolecular chemistry and the synthons based interactions and polymorphism.
- 2. To understand the the chemical properties of Metallo organic frameworks and their applications.
- 3. To identify and understand the concepts of co-receptor molecules and multiple rcognition.
- 4. To understand the reaction mechanism of supromoleclar compounds.
- 5. To learn and understand the applications of various supramolecular compounds.

COURS	E OUTCOMES: On the successful completion of	DOMAIN	LEVEL
thecours	e, students will be able to		
CO1	<i>Recall</i> and <i>Explain</i> the basic concepts of supramolecular	Cognitive	Remember
	chemistry; <i>Display</i> the synthons based interactions and		Understand
	polymorphism.	Psychomotor	Set
CO2	Summarize and Report the chemical properties of	Cognitive	Understand
	Metallo organic frameworks and their applications.	Affective	Respond
CO3	<i>Explain</i> the concepts of co-receptor molecules and	Cognitive	Understand
	multiple rcognition.	Affective	Apply
			Respond
CO4	<i>Describe</i> the reactivity of supromoleclar compounds and	Cognitive	Analyze
	the mechanism of catalysis.	Psychomotor	Perception
CO5	<i>Identify</i> the applications of various supramolecular	Cognitive	Remember
	compounds.		

#### SYLLABUS:

#### UNIT I- CONCEPTS OF SUPRAMOLECULAR CHEMISTRY

15

Concepts and languages of supramolecular chemistry – various types of non-covalent interactions – hydrogen bonds, C-H···X interactions, halogen bonds –  $\pi$ - $\pi$  interactions, non-bonded interactions – various types of molecular recognition.Crystal engineering of organic solids – hydrogen bonded supramolecular patterns involving water / carboxyl / halide motifs – concepts of different types of synthons based on non-covalent interactions – principles of crystal engineering and non-covalent synthesis – polymorphism and pseudopolymorphism – supramolecular isomorphism / polymorphism – crystal engineering of pharmaceutical phases.

#### UNIT II -METALLO-ORGANIC FRAMEWORKS

15

M.O.F (Metallo Organic Frameworks) – organometallic systems – combinations of different interactions to design molecular rods, triangles, ladders, networks, etc. – design of nanoporous solids – interligand hydrogen bonds in metal complexes – implications for drug design – crystal engineering of NLO materials, OLED.

#### **UNIT III- CO-RECEPTOR MOLECULES AND MULTIPLE RECOGNITION 15**

Dinuclear and polynulclear metal ion cryptates – linear recognition of molecular length by ditopic co-receptors – heterotopic co-receptors –cyclophane receptors, amphiphilic

receptors and large mo	lecular cages – petalloreceptors – su	pramolecular dyna	mics	
UNIT IV- SUPRAM	DLECULAR REA	CTIVITY AND	CATALYSIS	15
Catalysis by reactive macrocyclic cation receptor molecules – catalysis by reactive anion receptor molecules – catalysis with cyclophane type receptors – supramolecular metallocatalysis – cocatalysis – catalysis of synthetic reactions – biomolecular and abiotic catalysis. Supramolecular chemistry in solution – cyclodextrin, micelles, dendrimers, gelators – classification and typical reactions – applications.				tive ular otic ers,
UNIT V- SUPRAMO	LECULAR DEVI	CES		
Supramolecular devices and sensors – various types of supramolecular devices – an overview – supramolecular photochemistry – molecular and supramolecular photonic devices – light conversion and energy transfer devices – molecular and supramolecular electronic devices – electronic conducting devices – molecular wires, modified and switchable molecular wires – molecular and supramolecular ionic devices – tubular mesophases, molecular protonics – switching devices – electro-photo switch – ion and molecule sensors – role of supramolecular chemistry in the development of nanoscience and technology.				
	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
Hours	LECTURE 60	TUTORIAL 15	PRACTICAL -	TOTAL HOURS 75
Hours REFERENCES 1. J. M. Lehn, Supramo 2. G. R. Desiraju, Cry 1989. 3. G. R. Desiraju, and Biology; Oxford Uni	LECTURE60lecular Chemistry; Vstal Engineering: TI T. Steiner, Theversity Press, Oxfor	TUTORIAL 15 VCH, Weinheim, G The Design of Orga Weak Hydrogen 1 d, 1999.	PRACTICAL - ermany, 1995. anic Solids; Elsevier, U Bond in Structural Cl	TOTAL HOURS 75 United States, hemistry and
Hours REFERENCES 1. J. M. Lehn, Supramo 2. G. R. Desiraju, Cry 1989. 3. G. R. Desiraju, and Biology; Oxford Uni TEXT BOOKS 1. G. A Jeffrey, Introdu 2. J. M. Lehn, Transition 1999. 3. G. R. Desiraju, Curre	LECTURE60elecular Chemistry; Vstal Engineering: TT. Steiner, Theversity Press, Oxforeection to Hydrogen Bon Metals in Suprameent Science; 2001, 82	TUTORIAL 15 VCH, Weinheim, G The Design of Orga Weak Hydrogen I d, 1999. Bonding; Oxford Ur nolecular Chemistr 1, 1038.	PRACTICAL - ermany, 1995. anic Solids; Elsevier, U Bond in Structural Cl niversity Press: UK, 199 y; John Wiley and Son	TOTAL HOURS 75 United States, hemistry and 97. Is: New York,