CURRICULUM AND SYLLABUS FOR M.Sc. (MATHEMATICS) - MASTER OF SCIENCE (TWO YEAR - FULL TIME) REGULATION - 2022

(Applicable to the students admitted from the academic year 2022-2023 onwards)

Semester	Course Code	Course Name	L	Т	Р	Н	С
	YMA101	Algebra - I	4	1	0	5	5
	YMA102	Real Analysis - I	4	1	0	5	5
т	YMA103	Graph Theory	4	1	0	5	5
1	YMA104	Ordinary Differential Equations	4	1	0	5	5
	YMA105	Optimization Techniques	4	1	0	5	5
	YMA1E*	One among the list of electives (1E)	3	0	0	3	3
		Total	23	5	0	28	28

*List of Electives (1E)

Elective Code	Course Name	L	Т	Р	С
1	Fuzzy sets and Fuzzy logic	3	0	0	3
2	Coding Theory	3	0	0	3
3	Neural Networks	3	0	0	3

Semester	Course Code	Course Name	L	Т	Р	Н	С
II	YMA201	Algebra -II	4	1	0	5	5
	YMA202	Real Analysis -II	4	1	0	5	5
	YMA203	Partial Differential Equations	4	1	0	5	5
	YMA204	Classical Dynamics	4	1	0	5	5
	YMA2E*	One among the list of electives (2E)	3	0	0	3	3
NME	Computer Programming (c++ Theory and	3	0	2	5	5	
		Lad)					
		Total	22	4	2	28	28

*List of Electives (2E)

Elective Code	Course Name	L	Т	Р	С
1	Fluid Dynamics	3	0	0	3
2	Combinatorics	3	0	0	3
3	Cryptography	3	0	0	3

Semester	Course Code	Course Name	L	Т	Р	Н	С
III	YMA301	Topology	4	1	0	5	5
	YMA302	Integral Equations, Calculus of Variations and Transforms	4	1	0	5	5
	YMA303	Functional Analysis	4	1	0	5	5
	YMA304	Differential Geometry	4	1	0	5	5
	YMA305	Complex Analysis	4	1	0	5	5
	YMA3E*	One among the list of Electives (3E)	3	0	0	3	3
		Total	23	5	0	28	28

*List of Electives (3E)

Elective code	Course Name	L	Т	Р	С
1	Elements of Stochastic Processes	3	0	0	3
2	Mathematical Modeling	3	0	0	3
3	Data Analysis using SPSS	3	0	0	3

Semester	Course Code	Course Name	L	Т	Р	Н	С
IV	YMA401	Project	0	0	0	30	8
		Total				30	8

Total Number of Credits: 92

SEMESTER I

COU	URSE N	AME	AI	GEBRA	- I	LT		Р	C		
COU	JRSE C	ODE		YMA101		4	1	0	5		
С	Р	Α				L	Т	Р	Н		
5	0	0				4	1	0	5		
PRER	EQUIS	ITE	Basics of sets, relati	ons and fu	inctions						
On successful completion of this course, the students will be able to:											
			COURSE OUTCOM	AES		DOMA	IN	LE	VEL		
CO 1Construct Cayley table for the given symmetric group of degree 2 and 3CognitiveApp							App	olying			
CO 2	Exte	end grou	ap structure to finite p	ermutatio	n groups	Cognit	Under	standing			
CO 3 Classify groups of finite order upto 120 using Sylow's Cognitive Ana theorems								Ana	lyzing		
CO 4	Ider	ntify the	quotient field of the g	iven integ	ral domain	Cognit	ive	App	pplying		
CO 5	CO 5Categorize the factorization of polynomials over a fieldCognitiveAna								lyzing		
UNIT	1								12+3		
Binary	Operati	ions – G	roups - Subgroups – I	Permutatio	ons I – Permutation	s II – Cy	clic (Groups			
UNIT	2								12+3		
Isomo	rphisms	– Direc	et Products – Finitel	y Generat	ed Abelian groups	s - Grou	ps of	Cosets	- Normal		
subgro	oups and	factor g	roups- Homomorphis	ms							
UNIT	3								12+3		
Series	of Grou	ps – Iso	morphism theorems-	Proof of t	he Jordan Holder t	heorem-	–Gro	up actior	n on a set-		
Applic	ations o	f G-sets	to counting - Sylow'	s theorem	s – Applications of	Sylow's	theor	rems			
UNIT	4								12+3		
Rings	– Integr	al Doma	ins - Some non-comm	nutative e	xamples – The Field	l of quot	ients	– Quotie	nt rings		
and Id	eal.										
UNIT	5								12+3		
Homo	morphis	m of Rir	ngs – Rings of polynoi	nials – Fa	ctorization of Polyr	nomials c	oveer	a field –	Euclidean		
domai	ns-Gaus	sian inte	gers and norms								
LEC	TURE	6	0 TUTORIAL	15	PRACTICAL	0	T	OTAL	75		
TEXT	BOOK	-			· · · · ·						

1. John B. Fraleigh, A First Course in Abstract Algebra, Narosa Publishing House, Third edition, 1992.

UNIT – I Chapter 1, 2, 3,4,5,6

UNIT – II Chapter 7,8,9,11,12,13

UNIT – III Chapter 14,15,16,17,18,19

UNIT – IV Chapter 23,24,25,26,27,28

UNIT – V Chapter 29,30,31,33,34

REFERENCES

1.P.B. Bhattacharya et al., Basic Abstract Algebra, 2nd edition, Cambridge University Press, 1995

2.I.N.Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.

3.R. Solomon, Abstract Algebra, AMS Indian edition, 2010.

CO Vs PO

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	3	3	2	3	1	1	1	1		
CO 2	3	3	2	1	3	1	0	1	1		
CO 3	3	3	3	1	3	1	1	1	1		
CO 4	3	3	3	1	3	1	1	1	1		
CO 5	3	3	3	1	3	1	1	1	1		
TOTAL	15	15	14	6	15	5	4	1	5		
SCALED VALUE	3	3	3	2	3	1	1	1	1		
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation											
1-5→1, 6-10→2, 11-15	1-5→1, 6-10→2, 11-15→3										

COU	JRSE N	AME	REAL ANALYSIS - I	L	Т	Р	С				
COU	JRSE C	ODE	YMA102	4	1	0	5				
С	Р	Α		L	Т	Р	Н				
5	0	0		4	1	0	5				
PREREQUISITE Basic concepts of real numbers											
On successful completion of this course, the students will be able to:											
			COURSE OUTCOMES	DOMA	IN	LE	VEL				
CO 1Explain the concepts of real number system and its algebraic propertiesCogni						Unders	standing				
CO 2	Exp	lain the	concepts of metric space and its properties	Cognit	ive	Unders	standing				
CO 3	Арр	oly conv	ergence sequence in metric space	Cognit	ive	Арр	lying				
CO 4 Classify the characterization of compact metric space geometrically Cognitive An							lyzing				
CO 5	Utilize the Banach contraction principle in formulating and solving given problems Cognitive										
UNIT 1 1											
Sets ar	nd Funct	ions, Ma	athematical Induction, Finite and Infinite sets. Rea	l Numbe	r syst	em: Alge	braic and				
Order	properti	es: Infin	um, Supremum, LUB Axiom. Countable and unco	ountable	sets.						
UNIT	2						12+3				
Metric	spaces	– Defini	tion and examples - open balls and open sets								
UNIT	3						12+3				
Seque	nces and	Series	of real numbers - limit theorems - monotone seq	uences –	Cau	chy criter	rion – lim				
sup, li	m inf -	Converg	ent sequences in metric spaces - limit and cluster	er points	– Ca	auchy sec	quences –				
Bound	led sets -	- Dense	sets.								
UNIT	4						12+3				
Contin	uous fun	ctions –	Equivalent Definitions of Continuity - Uniform C	ontinuity	- Liı	nit of a	function –				
Discon	tinuities	of a Real	Valued function - Compact spaces and their properties -	- Continu	ous fu	inctions of	n Compact				
spaces- Characterization of Compact Metric spaces.											
UNIT	5						12+3				
Conne	ctedness	: Conne	cted spaces - Complete metric spaces - Examp	les- Bair	e Ca	tegory T	heorem –				
Banac	h Contra	ction Pr	inciple.								

LECTURE	60	TUTORIAL	15	PRACTICAL	0	TOTAL	75					
TEXT BOOKS												
1. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis 3 rd Edn, John Wiley &Sons, 2000.												
2. S.Kumaresan, Topology of Metric Spaces, Narosa Publishing House, New Delhi, 2005.												
UNIT–I- Chapters 1 and 2from [1]												
UNIT-II -Chap	ter1from [2]											
UNIT-III-Chap	ter3from [1]a	nd Chapter2sec	tions 2.1t	o2.5 from[2]								
UNIT-IV-Chap	oter3, Chapter	4 from [2](section	ons3.3and	d 3.60mitted)and C	Chapter5 fr	om [1]						
UNIT-V-Chapt	er 5 section 5.	.1 and Chapter 6	sections	6.1,6.3 and 6.4(sec	ction6.2,6.3	3.16 and 6.3	.17					
omitted) from [2]												
REFERENCES												

- 1. Edward D.Gaughan, Introduction to Analysis, AMS, Indian edition, 2010.
- KennethA. Ross,Elementary Analysis:The Theory of Calculus,Springer Verlag,2004.
 Walter Rudin,Principles of Mathematical Analysis,Third Edition,McGraw Hill,1976.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	3	2	1	3	1	0	1	1		
CO 2	3	3	2	1	3	1	0	1	1		
CO 3	3	3	3	2	3	1	1	1	1		
CO 4	3	3	3	3	3	1	2	1	1		
CO 5	3	3	3	2	3	1	1	1	1		
TOTAL	15	15	13	9	15	5	4	5	5		
SCALED VALUE	3	3	3	2	3	1	1	1	1		
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation											
1-5→1, 6-10→2, 11-15→3											

COU	OURSE NAME GRAPH THEORY					DRY	L	Τ	Р	С
COU	JRSE C	ODE		Y	/MA103		4	1	0	5
С	Р	Α					L	Т	Р	Н
5	0	0					4	1	0	5
PRER	EQUIS	ITE	Basic	concepts of Gr	aphs				I	
On su	ccessful	comple	tion of	f this course, th	e studen	ts will be able to:				
			COU	RSE OUTCOM	IES		DOMA	IN	LE	CVEL
CO 1	Exp	lain bas	ic con	cepts of graphs			Cognit	ive	Under	standing
CO 2	Exp	lain ver	tex cor	nnectivity and e	dge conne	ectivity in graphs	Cognit	ive	Under	standing
CO 3	Exp	lain Eul	erian G	raphs and Hamil	tonian Gra	phs	Cognit	ive	Under	standing
CO 4	App	ly color	uring p	principle for so	lving pro	blems in Vertex	Cognit	ivo	Δpi	nlving
04	colo	urings a	nd Edg	ge coloring	лр	prying				
CO 5	Den	nonstrat	t e plan	e planar graphs Cognitive Und						
UNIT 1 Basic Results 12+										
Basic	Basic Concepts - Subgraphs - Degrees of Vertices - Paths and Connectedness Operations on Graphs -									
Directe	ed Grapł	ns: Basic	c Conc	epts - Tournam	ents.					
UNIT	2 Con	nectivit	y							12+3
Vertex	Cuts an	nd Edge	Cuts -	Connectivity a	nd Edge	- Connectivity, Tre	ees:Defin	itions	Chara	cterization
and Si	mple Pro	operties	- Cour	ting the Numbe	er of Span	ning Trees - Cayle	y's Forn	nula.		
UNIT	3 Inde	ependen	nt Sets	and Matching	8					12+3
Vertex	Indeper	ndent Se	ts and `	Vertex Covering	gs - Edge	Independent Sets -	Matching	gs and	Factors	- Eulerian
Graphs	s - Hami	ltonian	Graphs	8.						
UNIT	4 Gra	ph Colo	ouring	8						12+3
Vertex	Colour	ing - Cr	itical C	Graphs - Triang	le - Free	Graphs - Edge Co	olourings	of Gr	aphs -	Chromatic
Polynomials.										
UNIT 5Planarity12+3										
Planar	and Nor	planar (Graphs	- Euler Formul	a and its (Consequences - K5	and K3,	3 are 1	Nonplar	har Graphs
- Dua	l of a l	Plane C	Graph	- The Four-Co	olour The	orem and the He	eawood	Five-0	Colour	Theorem-
Kurato	wski's 7	Theorem	1.							
LEC	TURE	6	0	TUTORIAL	15	PRACTICAL	0	TO	TAL	75

TEXT BOOK

1.Douglas B. West, "Introduction to Graph Theory", Prentice Hall of India, Second Edition, 2002.

REFERENCES

- 1. Bondy J. A, and Murty U. S. R., "Graph Theory", Springer, 2008.
- 2. Balakrishnan R. and Ranganathan K., "A textbook of Graph Theory", Springer, 2012.
- Graham R.L., Rothschild B.L and Spencer J.H., "Ramsey Theory", Wiley Publishers, Second Edition, 1990.
- Biggs N., "Algebraic Graph Theory", Cambridge Tracts in Mathematics 67, Cambridge University Press, 1994. MX8003 Algebraic Theory of Semigroups.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	3	2	1	3	1	0	1	1		
CO 2	3	3	3	2	3	1	1	1	1		
CO 3	3	3	2	1	3	1	0	1	1		
CO 4	3	3	3	2	3	1	1	1	1		
CO 5	3	3	2	1	3	1	0	1	1		
TOTAL	15	15	12	7	15	5	2	5	5		
SCALED VALUE	3	3	3	2	3	1	1	1	1		
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation											
$1 \text{-} 5 \rightarrow 1, 6 \text{-} 10 \rightarrow 2, 11 \text{-} 15 \rightarrow 3$											

COU	JRSE N	AME	ORDINARY DIFFERENTIAL EQUATIONS	L	Т		Р	С			
COU	JRSE C	ODE	YMA104	4	1		0	5			
С	Р	A		L	Т		Р	Н			
5	0	0		4	1		0	5			
PRER	EQUIS	ITE	Knowledge in differentiation								
On su	ccessful	comple	tion of this course, the students will be able to:								
			COURSE OUTCOMES	DOMA	IN		LEV	/EL			
CO 1	Util diffe	ize the t erential (heory of power series when solving second order equations	Cognit	ive		Appl	ying			
CO 2	Solv prop	ve the poerties o	broblems arises in mathematical physics using f Bessel functions	Cognit	ive		Appl	ying			
CO 3	App give	Apply Picard's theorem for calculating exact solution for a given initial value problem Cognitive Ap									
CO 4	Exa eige cond	mine th nvalues ditions	ne classical vibrating string problem through and eigen functions with given boundary	Cognit	ive		Analy	yzing			
CO 5	Ider equa	ntify cr ations	itical points and phase portrait of nonlinear	Cognit	ive		Appl	ying			
UNIT	1						1	2+3			
The ge	eneral so	lution of	f the homogeneous equation – The use of one know	n soluti	on to	find	anoth	her – The			
metho	d of vari	iation of	parameters - Power Series solutions. A review of	power s	series	- S	eries	solutions			
of first	t order e	quations	- Second order linear equations; Ordinary points.								
UNIT	2						1	2+3			
Regula	ar Singul	lar Point	s – Gauss's hypergeometric equation – The Point at	infinity	- Leg	endı	e Pol	ynomials			
- Bessel functions - Properties of Legendre Polynomials and Bessel functions.											
UNIT 3 12+3											
Linear	• System	s of Fir	st Order Equations – Homogeneous Equations wi	th Cons	tant (Coef	ficien	its – The			
Existe	nce and	Unique	ness of Solutions of Initial Value Problem for Fi	rst Orde	er Or	dinaı	ry Dif	fferential			
Equati	ions – Tl	he Meth	od of Solutions of Successive Approximations and	Picard's	s The	oren	1.				
UNIT	4	12+3									

Oscillation Theory and Boundary value problems – Qualitative Properties of Solutions– Sturm Comparison Theorems – Eigen values, Eigen functions and the Vibrating String.

UNIT 5

12+3

Nonlinear equations: Autonomous Systems; the phase plane and its phenomena–Types of critical points; Stability – critical points and stability for linear systems – Stability by Liapunov's direct method – Simple critical points of nonlinear systems.

LECTURE	60	TUTORIAL	15	PRACTICAL	0	TOTAL	75
TEXT BOOK							

1.G.F. Simmons, Differential Equations with Applications and Historical Notes, TMH, New Delhi, 1974.

UNIT – I -Chapter 3: Sections 15, 16, 19 and Chapter 5: Sections 25 to 27

UNIT - II -Chapter 5 : Sections 28 to 31 and Chapter 6: Sections 32 to 35

UNIT – III -Chapter 7: Sections 37, 38 and Chapter 11: Sections 55, 56

UNIT – IV -Chapter 4: Sections 22 to 24

UNIT - V -Chapter 8: Sections 40 to 44

REFERENCES

1. M.E. Taylor, Introduction to Differential Equations, AMS Indian Edition, 2011.

2. M. Braun, Differential Equations and Their Applications, Springer, 1992.

3. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill, 1955.

COs	VS	POs
-----	----	-----

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	3	3	2	3	1	1	1	1		
CO 2	3	3	3	2	3	1	1	1	1		
CO 3	3	3	3	2	3	1	1	1	1		
CO 4	3	3	3	3	3	1	2	1	1		
CO 5	3	3	3	2	3	1	1	1	1		
TOTAL	15	15	15	11	15	5	6	5	5		
SCALED VALUE	3	3	3	3	3	1	2	1	1		
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation											
$1\text{-}5 \rightarrow 1, 6\text{-}10 \rightarrow 2, 11\text{-}15 \rightarrow 3$											

COUR	COURSE NAME OPTIMIZATION TECHNIQUES						L	Τ	Р	С	
COUR	RSE C	ODE		Ŋ	/MA105		4	1	0	5	
С	Р	Α					L	Т	Р	Н	
5	0	0					4	1	0	5	
PRERE	QUIS	ITE	Probability	and rando	om proce	SS					
On succ	essful	comple	tion of this o	course, th	ne studen	ts will be able to:					
			COURSE C	DUTCOM	IES		DOMA	IN	LE	VEL	
	Exp	lain the	systematic w	ay of app	roaching	a decision theory					
CO 1	to g	et desire	d outcome of	f where th	e possibi	lity of occurrence	Cognit	ive	Unders	tanding	
of different outcomes are evaluated in advance.											
CO 2	Solv	e the a	bilities in p	roject ev	aluation	techniques using	Cognit	ive	Ann	lving	
PERT, CPM									rymg		
CO 3	Exp	lain the	dynamics of	inventory	/ manage	ment's principles,	Cognit	ive	Unders	tanding	
concepts, and techniques										tanung	
CO 4	Solv	e fourth	order polyn	omial fun	ction usir	ng Newton	Cognit	ivo	App	lying	
04	Rap	hson Me	ethod				Cogiii	IVE			
CO 5	App	oly the	direct search	method	and gra	dient method for	Cognit	ive	App	lying	
05	obta	ining op	timal solutio	ons for the	e given fu	nction	Cogiii	IVC			
UNIT 1 DECISION THEORY 12+3											
Steps in Decision theory Approach - Types of Decision-Making Environments - Decision Making Under											
Uncertai	inty - I	Decision	Making und	er Risk - I	Posterior	Probabilities and B	ayesian A	Analys	is - Deci	sion Tree	
Analysis	s - Dec	ision M	aking with U	tilities							
UNIT 2	PRO	DJECT	MANAGEN	IENT: P	ERT AN	D CPM			1	12+3	
Basic D	ifferen	ices betw	veen PERT	and CPM	- Steps	in PERT/CPM Tec	chniques	- PEF	RT/CPM	Network	
Compon	ents a	nd Prec	edence Rela	tionships	- Critica	l Path Analysis -	Probabili	ity in	PERT A	nalysis -	
Project t	ime-co	ost Trad	e Off - Updat	ting the P	roject - R	esource Allocation	ı				
UNIT 3	DE	ΓERMI	NISTIC INV	ENTOR	Y CONT	TROLMODELS			1	12+3	
Meaning	g of In	ventory	Control - Fu	inctional	Classifica	tion - Advantage	of Carryi	ng Inv	ventory -	Features	
of Inven	tory S	ystem -	Inventory N	Aodel bui	lding - D	Deterministic Inver	tory Mo	dels w	vith no s	hortage -	
Determi	nistic	Invento	ory with S	hortages	Probabi	listic Inventory	Control	Mode	els:Single	e Period	
Probabil	istic N	Iodels w	ithout Setup	cost - Sir	ngle Perio	od Probabilities Mo	odel with	Setup	cost.		
UNIT 4	CLA	ASSICA	L OPTIMIZ	ZATION	THEOR	XY			1	12+3	
Unconstrained Problems-Necessary and Sufficient Conditions- The Newton-Raphson Method-											
Constrained Problems- Equality Constraints- Inequality Constraints.											
UNIT 5	NO	NLINE	AR PROGR	AMMIN	G ALGO	ORITHMS			1	12+3	
Unconst	rained	Algorit	nms- Direct S	Search Me	ethod- Gr	adient Method- Co	onstrained	l Algo	rithms- (Quadratic	
Program	ming-	Chance	-Constrained	Program	ming	1	ſ				
LECT	URE	6) TUT	ORIAL	15	PRACTICAL	0	TC	OTAL	75	
TEXT I	FEXT BOOKS:										

1. J.K.Sharma, "Operations Research Theory and Applications", Third Edition, Macmillan India Ltd., 2007

Unit I - Chapter-11 (Section 11.1 - 11.8)

Unit II - Chapter-13 (Section 13.1 - 13.9)

Unit III - Chapter-14 (Section 14.1 - 14.8); Chapter-15 : (Section15.1 - 15.4)

2. Hamdy A Taha, Operations Research: An Introduction, Eighth Edition,. University of Arkansas,

Fayetteville, PEARSON Prentice Hall. © 2007 by Pearson Education, Inc.

Unit IV-Chapter 18 – Section 18.1.1, 18.1.2, 18.2.1, 18.2.2

Unit V-Chapter 19 – Section 19.1.1, 19.1.2, 19.2.2 and 19.2.3

REFERENCES

- 1. Hillier F.S. and J.Lieberman, "Introduction to Operations Research" (8th Edition), Tata McGraw Hill Publishing Company, New Delhi, 2006.
- 2. Beightler. C, D.Phillips, B. Wilde, "Foundations of Optimization" (2nd Edition) Prentice Hall Pvt Ltd., New York, 1979
- 3. Bazaraa, M.S; J.J.Jarvis, H.D.Sharall, "Linear Programming and Network flow", John Wiley and sons, New York, 1990.
- 4. Gross, D and C.M.Harris, "Fundamentals of Queueing Theory", (3rd Edition), Wiley and Sons, New York, 1998.
- Hamdy A. Taha, "Operations Research" (sixth edition), Prentice Hall of India Private Limited, New Delhi.2007

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	2	1	3	1	0	1	1	
CO 2	3	3	3	2	3	1	1	1	1	
CO 3	3	3	2	1	3	1	0	1	1	
CO 4	3	3	2	1	3	1	0	1	1	
CO 5	3	3	2	1	3	1	0	1	1	
TOTAL	15	15	11	6	15	5	1	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$1\text{-}5 \rightarrow 1, 6\text{-}10 \rightarrow 2, 11\text{-}15 \rightarrow 3$										

COL	COURSE NAME FUZZY SETS AND FUZZY LOGIC								Р	С	
COU	JRSE (CODE		J	YMA1E1		3	0	0	3	
С	Р	Α					L	Т	Р	Н	
3	0	0					3	0	0	3	
PRER	EQUIS	SITE	Basic	c concepts of se	ts		I		I	1	
On su	ccessfu	l comple	tion o	f this course, tl	ne studen	ts will be able to:					
			COU	RSE OUTCON	IES		DOMA	IN	LE	VEL	
CO 1Compare the relationship between Crisp sets and Fuzzy setsCognitive										lying	
CO 2	Ex]	plain ope	eration	on Fuzzy Sets			Cognit	ive	Unders	tanding	
CO 3	Co	mpare F	uzzy R	elations and cri	isp relatio	ns	Cognit	ive	App	lying	
CO 4	De	monstra	te the p	propositional ca	lculus		Cognit	ive	Unders	tanding	
CO 5	Ex	plain the	Cognit	ive	Unders	tanding					
UNIT	1 Cri	sp Sets a	and Fu	ızzy Sets					9	•	
Crisp sets basic definitions - the notion of fuzzy sets - basic concepts of fuzzy sets											
UNIT	2 Op	eration	on Fuz	zzy Sets					9	•	
Fuzzy	comple	ement - fi	uzzy ui	nion - fuzzy inte	ersection	- combination and	general a	ggrega	ation ope	erations	
UNIT	3 Fu	zzy Rela	tions						9)	
Crisp	and fuz	zy relati	ons -	binary relation	- equival	ence and similarit	y relation	ns - to	lerance	relations-	
orderi	ngs										
UNIT	4 Cla	ssical L	ogic						-)	
Tautol	ogies -	contradi	ctions -	- equivalence -	exclusive	OR and exclusive	NOR - le	ogical	proofs		
UNIT	5 Fu	zzy Logi	c						9)	
Fuzzy	logic -	approxir	nate re	asoning - fuzzy	tautologi	es - contradictions	- equival	ence a	and logic	al proofs	
LEC	TURE	4	5	TUTORIAL	0	PRACTICAL	0	TO	TAL	45	
TEXT BOOKS											
1. George J. Klir & Tina A. Folger, "Fuzzy Sets, Uncertainty, and Information", Prentice Hall of India											
Pv	t. Ltd.,	New Del	hi, 198	38							
2. Ti	mothy J	. Ross, "	Fuzzy	Logic with Eng	ineering A	Applications", 3rd	edition, N	/lcGrav	w-Hill. I	nc, 2010.	
REFE	RENC	ES									

- 1. Zimmermann. H.J, "Fuzzy Set Theory and Its Applications", 4th edition, Springer, Netherlands, 2015.
- 2. Bart Kosko, "Neural Networks and Fuzzy Systems", Prentice-Hall International, 1992.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	3	3	2	3	1	1	1	1		
CO 2	3	3	2	1	3	1	0	1	1		
CO 3	3	3	3	2	3	1	1	1	1		
CO 4	3	3	2	1	3	1	0	1	1		
CO 5	3	3	2	1	3	1	0	1	1		
TOTAL	15	15	12	7	15	5	2	5	5		
SCALED VALUE	3	3	3	2	3	1	1	1	1		
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation											
1 - 5 - 1, 6 - 10 - 2, 11 - 15 - 3											

COU	IRSE N	AME	CODING THEORY	L	Т	P	С			
COU	JRSE C	ODE	YMA1E2	3	0	0	3			
С	Р	Α		L	Т	Р	Н			
3	0	0		3	0	0	3			
PREREQUISITE Linear algebra										
On su	ccessful	comple	tion of this course, the students will be able to:							
			COURSE OUTCOMES	DOMA	IN	LF	VEL			
CO 1	Util rece	ize the r ived wo	naximum likelihood decoding rule to decode the rds	Cognit	ive	Ap	olying			
CO 2	Ider give	ntify a g en binary	Cognit	ive	Apj	olying				
CO 3	Exp	lain var	ious bounds involved in coding theory	Cognit	standing					
CO 4	Cor cycl	struct	he generator polynomial for all binary of given length	Cognit	ive	Applying				
CO 5	Exa	mine th	e decoding of narrow-sense binary BCH codes	Cognit	ive	Ana	lyzing			
UNIT	1						9			
Error o	detection	n, Corre	ction and decoding: Communication channels – N	<i>I</i> aximun	ı like	lihood d	ecoding –			
Hamm	ing dist	ance – N	earest neighborhood minimum distance decoding	– Distan	ce of	a code				
UNIT	2						9			
Linear	codes:	Linear co	odes – Self orthogonal codes – Self dual codes – Ba	ases for l	inear	codes –	Generator			
matrix	and par	rity chec	k matrix – Encoding with a linear code – Decod	ing of li	near	codes –	Syndrome			
decodi	ng.									
UNIT	3						9			
Bound	s in coo	ling theo	ory: The main coding theory problem – lower bo	unds -Sp	ohere	coverin	g bound –			
Gilbert Varshamov bound - Binary Hamming codes - q-ary Hamming codes - Golay codes - Singleton										
bound	and ME	OS codes	– Plotkin bound							
UNIT	4						9			
Cyclic	codes: l	Definitio	ns – Generator polynomials – Generator matrix and	l parity c	heck	matrix –	Decoding			
of Cyc	lic code	s.								
UNIT	5						9			

Special cyclic codes: BCH codes -	Parameters of BCH codes – De	coding of BCH codes – Reed Solomor
codes.		

LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45
TEXT BOOK							
1.San Ling and	Chaoping Xi	ng, Coding The	ory: A Fi	rst Course, Cambr	idge Unive	ersity Press, 20	04.
Unit 1 : Section	ıs 2.1, 2.2, 2.3	3, 2.4, 2.5					
Unit 2 : Section	ns 4.2, 4.3, 4.4	1, 4.5, 4.6, 4.7, 4	.8				
Unit 3 : Section	ns 5.1, 5.2, 5.3	3, 5.4, 5.5,					
Unit 4 : Section	ns 7.1, 7.2, 7.3	3, 7.					
Unit 5 : Section	ıs 8.1, 8.2						
REFERENCE	S						
1. S. Lin & D.	J. Costello, J.	., Error Control	Coding: 1	Fundamentals and a	Applicatio	ns, Prentice-Ha	ll, Inc.,
New Jersey	,1983.						
2. Vera Pless,	Introduction	to the Theory of	Error Co	orrecting Codes, W	iley, NewY	York, 1982.	
3. E. R Berlek	amp, Algebra	ic Coding Theorem	ry, Mc G	raw-Hill,1968.			

4. H. Hill, A First Course in Coding Theory, OUP,1986

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	3	2	3	1	1	1	1	
CO 2	3	3	3	2	3	1	1	1	1	
CO 3	3	3	2	1	3	1	0	1	1	
CO 4	3	3	3	2	3	1	1	1	1	
CO 5	3	3	3	3	3	1	2	1	1	
TOTAL	15	15	14	10	15	5	6	5	5	
SCALED VALUE	3	3	3	2	3	1	2	1	1	
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
1 - 5 - 1, 6 - 10 - 2, 11 - 15 - 3										

COU	JRSE N	AME		NEURA	L NETW	ORKS	L	Т	P	С
COU	JRSE C	ODE		Ŋ	MA1E3		3	0	0	3
С	Р	Α					L	Т	Р	Η
3	0	0					3	0	0	3
PRER	EQUIS	ITE	Linea	r algebra						
On su	ccessful	comple	tion of	this course, th	ne studen	ts will be able to:				
			COUF	RSE OUTCOM	IES		DOMA	IN	LEV	EL
CO 1	Sun	ımarize	differe	ent neuron netw	ork mode	ls	Cognit	ive	Underst	anding
CO 2 Explain Perceptron Architectures and Learning Rules Cognitive Under								Underst	anding	
CO 3	App	ly Hebl	o rule f	for finding the	appropria	te weight matrix	Cognit	ivo	Appl	vina
05	for t	he giver	n linear	associator			Cogiiit	IVC	Аррі	ying
CO 4	Con	struct b	ack pro	opagation algor	ithm for t	he given network	Cognit	ive	Appl	ying
CO 5	Ider	ntify the	e secon	d order Taylor	series ex	pansions for the	Cognit	ive	Appl	vina
05	given function about the two minima Cognitive Applying									ying
UNIT 1 Neuron Model and Network Architectures 9										
Mathe	matical	Neuron	Model-	Network Archi	tectures-	Perceptron-Hamm	ing Netw	ork- I	Hopfield N	letwork-
Learni	ng Rule	5.								
UNIT	2 Per	ceptron	Archit	tectures						9
Percep	otron Are	chitectur	res and	Learning Rule	with Proc	of of Convergence.	Supervi	sed H	lebbian Le	earning -
Linear	Associa	tor.								
UNIT	3 Sup	ervised	Hebbi	an Learning						9
The H	lebb Ru	le-Pseud	lo inve	rse Rule-Varia	tions of 1	Hebbian Learning	-Back Pr	opaga	ation - M	ultilayer
Percep	otron									
UNIT	4 Bac	k Propa	gation	l						9
Back p	propagat	ion Algo	orithm-	Convergence a	nd Genera	alization - Perform	ances Su	rfaces	s and Opti	mum
Points-Taylor series.										
UNIT	5 Per	formand	e Surf	aces and Perfo	ormance	Optimizations				9
Direct	ional I	Derivativ	ves -	Minima-Nece	ssary Co	onditions for O	ptimality	-Qua	dratic Fu	inctions-
Perfor	mance C)ptimiza	tions-S	teepest Descen	t-Newton	's Method-Conjug	ate Grad	ient.		
LEC	TURE	4	5	TUTORIAL	0	PRACTICAL	0		TOTAL	45

TEXT BOOK

1.Martin T. Hagan, Howard B. Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi,2002.

REFERENCES

 James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003.

2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	2	1	3	1	0	1	1	
CO 2	3	3	2	1	3	1	0	1	1	
CO 3	3	3	3	2	3	1	1	1	1	
CO 4	3	3	3	2	3	1	1	1	1	
CO 5	3	3	3	2	3	1	1	1	1	
TOTAL	15	15	13	8	15	5	3	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$1 \text{-} 5 \rightarrow 1, 6 \text{-} 10 \rightarrow 2, 11 \text{-} 15 \rightarrow 3$										

SEMESTER II

COU	JRSE	NAN	ЛE		AL	GEBRA	- II	L	Т	P	С
COU	URSE	COI	DE			YMA201		4	1	0	5
С	P		Α					L	Т	Р	Н
5	0		0					4	1	0	5
PRER	REQU	ISIT	E	YMA	A101						
On su	ccessf	ul co	mple	tion of	f this course, t	he studen	ts will be able to:				
				COU	RSE OUTCON	AES		DOMA	IN	LE	VEL
CO 1	E	xplai	n the	conce	pts of prime ide	eal and M	aximal ideal	Cognit	ive	Under	standing
CO 2	E	xplai	n the	conce	pts of splitting	fields		Cognit	ive	Under	standing
CO 3	E	xplai	n the	proof	solvability by r	adicals		Cognit	ive	Under	standing
CO 4	E	xplai	n the	conce	pts of Galois's	Extensior	15	Cognit	ive	Under	standing
CO 5	E	xplai	n the	proof	of fundamental	theorem of	of Galois's Theory	Cognit	ive	Under	standing
UNIT	1										12+3
Prime	Prime ideals and Maximal Ideals, Irreducible polynomials.										
UNIT	2										12+3
Classi	cal Fo	rmula	as, Sp	litting	Fields						
UNIT	3										12+3
The G	alois (Group	p, Roc	ots of l	Unity, Solvabili	ty by Rac	licals.				
UNIT	4										12+3
Indepe	endenc	e of	Chara	cters,	Galois Extension	ons					
UNIT	5										12+3
The Fu	undam	ental	l theor	rem of	Galois theory,	Applicati	ons, Galois Great	Theorem.			
LEC	TURI	E	6)	TUTORIAL	15	PRACTICAL	0	TO	ΓAL	75
ТЕХТ	r BOC	K									
1.Joseph Rotman, Galois Theory, 2nd edition, Springer Verlag, 1990.											
UNIT – I Pages 31 - 43											
UNIT	- II P	ages	44 -58	8							
UNIT	– III F	Pages	59 -	75							
UNIT	– IV I	Pages	5 76-8	2							
UNIT	– V P	ages	83-95	5							

REFERENCES

- 1. David S. Dummitand Richard M.Foote, Abstract Algebra, 2ndEdition, Wiley Student Edition, 2008.
- Serge Lang. Algebra-Revised third edition-Springer–Verlag-2002.
 Ian Stewart, GaloisTheory, Chapman and Hall,1973

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	3	2	1	3	1	0	1	1		
CO 2	3	3	2	1	3	1	0	1	1		
CO 3	3	3	2	1	3	1	0	1	1		
CO 4	3	3	2	1	3	1	0	1	1		
CO 5	3	3	2	1	3	1	0	1	1		
TOTAL	15	15	15	5	15	5	0	5	5		
SCALED VALUE	3	3	3	1	3	1	0	1	1		
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation											
1 - 5 - 1, 6 - 10 - 2, 11 - 15 - 3											

COU	JRSE N	AME	REAL ANALYSIS - II	L T P						
COU	JRSE C	ODE	YMA202	4	1	()	5		
С	Р	Α		L	Т	I		Н		
5	0	0		4	1	()	5		
PRER	EQUIS	ITE	Basic concepts of convergence and uniform conv	vergence		1				
On su	ccessful	comple	tion of this course, the students will be able to:							
			COURSE OUTCOMES	DOMA	IN	Ι	E	/EL		
CO1 Explain mean value theorem and functions of bounded variations Cognitive Understanding										
CO 2	Con Inte	npare grals	nean value theorems for Riemann Stieltjes	Cognit	ive	А	.pp]	ying		
CO 3	Exp diffe	lain u erentiatio	niform convergence and integration and	Cognit	ive	Und	ers	tanding		
CO 4	Exp	lain dire	ectional derivatives and total derivative	Cognit	ive	Und	ers	tanding		
CO 5	Exp theo	lain In	verse function theorem and Implicit function	Cognit	ive	Und	ers	tanding		
UNIT	1						1	2+3		
Differe	entiation	of sing	e variable: Derivatives – The chain rule – local ex	trema – l	Rolle	's theo	ren	n – Mean		
Value	Theorem	n – Tay	lor's formula – Derivatives of vector – valued fun	nctions –	Fun	ctions	of	Bounded		
variati	on and r	ectifiabl	e curves – Total variation – Functions of bounded	variation	-Ec	luivale	nce	of paths		
– Char	nge of pa	arameter								
UNIT	2						1	2+3		
Riema	nn – Sti	eltjes in	tegral:Definition –linear properties of the integra	l– Neces	sary	condit	ion	is for the		
exister	nce -Firs	t fundar	nental theorem of Integral calculus -Mean Value	Theorem	for	integra	ls -	- Second		
fundar	nental th	neorem o	f Integral calculus-Change of variable in a Riemar	nn integra	al – S	econd	Me	ean value		
Theorem for Riemann integrals.										
UNIT	3						1	2+3		
Seque	nce and	series o	f functions-Pointwise convergence-Uniform con	vergence	–Uni	form o	con	vergence		
and integration–Uniform convergence and Differentiation–Sufficient conditions for uniform convergence										
of a se	ries.									

UNIT 4 12+3											
							1213				
Functions of S	everal variable	es – Directional	derivativ	e – Total derivative	– Jacobi	an – Chain 1	rule –Mean				
Value Theorem – Taylor's formula.											
UNIT 5 12+3											
Inverse function	Inverse function theorem – Implicit function theorem – Extremum problems with side conditions.										
LECTURE60TUTORIAL15PRACTICAL0TOTAL75											
TEXT BOOK											
Tom M. Apost	ol, Mathemati	cal Analysis Sec	cond Edit	ion,Narosa Publish	ing Hous	e,New Delh	i,1985.				
UNIT-I-Chapt	er5 and 6										
UNIT-II-Chap	ter7Section 7.	1-7.22									
UNIT–III- Cha	pter 9Section	9.1 - 9.11 and 9	.14 -9.18								
UNIT–IV-Cha	pter12										
UNIT-V-Chapter13											
REFERENCES											
i. Walter Rudin, Principles of Mathematical Analysis, Third Edition, McGraw Hill, 1976.											
i. Tom Apostol,Calculus II, McGraw Hill,1983.											

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	3	2	1	3	1	0	1	1		
CO 2	3	3	3	2	3	1	1	1	1		
CO 3	3	3	2	1	3	1	0	1	1		
CO 4	3	3	2	1	3	1	0	1	1		
CO 5	3	3	2	1	3	1	0	1	1		
TOTAL	15	15	11	6	15	5	1	5	5		
SCALED VALUE	3	3	2	2	3	1	1	1	1		
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation											
1-5→1, 6-10→2, 11-15-	$1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$										

COL	JRSE N	AME	PARTIAL DIFFERENTIAL EQUATIONS	L	Т	'	Р	С		
COU	JRSE C	ODE	YMA203	4	1		0	5		
С	Р	Α		L	Т	'	Р	Н		
5	0	0		4	1		0	5		
PRER	EQUIS	ITE	Knowledge in Undergraduate differential equation	ons						
On su	ccessful	comple	tion of this course, the students will be able to:							
			COURSE OUTCOMES	DOMA	IN		LEV	VEL		
CO 1	Sun	ımarize	the first order partial differential equations	Cognit	ive	U	Inders	tanding		
CO 2Analyze the different methods of Partial Differential Equations of the Second OrderCognitive								yzing		
CO 3	App Equ	bly the mation	nethod of variable separable for solving Laplace	Cognit	ive		Appl	lying		
CO 4	App solu	oly the p tions of	artial differential equations for obtaining general wave equation	Cognit	ive		Appl	lying		
CO 5	Util equa	ize Gree	en's Function for finding solutions of diffusion	Cognit	ive		Appl	lying		
UNIT	1 Par	tial Diff	erential Equations of the First Order				1	2+3		
Partial	Differe	ntial Eq	uations–Origins of First Order Differential Equat	ions–Cau	ichy'	s Pr	oblem	n for first		
order	equation	s– Linea	r Equations of the first order- Nonlinear partial of	lifferenti	al eq	luati	ons of	f the first		
order	 Cauch 	ny's met	hod of characteristics - Compatible system of	First ord	er E	quat	ions–S	Solutions		
satisfy	ing give	n Condi	tion- Jacobi's method.							
UNIT	2 Par	tial Diff	erential Equations of the Second Order				1	2+3		
The O	rigin of	Second	Order Equations – Linear partial Differential Equ	ations wi	ith co	onsta	ant co	efficients		
– Equ	ations w	ith varia	ble coefficients - Separation of variables - The	method of	of Int	tegra	al Tra	nsforms-		
Non – linear equations of the second order.										
UNIT 3Laplace's Equation12+3										
Eleme	ntary sol	lutions o	f Laplace equation – Families of Equipotential Sur	faces – B	ound	ary	value j	problems		
– Sepa	ration o	f variabl	es – Surface Boundary Value Problems – Separati	on of Va	riabl	es –	Probl	ems with		
Axial	Axial Symmetry – The Theory of Green's Function for Laplace Equation.									

UNIT 4	NIT 4The Wave Equation12+3										
The Occu	urrenc	e of the wave	equation in Ph	ysics-Ele	ementary Solutions	s of the O	ne-dimensi	onal Wave			
equations	s – Vił	orating membr	ane, Applicatio	n of the c	alculus of variation	ns –Three	dimensiona	l problem–			
General solutions of the Wave equation											
UNIT 5	UNIT 5The Diffusion Equation12+3										
Elementa	Elementary Solutions of the Diffusion Equation – Separation of variables – The use of Integral Transforms										
– The use	e of Gi	reen's function	ns								
LECTURE60TUTORIAL15PRACTICAL0TOTAL75											
TEXT B	OOK			I							
1.Ian Sne	eddon,	Elements of	Partial Differen	tial Equa	tions, McGraw Hi	ll Internat	ional Book	Company,			
New Del	hi, 198	33									
REFERI	ENCE	S									
1. M.D	. Raisi	nghania, Adva	anced Differenti	al Equation	ons, S. Chand and G	Company	Ltd., New D	elhi, 2001.			
2. K. Sankara Rao, Introduction to Partial Differential Equations, Second edition, Prentice-Hall of India,											
New Delhi, 2006.											
3. J. N. Sharma and K. Singh, Partial Differential Equations for Engineers and Scientists, Narosa											
Publi	shing	House, 2001.									

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	2	1	3	1	0	1	1	
CO 2	3	3	3	3	3	1	2	1	1	
CO 3	3	3	3	2	3	1	1	1	1	
CO 4	3	3	3	2	3	1	1	1	1	
CO 5	3	3	3	2	3	1	1	1	1	
TOTAL	15	15	14	10	15	5	5	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$1 \cdot 5 \rightarrow 1, 6 \cdot 10 \rightarrow 2, 11 \cdot 15 \rightarrow 3$										

COU	JRSE	NAME		CLASSIC	CAL DYN	IAMICS	L	Т	P	C		
COU	JRSE	CODE		Y	YMA204		4	1	0	5		
С	Р	Α					L	Т	Р	Н		
5	0	0					4	1	0	5		
PRER	EQU	ISITE	Trigo	phometry and St	atics		•			-		
On su	ccess	ul comple	etion of	f this course, th	ne studen	ts will be able to:						
			COU	RSE OUTCON	1ES		DOMA	IN	LE	VEL		
CO 1Explain the mechanical system, energy and momentum.CognitiveUnderst										standing		
CO 2Explain Lagrange's equation and integrals of motion.CognitiveUnderst										standing		
CO 3	D3 Explain Rayleigh's dissipation function and impulsive motion Cognitive Under											
CO 4	Explain Hamilton's principle and Hamilton's equationsCognitiveUnder											
CO 5	Explain Hamilton's Principal Function, The Hamilton and Cognitive Unders											
000	Jacobi's equation											
UNIT	1									12+3		
Introd	uctory	^v concepts	: The r	nechanical system	em - Ger	eralized Coordina	tes - con	straint	s - virtu	al work -		
Energy	y and	momentur	n.									
UNIT	2									12+3		
Lagrar	nge's e	equation: I	Derivat	ion and example	es - Integ	rals of the Motion	- Small o	scillat	ions.			
UNIT	3									12+3		
Specia	l Ap	olications	of Lag	grange's Equation	ons: Ray	leigh's dissipation	function	ı - im	pulsive	motion -		
Gyroso	copic	systems -	velocit	y dependent pot	entials.							
UNIT	4									12+3		
Hamil	ton's e	equations:	Hamil	ton's principle -	Hamilto	n's equations - Oth	ner variat	ional	principl	es - phase		
space.												
UNIT	5									12+3		
Hamil	ton -	Jacobi T	heory:	Hamilton's Pr	incipal H	Function – The H	Iamilton	– Jac	cobi's e	equation -		
Separa	ıbility											
LEC	TUR	E 6	0	TUTORIAL	15	PRACTICAL	0	TC	TAL	75		
TEXT	ГЕХТ ВООК											

1.Donald T. Greenwood, Classical Dynamics, PHI Pvt. Ltd., New Delhi-1985. UNIT – I Chapter 1: Sections 1.1 to 1.5 UNIT – II Chapter 2: Sections 2.1 to 2.4 UNIT – III Chapter 3 : Sections 3.1 to 3.4 UNIT – IV Chapter 4: Sections 4.1 to 4.4 UNIT – V Chapter 5: Sections 5.1 to 5.3

REFERENCES

1.H. Goldstein, Classical Mechanics, (2nd Edition), Narosa Publishing House, New Delhi.

 Narayan Chandra Rana & Promod Sharad Chandra Joag, Classical Mechanics, Tata McGrawHill, 1991.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	2	1	3	1	0	1	1	
CO 2	3	3	2	1	3	1	0	1	1	
CO 3	3	3	2	1	3	1	0	1	1	
CO 4	3	3	2	1	3	1	0	1	1	
CO 5	3	3	2	1	3	1	0	1	1	
TOTAL	15	15	10	5	15	5	0	5	5	
SCALED VALUE	3	3	2	1	3	1	0	1	1	
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$1 \text{-} 5 \rightarrow 1, 6 \text{-} 10 \rightarrow 2, 11 \text{-} 15 \rightarrow 3$										

COU	IRSE N	AME	COMPUTER PROGRAMMING (C++	L	Т	Р	C		
COL	JRSE C	ODE	YMA205	3	0	2	5		
C	Р	Α		L	Т	Р	Н		
5	0	0		3	0	2	5		
PRER	EQUIS	ITE				1			
On su	ccessful	comple	tion of this course, the students will be able to:						
			COURSE OUTCOMES	DOMA	IN	LEV	VEL		
CO 1	Exp	olain C p	rogramming fundamentals	Cognit	ive 1	Unders	tanding		
CO 2	CO 2Apply structure and union for various functionsCognitive								
CO 3	Exp	o lain adv	anced concept of pointers and files	Cognit	ive 1	Unders	tanding		
CO 4	Exp	lain obj	ect-oriented technologies	Cognit	ive 1	Unders	tanding		
CO 5	Exp	Cognit	ive 1	Unders	tanding				
UNIT 1 INTRODUCTION TO C LANGUAGE									
and Lc Lab: 1.Prog 2. Prog 3.Prog	ram to i gram to i	mplement mplement	nt formatted I/O – Decision Making - Branchin o, for statements. nt formatted I/O operations nt formatted I/O operations nt control structures	ng n,	nested	II , SWI	ich, golo		
UNIT	2 AR	RAYS, I	UNCTIONS, STRUCTURES AND UNIONS				2+3		
Arrays - User Structu Lab: 4. Prog 5.Prog refer 6.Prog	defined ures – S gram us ram to i rence ram to i	mic and f I Function fructures ing 2D a mplement mplement	nulti-dimensional arrays - Character arrays and Str ons – Categories of Functions – Recursion - Str and Functions rrays nt calling the function through call by value metho nt Structures	ings – St uctures : d & call	ring han and Uni by	idling F ons –	functions Array of		
UNIT	3 PO	INTERS	AND FILE MANAGEMENT			1	2+3		
Pointer Manag Lab: 7.Prog 8.Prog 9.Prog	 Management in C – Dynamic Memory allocation – Linked Lists – Preprocessors. Lab: 7. Program to implement dynamic memory allocation 8. Program to implement pointer to function 9. Program to implement an array of pointers 12+3 								

Overview of C++-Classes and Objects-Friend Functions-Friend Classes-Inline Function-Static Members-Arrays-Pointers-References-Dynamic Allocation- Function Overloading-Overloading Constructor Functions-Copy Constructors-Default Argument-Operator Overloading-Member Operator Overloading **Lab:**

10. Demonstrate Inline Functions

11.Implement Class and Subclass

12. Demonstrate Constructors & Destructors.

UNIT 5 ADDITIONAL FEATURES

Inheritance-Base Class-Access Control-Virtual Functions-Pure Virtual Functions-Templates-Generic Functions-Applying Generic Functions-Generic Classes-Exception Handling-C++ I/O Streams-File I/O-STL-Overview-Container Classes-Lists-Maps-Algorithms Using Functions and Objects-String Class Lab:

12 + 3

13. Implement Virtual Function

14.Programs to implement the concept of exception handling

15. Program to implement file operations.

LECTURE	45	TUTORIAL	0	PRACTICAL	30	TOTAL	75
TEXT BOOKS	5						

- 1. E.Balagurusamy, Programming in ANSI C, Tata McGraw Hill, 2008
- 2. Herbert Schildt, C++ The Complete Reference, Tata McGrawHill Edition, 2014

REFERENCES

- 1. Deitel and Deitel, C How to Program, Addison Wesley, 2011
- 2. K. N. King, C Programming: A Modern Approach, 2nd Edition, W. W. Norton & Company; 2 editions, 2008
- 3. Robert Lafore, OOP in Turbo C++, Galgotia Publications, 2001

	PO 1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	2	1	3	1	0	1	1	
CO 2	3	3	3	2	3	1	1	1	1	
CO 3	3	3	2	1	3	1	0	1	1	
CO 4	3	3	2	1	3	1	0	1	1	
CO 5	3	3	2	1	3	1	0	1	1	
TOTAL	15	15	11	6	15	5	1	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
1 - 5 - 1, 6 - 10 - 2, 11 - 15 - 3										

COU	RSE NA	AME	FLUID DYNAMICS	L	Τ	Р	С				
COU	RSE C	ODE	YMA2E1	3	0	0	3				
С	Р	Α		L	Т	Р	Н				
3	0	0		3	0	0	3				
PRER	EQUIS	ITE	Trigonometry			I					
On suc	cessful	comple	tion of this course, the students will be able to:								
	COURSE OUTCOMES DOMAIN LEVEL										
CO 1	Reca co-o	all the b ordinates	Cogniti	ve]	Rememb	ering					
CO 2	Und	erstand	the concepts and equations of fluid dynamics	Cogniti	ve	Understa	nding				
CO 2	Ana	lyze and	understand the concepts of the force experienced	Cogniti	ve	Understa	nding				
05	by a	two-dir	nensional fixed body in a steady irrotational flow		Analyze						
<u> </u>	Ana	lyze the	approximate solutions of the Navier - Stokes	Cogniti							
04	equa	ation.				Арргушұ	5				
CO 5	App	ly the a	ppropriate method to solve integral equation of	Cogniti	ve	Applying					
005	bour	ndary la	yer, Blasius equation and its series solution			rppiying	>				
UNIT	1 Berr	noulli's	Equation and Equations of Motion				9				
Introdu	ictory N	lotions -	- Velocity – Stream Lines and Path Lines – Stream	am Tubes	s and 1	Filament	s – Fluid				
Body –	- Density	y – Pres inemati	sure. Differentiation with respect to the time $-$ Eq	uation of	f conti	nuity – ł	Boundary				
invisci	d fluid.	memati	car and physical – Rate of change of linear momen	itum – E	quario						
UNIT	2 Equ	ations of	of Motion (Contd)				9				
Euler's	momen	ntum Tl	neorem - Conservative forces - Bernoulli's theo	orem in s	teady	motion	– energy				
equation	on for in	viscid fl	uid – circulation – Kelvin's theorem – vortex mot	ion – He	lmholt	z equatio	on.				
UNIT 3Two-Dimensional Motion9											
Two-Dimensional Motion – Two Dimensional Functions – Complex Potential – basic singularities											
source	– sink –	Vortex	- doublet - Circle theorem. Flow past a circular cy	ylinder w	ith cire	culation	– Blasius				
Theore	m – Lif	t force.	(Magnus effect)								
UNIT	4 Dyn	amics o				9					

Viscous flows – Navier-Stokes equations – Vorticity and circulation in a viscous fluid – Steady flow through an arbitrary cylinder under pressure – Steady Couette flow between cylinders in relative motion – Steady flow between parallel planes.

UNIT 5 The Laminar Boundary Layer in Incompressible Flow

Boundary Layer concept – Boundary Layer equations – Displacement thickness, Momentum thickness – Kinetic energy thickness – integral equation of boundary layer – flow parallel to semi-infinite flat plate – Blasius equation and its solution in series.

9

LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45
TEXT BOOKS	5						

- Units I and II: L. M. Milne Thomson, Theoretical Hydro Dynamics, Macmillan Company, 5th Edition (1968). Chapter I: Sections 1.0 – 1.3., 3.10-3.41 (omit 3.32) Chapter III: Sections 3.42 – 3.53 (omit 3.44)
- Units III, IV and V: Modern Fluid Dynamics Volume I, N. Curle and H. J. Davies, D. Van Nostrand Company Limited, London, 1968. Chapter III : Sections 3.1 – 3.7.5 (omit 3.3.4, 3.4, 3.5.2,3.6) Chapter V : Sections 5.2.1–5.3.3 Chapter VI : Sections 6.1 – 6.3.1 (omit 6.2.2., 6.2.5)

REFERENCES

- 1. F. Chorlton, Textbook of Fluid Dynamics, CBS Publishers, New Delhi, 2004.
- A. J. Chorin and A. Marsden, A Mathematical Introduction to Fluid Dynamics, Springer Verlag, New York, 1993.

E – Resources (MOOC, SWAYAM, NPTEL, Websites etc) 1

https://nptel.ac.in/courses/112/106/112106200/

COs VS POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1
0 No Polation 1 Low	w Dolotic	n 2 M	dium De	lation 2	Ligh D	alation			

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME	COMBINATORICS	L	Τ	l	Р	С	
COU	IRSE C	ODE	YMA2E2	3	0		0	3	
С	Р	Α		L	Т	1	Р	Н	
3	0	0		3	0		0	3	
PRER	EQUIS	ITE	Basics of sets		1				
On suc	ccessful	comple	tion of this course, the students will be able to:						
			COURSE OUTCOMES	DOMA	IN		LEV	/EL	
CO 1	Exp obje	lain the	Cognit	ive	U	Inders	tanding		
CO 2	App invo	oly diver	rse counting strategies to solve varied problems rings, combinations, distributions, and partitions	Cognit	ive		Appl	ying	
CO 3	CO 3Solve linear recurrence relations by recognizing homogeneity, linearity, constant coefficients, degree, and characteristic equationCognitiveApplying							olying	
CO 4	Ider usin	ntify the g rook p	number of permutations with forbidden positions olynomials	Cognit	ive		Appl	ying	
CO 5	App of g	oly Polya iven obj	a's theorem for finding number of permutations ects	Cognit	ive		Appl	ying	
UNIT	1 Per	mutatio	ns and combinations					9	
Distrib	utions o	of distinc	t objects – Distributions of non-distinct objects –	Stirling's	s forn	nula	l.		
UNIT	2 Ger	erating	functions					9	
Genera	ting fur	ction fo	r combinations – Enumerators for permutations dis	tribution	sofc	listi	nct ob	jects into	
non dis	stinct ce	lls – par	titions of integers – Ferrers graphs – Elementary re	elations.					
UNIT	3 Rec	urrence	relation					9	
Linear	recurre	nce relat	ions with constant coefficients- solutions by the te	chnique	of ge	ener	ating f	functions	
- A special class of nonlinear difference equations - Recurrence relations with two indices.									
UNIT	4 The	princip	le of inclusion and exclusion					9	
Genera	ıl formu	la – Perr	nutations with restriction on relative positions – De	rangeme	ents –	Ro	ok pol	ynomials	
– perm	utations	s with fo	rbidden positions.						
UNIT	NIT 5 Polya's theory of counting 9								

Equivalence classes under a permutation group – Burnside theorem – Equivalence classes of functions –											
Weights and inventories of functions - Polya's fundamental theorem - Generalization of Polya's theorem											
LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45				
TEXT BOOKS											

- Cameron, P.J. (1998) Combinatorics: Topics, Techniques, Algorithms. Cambridge: Cambridge University Press.
- Liu, C.L., Eddberg, M. (1968). Solutions to problems in Introduction to Combinatorial Mathematics. New York: McGraw-Hill Book & Co.

REFERENCES

- 1. Liu, C.L. (1968). Introduction of Combinatorial Mathematics. New York: McGraw Hill Book Co.
- Stanley, R.P. (1997). Enumerative Combinatorics, Volume I, Cambridge Studies in Advanced Mathematics, Volume 49. Cambridge University Press.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	2	1	3	1	0	1	1	
CO 2	3	3	3	2	3	1	1	1	1	
CO 3	3	3	3	2	3	1	1	1	1	
CO 4	3	3	3	2	3	1	1	1	1	
CO 5	3	3	3	2	3	1	1	1	1	
TOTAL	15	15	14	9	15	5	4	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$1 \text{-} 5 \rightarrow 1, 6 \text{-} 10 \rightarrow 2, 11 \text{-} 15 \rightarrow 3$										

COU	RSE N	AME	CRYPTOGRAPHY	L	Т	1	Р	С
COU	RSE C	ODE	YMA2E3	3	0		0	3
С	Р	Α		L	Н			
3	0	0		3	0		0	3
PRER	EQUIS	ITE	Basic concepts of number theory					
On suc	cessful	comple	tion of this course, the students will be able to:					
			COURSE OUTCOMES	DOMA	IN		LEV	/EL
CO 1	App varie	oly the cous algo	concept and properties of modular arithmetic in rithms to find the solution	Cognit	ive		Appl	ying
CO 2	Util disc	ize Polla rete loga	ard's rho method for solving the elliptic curve withm problem	Cognit	ive		Appl	ying
CO 3	Util poly	ize bas momials	ic properties of finite fields for factoring over finite fields	Cognit	ive		Appl	ying
CO 4 Demonstrate the concepts of stream ciphers and block ciphers Cognitive Understand								
CO 5	Ana Ellip	lyze the otic curv	concepts of public key cryptography, RSA and e cryptography	Cognit	ive		Appl	ying
UNIT	1							9
Introdu	ction –	Encrypt	ion and Secrecy – The objective of Cryptography	- Numbe	r Th	eory	r – Intr	oduction
- Modu	ular Ari	thmetic.						
UNIT	2							9
Integer probler	factori n.	zation p	roblem – Pollard's rho factoring – Elliptic curve	factorin	ıg —	Disc	crete l	ogarithm
UNIT	3							9
Finite f	fields –	Basic p	roperties - Arithmetic of polynomials -Factoring	polynon	nials	over	r finite	e fields –
Square	free fac	ctorizatio	on.					
UNIT 4	4							9
Symme	etric key	encryp	tion – Stream ciphers – Block Ciphers – DES.					

UNIT 5							9				
Public key cr	yptography – C	Concepts of publ	ic key cry	yptography – Modu	lar arithm	netic – RSA – D	Discrete				
logarithm – Elliptic curve cryptography.											
LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45				
TEXT BOO	KS		I	11							
1. Hans Del	1. Hans Delfs, Helmut Knebl, Introduction to Cryptography, Springer Verlag, 2002.										
2. Alfred J.	Menezes, Paul	C. Van Oorscho	t, Scott A	. Vanstone, Handb	ook of Ap	plied Cryptog	graphy,				
CRC Pres	s, 2000.										
3. William S	tallings, Crypt	ography and Net	work Sec	curity, Prentice Hal	l of India,	2000.					
REFERENC	ES										
1. Pachghare V.K., Cryptography and Information Security, PHI Learning Pvt. Ltd., New Delhi, 2009											
2. Behrouz A. Forouzan and Debdeep Mukhopathyey, Cryptography and Network Security, 2013,											
second ed	ition, McGraw	Hill Education l	Pvt. Ltd.,	New Delhi.							

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	3	2	3	1	1	1	1	
CO 2	3	3	3	2	3	1	1	1	1	
CO 3	3	3	3	2	3	1	1	1	1	
CO 4	3	3	2	1	3	1	0	1	1	
CO 5	3	3	3	2	3	1	1	1	1	
TOTAL	15	15	14	9	15	5	4	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – L	ow Relatio	on, 2- Me	dium Re	elation, 3	- High R	elation	1	1	1	
$1\textbf{-}5 \rightarrow \textbf{1}, \textbf{6}\textbf{-}10 \rightarrow \textbf{2}, \textbf{1}1\textbf{-}15 \rightarrow \textbf{3}$										

SEMESTER III

COU	JRSE N	AME	TOPOLOGY	L	Т	P	С				
COU	JRSE C	ODE	YMA301	4	1	1 P 1 0					
С	Р	Α		L	Т	Р	Н				
5	0	0		4	1	0	5				
PRER	EQUIS	ITE	Basic concepts of sets			I					
On su	ccessful	comple	tion of this course, the students will be able to:								
			COURSE OUTCOMES	DOMA	IN	L	EVEL				
CO 1	Ide not	ntify wh	ether a given family of subsets is a topology or	Cognit	ive	Ap	plying				
CO 2	Apj topo	bly the blogy and	concepts of continuous function on product d metric topology	Cognit	ive	Ap	plying				
CO 3 Explain the concepts of local connectedness and path connectedness Cognitive Understanding											
CO 4 Explain the concepts of limit point compactness and local compactness Cognitive Understanding											
	Ap	oly the c	oncept of separation axiom and normal spaces to								
CO 5	pro	ve the	Urysohnmetrization theorem and the Tietz	Cognit	ive	Ap	plying				
	exte	ension th	eorem								
UNIT	1		Topological Spaces				12+3				
Topolo	ogical sj	paces - I	Basis for a topology - The order topology - The pr	roduct to	polog	gy on X	x Y - The				
subspa	ice topo	logy.									
UNIT	2		Continuous Functions				12+3				
Closed	l sets ar	nd limit	points-Continuous functions - the product topolog	gy - The	met	ric topo	logy - The				
metric	topolog	y (conti	nued) - Uniform limit theorem.								
UNIT 3Connectedness12+3											
Connected spaces - connected subspaces of the Real line - Components and local connectedness.											
UNIT	4		Compactness				12+3				
Compa	act spac	es - com	pact subspaces of the Real line - Limit Point Comp	pactness	– Lo	cal Con	pactness.				
UNIT	5		Countability and Separation Axiom				12+3				
The Co	ountabil	ity Axio	ms - The separation Axioms - Normal spaces - The	e Urysoł	n Le	mma - 🖯	Гhe				

Urysohnmetriza	ation Theoren	n - The Tietz ext	tension th	eorem						
LECTURE	60	TUTORIAL	15	PRACTICAL	0	TOTAL	75			
TEXT BOOK	L									
1.James R. Munkres, "Topology", (2nd Edition) PHI Learning Pvt. Ltd., (Third Indian Reprint)										
NewDelhi,2014	Ļ									
Unit I - Chapter	Unit I - Chapter 2: Sections 12 to 17									
Unit II - Chapte	Unit II - Chapter 2: Sections 18 to 21 (Omit Section 22)									
Unit III - Chapt	er 3: Sections	23 to25								
Unit IV - Chapt	ter 3: Sections	26 to29								
Unit V - Chapte	er 4: Sections	30 to 35								
REFERENCE	S									
1. J. Dugundji	, "Topology",	Prentice Hall o	f India, N	lew Delhi,1975.						
2. George F.Si	immons, "Intr	oduction to Top	ology and	1 Modern Analysis	", McGra	w Hill Book C	Co., 1963.			
3. J.L. Kelly, '	'General Top	ology", Van Nos	strand, Re	einhold Co., NewY	ork.1995					
4. L.Steen and	d J.Subhash,	"Counter Exa	mples in	Topology", Holt	, Rineha	rt and Winst	on, New			
York,1970.										

5. S.Willard, "General Topology", Addison - Wesley, Mas. 1970.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	3	2	3	1	1	1	1	
CO 2	3	3	3	2	3	1	1	1	1	
CO 3	3	3	3	2	3	1	1	1	1	
CO 4	3	3	2	1	3	1	0	1	1	
CO 5	3	3	3	2	3	1	1	1	1	
TOTAL	15	15	14	9	15	5	4	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – L	ow Relatio	on, 2- Me	edium Re	elation, 3	- High R	elation				
$1 \text{-} 5 \rightarrow 1, 6 \text{-} 10 \rightarrow 2, 11 \text{-} 15 \rightarrow 3$										

COU	JRSE N	AME	INTEGRAL EQUATIONS, CALCULUS OF	L	Т	P	С					
			VARIATIONS AND TRANSFORMS									
COU	J RSE (CODE	YMA302	4	5							
С	Р	Α		L	Т	Р	Н					
5	0	0		4	1	0	5					
PRER	EQUIS	SITE	Multivariable calculus and vector calculus	1	1							
On successful completion of this course, the students will be able to:												
			COURSE OUTCOMES	DOMA	IN	LI	EVEL					
CO 1Identify maxima and minima of functionalsCognitiveAppl												
CO 2	CO 2 Utilize Fourier transform for solving boundary value Cognitive App											
	problems Cognitive App											
CO 3	O 3Solve Bessel function integrals over a finite intervalCognitiveApp											
CO 4	Identify eigenvalues and eigen function of the homogeneous Cognitive Am											
integral equations with degenerate kernels												
Solve Volterra integral equation and Fredholm integral												
000	equ	ations by	using method of successive approximations	Cogine	1.0	r ip	prymg					
UNIT	1						12+3					
Calcul	us of v	ariations	- Maxima and Minima - the simplest case - N	Vatural b	ound	ary and	l transition					
condit	ions - v	ariationa	l notation – more general case – constraints and L	agrange	's mu	ltipliers	– variable					
end po	oints – S	turm-Lie	puville problems									
UNIT	2						12+3					
Fourie	r trans	form - I	Fourier sine and cosine transforms - Properties	Convol	ution	-Solvir	ng integral					
equation	ons - Fi	nite Four	ier transform - Finite Fourier sine and cosine trans	forms - l	Fourie	er integr	al theorem					
- Parseval's identity												
UNIT 3 12+3												
Hanke	l Trans	form: De	finition – Inverse formula – Some important result	s for Bes	ssel fu	Inction	– Linearity					
proper	ty – H	ankel T	ransform of the derivatives of the function -Ha	ankel Tr	ansfo	rm of o	differential					
operate	operators – Parseval's Theorem											
UNIT	NIT 4 12+3											

Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and eigenfunctions – convolution Integral – the inner and scalar product of two functions – Notation – reduction to a system of Algebraic equations – examples – Fredholm alternative - examples – an approximate method.

UNIT 5

12+3

Method of successive approximations: Iterative scheme – examples – Volterra Integral equation – examples – some results about the resolvent kernel. Classical Fredholm Theory: the method of solution of Fredholm – Fredholm's first theorem – second theorem – third theorem

LECTURE	60	TUTORIAL	15	PRACTICAL	0	TOTAL	75
TEXT BOOKS	2						

TEXT BOOKS

1. Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Academic Press 1971.

2. F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972.

- 3. A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan Media Pvt Ltd, India, 2002.
- UNIT I Chapter 2: Sections 2.1 to 2.9 of [2]
- UNIT II Chapter 7 of [3]
- UNIT III Chapter 9 of [3];
- UNIT IV -Chapters 1 and 2 of [1]
- UNIT V Chapters 3 and 4 of [1]

REFERENCES

1. S.J. Mikhlin, Linear Integral Equations (translated from Russian), Hindustan Book Agency, 1960.

2. I.N. Snedden, Mixed Boundary Value Problems in Potential Theory, North Holland, 1966.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	3	2	3	1	1	1	1	
CO 2	3	3	3	2	3	1	1	1	1	
CO 3	3	3	3	2	3	1	1	1	1	
CO 4	3	3	3	2	3	1	1	1	1	
CO 5	3	3	3	2	3	1	1	1	1	
TOTAL	15	15	15	10	15	5	5	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – Lo	w Relatio	on, 2- Me	edium Re	elation, 3	- High R	elation				
1 - 5 - 1, 6 - 10 - 2, 11 - 15 - 3										

COU	JRSE N	AME		FUNCTIO	NAL AN	NALYSIS	L	Т	Р	С		
COL	JRSE C	ODE		Y	MA303		4	4 1 0 L T P				
С	Р	Α					L	Т	Р	Н		
5	0	0					4	1	0	5		
PRER	EQUIS	ITE	Basic	concepts of alg	gebra		I					
On su	ccessful	comple	tion of	f this course, th	e studen	ts will be able to:						
			COUI	RSE OUTCOM	IES		DOMA	IN	LE	VEL		
CO 1	Exp	lain No	rmed S	paces and Hahr	n – Banac	ch Theorems.	Cogniti	ve 1	Understa	anding		
CO 2	Exp	lain Clo	osed Gi	aph and Open N	Mapping '	Theorems.	Cogniti	ve 1	Underst	anding		
CO 3	Exp	lain Bo	unded	Inverse Theoren	n – Spect	rum of a Bounded	Cogniti	ve 1	Underst	anding		
	Ope	rator.										
CO 4 Explain Inner Product Spaces and Riesz Representation Cognitive Understanding Theorems.										anding		
CO 5 Explain Bounded Operators and Self-adjoint Operators. Cognitive Understanding												
UNIT	1									12+3		
Norme	ed Space	es – Con	tinued	of Linear Maps	– Hahn -	- Banach Theorems	S.		I			
UNIT	2									12+3		
Banac	h Spaces	s – Unife	orm Bo	oundedness Prin	ciple – C	losed Graph and O	pen Map	ping T	Theorem	s.		
UNIT	3									12+3		
Bound	ed Inver	se Theo	rem –	Spectrum of a E	Bounded (Operator.						
UNIT	4									12+3		
Inner I	Product	Spaces -	- Ortho	onormal Sets – F	Projection	and Riesz Represe	entation [Theore	ems.			
UNIT	5									12+3		
Bounded Operators and adjoint, Normal, Unitary and Self-adjoint Operators.												
LEC	TURE	6	0	TUTORIAL	15	PRACTICAL	0	ТО	TAL	75		
TEXT	BOOK											
1.Baln	nohan V	/ Lima	ye, "F	unctional Anal	ysis", 31	d Edition, New	Age Inte	ernatio	onal (P)	Limited		
Publis	hers, Ne	w Delhi	, 2017									
REFE	RENCI	ES										

- 1. G.F.Simmons, "Introduction to Topology and Modern Analysis", McGraw Hill International Book Company, New York, 1963.
- 2. W. Rudin, "Functional Analysis", Tata McGraw-Hill Publishing Company, New Delhi, 1973.
- E. Kreyszig, "Introductory Functional Analysis with Applications", John Wiley & Sons, New York, 1978.
- H. C. Goffman and G.Fedrick, "First Course in Functional Analysis", Prentice Hall of India, New Delhi, 1987

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1
0 - No Relation, 1 – Lo	w Relatio	on, 2- Me	edium Re	elation, 3	- High R	elation		•	
1-5→1, 6-10→2, 11-15	→3								

COURSE NAME DIFFERENTIAL GEOMETRY L T P						Р	С			
COU	JRSE	C CC	DDE	YMA304	4	1		0	5	
С	Р		Α		L	Т		Р	Н	
5	0		0		4	1		0	5	
PRER	EQU	JISI'	ТЕ	Multivariable Calculus and Vector Calculus	•					
On su	ccess	ful c	comple	tion of this course, the students will be able to:						
				COURSE OUTCOMES	DOMA	IN		LEV	VEL	
CO 1	I	dent	t ify inv	olutes and evolutes of a given curve	Cogniti	ve	Ap	plying	ç	
CO 2	E	Expl	ain the	concept of Helicoids and Families of curves	Cogniti	ve	Un	dersta	standing	
CO 3	Ι	Cogniți	ve	Δn	nlvind	T				
005	C	onsta	ant curv	Cogiiiti	ve	np	pryme	5		
CO 4	E	xpl	ain non	intrinsic properties of a surface	Cogniti	ve	Un	dersta	nding	
CO 5	E	xpl	ain con	npact surface and complete surface	Cogniti	nitive Understanding			nding	
UNIT	1 S	PA	CE CU	RVES				1	2+3	
Defini	tion o	of Sp	ace cur	ves – Arc length – tangent – normal and binormal	– curvatu	ire ar	nd to	orsion	- contact	
betwee	en cu	irves	s and	surfaces – tangent surface – involutes and ev	volutes –	- intr	rinsi	c equ	ations –	
Funda	menta	al Ex	kistence	Theorem for space curves – Helics.						
UNIT	2 I	NTI	RINSIC	C PROPERTIES OF A SURFACE				1	2+3	
Defini	tion o	of si	urface -	Curves on a surface - Surfaces of revolution -	Helicoid	1s –	Met	ric - l	Direction	
coeffic	cients	- Fa	milies	of curves - Isometric correspondence - Intrinsic pro-	operties -	- Geo	odes	ics - C	Canonical	
geodes	sic eq	uati	ons.							
UNIT	3 6	GEO	DESIC	2S				1	12+3	
Norma	al pro	pert	y of ge	eodesic - Existence theorems - Geodesic parallel	s - Geod	lesic	cur	vature	e - Gauss	
Bonne	t theo	orem	n - Gau	ssian curvature - Surfaces of constant curvature -	Conform	nal m	app	ing -	Geodesic	
mappi	ng.									
UNIT 4NON-INTRINSIC PROPERTIES OF A SURFACE12+3										
Secon	d fun	dam	ental f	orm - Principal curvatures- Lines of curvature	– Develo	opabl	es -	Deve	elopables	
associa	ated v	with	space	curves - Developables associated with curves on	surfaces	- Miı	nima	al surf	faces and	
ruled s	surfac	es -	Fundar	nental equations of Surface theory - Parallel surfa	ces.					
UNIT	5 D	DIFF	FEREN	TIAL GEOMETRY OF SURFACES				1	2+3	

Compact surfaces whose points are umbilics- Hilbert's lemma- Compact surfaces of constant Gaussian or mean curvature- Complete surfaces- Characterization of complete surfaces- Hilbert's theorem- Conjugate points on geodesics.

LECTURE	60	TUTORIAL	15	PRACTICAL	0	TOTAL	75

TEXT BOOK

1.T. J. Wilmore, "An introduction to Differential Geometry", Oxford University Press, 1997. **REFERENCES**

1. Do Carmo, "Geometry of curves and surfaces", Academic Press, 2017.

- 2. D.Somasundaram, "Differential Geometry", Narosa Publ. House, Chennai, 2005.
- 3. J.A.Thorpe, "Elementary Topics in Differential Geometry", Springer Verlag, New York, 1979.

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	12	7	15	5	2	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – Lo	w Relatio	on, 2- Me	edium Re	elation, 3	- High R	elation			
1-5→1, 6-10→2, 11-15-	→3								

COU	COURSE NAME COMPLEX ANALYSIS						L	Т	P	С
COU	URSE C	ODE		J	YMA305		4	1	0	5
С	Р	Α					L	Т	Р	Н
5	0	0					4	1	0	5
PRER	EQUIS	ITE	Basic	c concepts of rea	al number	S				
On su	ccessful	comple	tion of	f this course, th	ne studen	ts will be able to:				
			COU	RSE OUTCOM	IES		DOMA	IN	LI	EVEL
CO 1	Exp	olain Ca	uchy's	Theorem for re	ctangle a	nd disc	Cognit	ive	Under	rstanding
CO 2	App find	oly Cauc ing the l	chy's i nigher	ntegral formula order derivative	and Tay s	lor's theorem for	Cognit	ive	Ap	plying
CO 3	CO 3 Explain Locally Exact Differentials – Multiply Connected regions								Ap	plying
CO 4	CO 4 Evaluate the given definite integrals using Cauchy' theorem								Ana	alyzing
CO 5	CO 5 Utilize the Taylor Series and the Laurent Series for finding zeros and poles for the given problem							ive	Ар	plying
UNIT	1									12+3
Line I	integrals	- Rectif	iable a	rc – Line integ	grals as fi	unctions of arc- C	auchy's	Theor	rem for	rectangle-
Cauch	y's The	orem for	disc							
UNIT	2									12+3
The In	dex of a	point - l	ntegra	l Formula – Hig	her deriva	atives – Removable	e singular	ities -	- Taylor	's theorem
– Zero	os and Po	oles – Tł	ne Loca	al Mapping – T	he Maxin	um Principle				
UNIT	3									12+3
Chains	s and Cy	vcles – S	imple	Connectivity –	Homolog	y – The General St	tatement	ofCa	uchy's '	Theorem –
Proof	of Cauc	hy's The	eorem -	 Locally Exact 	Different	ials – Multiply Co	nnected]	Regio	ns	
UNIT	4									12+3
The R	esidue T	heorem	– The	Argument Princ	ciple – Ev	aluation of Definit	e Integra	ls – T	The Mea	n – value
proper	ty – Poi	sson's fo	ormula	- Schwarz's The	eorem – 7	The Reflection Prin	ciple			
UNIT 5 12+3										12+3
Weier	strass's	Theoren	n – The	e Taylor Series -	– The Lau	ırent Series – Parti	al Fractio	ons- Jo	ensen's	Formula –
Hadan	nard's T	heorem								
LEC	LECTURE 60 TUTORIAL 15 PRACTICA						0	T	OTAL	75

TEXT BOOK

1.LarsV.Ahlfors, "Complex Analysis", 3rd Edition McGraw Hill Education (India) Private Ltd.2013.

Chapter 4 - Section 1.1 to 1.5, Section 2.1 to 2.3, Section 3.1 to 3.4, Section 4.1 to 4.7, Section 5.1

to 5.3, Section 6.1 to 6.5. Chapter 5 - Section 1.1 to 1.3, Section 2.1, Section 3.1 & 3.2.

REFERENCE

1.S. Ponnusamy, "Complex Analysis", Alpha Science International Ltd; 2nd Revised edition, 2005

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – Lov	w Relatio	on, 2- Me	edium Re	lation, 3	- High R	elation			
1-5→1, 6-10→2, 11-15-	→3								

COU	COURSE NAME ELEMENTS OF STOCHASTIC PROCES								SS	L		Г	Р		С				
COU	URSE C	ODE				YM	IA3E	E1						3	(0	0		3
С	Р	Α												L	r.	Г	Р		H
3	0	0												3	(0	0		3
PRER	REQUIS	ITE	Prob	bability	and Sta	tisti	cs												
On su	ccessful	comple	tion o	of this (course,	the	stude	ent	s w	vill b	be a	able	to:						
			COU	JRSE (OUTCO	ME	S							DOM	AIN		LEV	VEL	ı
CO 1Utilize continuous time Markov model for constructing TPM.CognitiveApplying											lying	נ							
CO 2	Explain renewal process and long-term analysis with examples									ith	Cogni	tive	Understand		ing				
CO 3	CO 3 Apply different methods and solve Birth and Death queues									5	Cogni	tive	e Applyin		lying	5			
CO 4	Exa Netv	mine th work of	e con Queu	nputatio es	ons of M	[/G/1	l and	G/.	Μ/	1 Qı	ueu	ies ai	nd	Cogni	tive		Anal	yzin	g
CO 5	Con Tim	clude t	he ide	ea of B	Brownia	n M	otion	n ar	nd	Firs	t P	Passa	ge	Cogni	tive		Evalı	atin	ıg
UNIT	1 Con	tinuous	s-Tim	e Marl	xov Mo	dels													9
Contin	nuous Ti	me Mar	kov C	^C hain, E	xamples	s, Tr	ansie	ent .	An	alys	sis,	Occ	upar	ncy Tin	es, I	Jimi	ting Be	ehav	ior
UNIT	2 Gen	eralized	l Ma	rkov M	[odels														9
Renew	val Proce	ess, Cun	nulativ	ve Proc	ess, Sen	ni-M	Iarko	v P	Proc	cess,	, E2	xamp	ples	and Lo	ng-te	rm 4	Analys	is.	
UNIT	3 Que	ueing N	/Iodel	s															9
Queue	ing Syst	ems, Siı	ngle-S	Station	Queues,	Birt	th and	d D)eat	th qu	ueu	ies w	ith l	Finite a	nd Ir	finit	e Capa	ncity	•
UNIT	4 Que	ueing N	Iode	ls (Con	td)														9
M/G/1	and G/I	M/1 Que	eues a	nd Net	work of	Que	eues.												
UNIT	5 Bro	wnian N	Aotio	n															9
Standa	ard Brow	nian Mo	otion,	Brown	ian Mot	tion	and I	Firs	st P	assa	ige	Tim	es.						1
LEC	TURE	4	5	TUT	ORIAI		0		P]	RA(CT	ICA	L	0		T	OTAL		45
TEXT	BOOK	-																	
1.V. C	3. Kulkar	ni, Intro	oducti	on to N	Iodeling	g and	l Ana	alys	sis (of S	toc	hasti	ic Sy	stems,	Seco	ond I	Edition	,	
Spring	ger, 2011																		
REFE	RENCE	ES																	
1. J. Medhi, Stochastic Processes, New Age, 2009.																			
2. S.	M. Ross	. Stocha	istic P	rocesse	es, Wile	v Se	ries i	n P	rot	oabi.	lıtv	⁷ and	. Sta	tistics.	1996				

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	3	3	1	3	1	1
TOTAL	15	15	14	11	15	5	7	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1
0 - No Relation, 1 – Lo	w Relatio	on, 2- Me	edium Re	lation, 3	- High R	elation			
1-5→1, 6-10→2, 11-15-	→3								

COU	J RSE N	AME	MATHEMATICAL MODELING	L	Т	P	С				
COU	URSE C	ODE	YMA3E2	3	0	0	3				
С	Р	Α		L	Т	Р	Н				
3	0	0		3	0	0	3				
PRER	EQUIS	ITE	YMA103								
On su	ccessful	comple	tion of this course, the students will be able to:								
			COURSE OUTCOMES	DOMA	IN	LE	VEL				
CO 1	Con diff	npare	nodels that can be constructed by ordinary equations of first order under study	Cognit	ive	App	lying				
CO 2 Utilize compartment models to solve the problems involved in economics and medicine Cognitive Applying											
CO 3	Ana	alyze m	athematical models that can be developed by r linear differential equations	Cognit	ive	Anal	yzing				
CO 4	Apj and	oly linea econom	r difference equation to solve problems in finance ics	Cognit	ive	App	lying				
CO 5	Ide: mod	ntify the	e solutions of the given problems that can be ough graphs	Cognit	ive	App	lying				
UNIT	1 Mat	hematica	Modeling through Ordinary Differential Equations of Fi	rst order			9				
Linear	Growt	n and D	ecay Models - Non-Linear Growth and Decay M	odels –	Comp	artment	Models –				
Dynan	nics pro	blems –	Geometrical problems								
UNIT	2 Mat	hematica	Modeling through Systems of Ordinary Differential Equ	ations of	First (Order	9				
Popula	ation Dy	mamics	- Epidemics - Compartment Models - Economics	-Medic	ine, A	Arms Rac	e, Battles				
and In	ternatio	nal Trad	e – Dynamics								
UNIT	3 Mat	hematica	Modeling through Ordinary Differential Equations of Se	econd Or	der		9				
Planetary Motions - Circular Motion and Motion of Satellites - Mathematical Modeling through Line											
Differential Equations of Second Order –Miscellaneous Mathematical Models											
UNIT	4 Mat	hematica	Modeling through Difference Equations	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			9				
Simple	e Model	s – Basi	Theory of Linear Difference Equations with Cons	stantCoe	tticie	nts – Eco	nomics				
INIT 5 Mathematical Modeling through Craphs											
UNIT	UNIT 5Mathematical Modeling through Graphs9										

Solutions that can be Modeled through Graphs – Mathematical Modeling in Terms of Directed Graphs,											
Signed Graphs, Weighted Digraphs and Unoriented Graphs											
LECTURE45TUTORIAL0PRACTICAL0TOTAL45											
TEXT BOOK							-				
1.J.N. Kapur, N	Iathematical I	Modeling, Wiley	y Eastern	Limited, New Dell	ni, 1988						
REFERENCE											
1.J. N. Kapur, M	Mathematical	Models in Biolo	ogy and N	Medicine, Affiliated	East –We	est Press Pvt Lin	nited,				
New Delhi, 19											

COs Vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	3	3	1	2	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	11	15	5	6	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1
0 - No Relation, 1 – Lo	w Relatio	on, 2- Me	edium Re	elation, 3	- High R	elation			
1-5→1, 6-10→2, 11-15	→3								

COU	Р	С					
COU	IRSE C	CODE	YMA3E3	3	0	0	3
С	Р	A		L	Т	Р	Н
3	0	0		3	0	0	3
PRER	EQUIS	SITE	Probability and Statistics				
On su	ccessfu	l compl	etion of this course, the students will be able to):			
			COURSE OUTCOMES	DOMA	IN	LEV	/EL
CO 1	Exj Edi	plain ba tor and 1	sic concepts of SPSS, working with the Data Plotting of Charts using Bar and Pie diagram	Cogniti	ve	Unders	tanding
CO 2	Exj disj	plain mo	easures of central tendencies and measures of using SPSS	Understan	Unders	tanding	
CO 3	Uti sigi test	lize co nificance , indepe	ncept of testing hypothesis for finding e level for the given data using one sample t- ndent sample t-test and paired t-test in SPSS	Cogniti	ve	Appl	lying
CO 4	Ap squ	ply One are test	-way ANOVA, two-way ANOVA and Chi- for the given data in SPSS	Cogniti	ve	Appl	lying
CO 5	Cor cor	mpare f	he relationship for the datausing methods of and regression in SPSS	Cogniti	ve	Appl	lying
UNIT	1						9
Introd	uction t	o SPSS -	- Starting SPSS – SPSS Main Menus – Working w	ith the Da	ta Edito	or-SPSS	5 Viewer
– Impo	orting a	nd Expo	rting data. Plotting of Charts: Simple Bar diagra	am, Multip	le Bar	Diagram	and Pie
Diagra	ım.						
UNIT	2						9
Descri	ptive S	tatistics	and Frequencies using SPSS. Measures of cen	tral tender	ncies: A	Arithmet	ic mean,
Media	n, Mod	e, Geon	netric mean and Harmonic Mean. Measures of	Dispersio	n: Rang	ge, inter	quartile
range,	Mean I	Deviatio	n and Standard deviation. Measures of Skewness	s and Kurt	osis.		
UNIT	3						9
Testin	g of Hy	pothesis	: Type I error and Type II Errors – Concept of	p values –	Basic (Concept	s of One
Sampl	e t-test,	Indeper	dent Samples t-test, Paired samples t-test using S	SPSS with	interpre	etation.	
UNIT	4						9

Analysis of Variance: Basic concepts of ANOVA – One Way and Two-Way ANOVA using SPSS with												
interpretation. Chi-square Test for Independence of attributes using SPSS.												
UNIT 5							9					
Correlation: Karl Pearson's coefficient of Correlation - Spearman's Rank correlation - Simple linear												
Regression usin	Regression using SPSS with interpretation.											
LECTURE45TUTORIAL0PRACTICAL0TOTAL45												
TEXT BOOK												
1.Ajai J Gaur a	nd Sanjay S	. Gaur (2008): S	Statistica	al Methods for Pra	ctice and Res	earch: A guide to	data					
analysis using S	SPSS, First I	Edition, Sage Pu	blicatio	18								
REFERENCE	REFERENCES											
1. Andy Field.	.(2011); Dis	covering Statisti	cs Using	g SPSS, Sage Publ	ications.							

2. Hinton P R, Brownlow C, McMurray, I. and Cozens, B. (2004) SPSS Explained, Routledge

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	2	1	3	1	0	1	1	
CO 2	3	3	2	1	3	1	0	1	1	
CO 3	3	3	3	2	3	1	1	1	1	
CO 4	3	3	3	2	3	1	1	1	1	
CO 5	3	3	3	2	3	1	1	1	1	
TOTAL	15	15	13	8	15	5	3	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
1 - 5 - 1, 6 - 10 - 2, 11 - 15 - 3										

SEMESTER IV

SEMESTER	COURSE CODE	COURSE NAME		Т	Р	Н	С
IV	YMA401	PROJECT WORK		0	0	30	8
		TOTAL				30	8