Department of Computer Science and Engineering

Periyar Nagar,Vallam Thanjavur - 613 403,Tamil Nadu,India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: $\frac{headcse@pmu.edu}{headcse@pmu.edu}$ Web: www. pmu.edu

FACULTY OF COMPUTING SCIENCES AND ENGINEERING

B.TECH. - COMPUTER SCIENCE AND ENGINEERING

(Applicable for the students admitted in the Academic year 2021-2022 onwards)

FOUR YEAR FULL TIME

CURRICULUM AND SYLLABUS (2021)

I – VIII SEMESTERS

APPROVAL							
BOS	ACM						
19.08.2021	30.09.2021						

VISION	To be a University of global dynamism with excellence in knowledge
	and innovation ensuring social responsibility for creating an egalitarian
	society.

MISSION	IM1	Offering well balanced programmes with scholarly faculty and state-of-art facilities to impart high level of knowledge.
	IM2	Providing student - centered education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
	IM3	Involving progressive and meaningful research with concern for sustainable development.
	IM4	Enabling the students to acquire the skills for global competencies.
	IM5	Inculcating Universal values, Self-respect, Gender equality, Dignity and Ethics.

CORE VALUES

- **♣** Student centric vocation
- **♣** Academic excellence
- ♣ Social Justice, equity, equality, diversity, empowerment, sustainability
- ♣ Skills and use of technology for global competency.
- Continual improvement
- Leadership qualities.
- **♣** Societal needs
- **↓** Learning, a life long process
- **♣** Team work
- Lintrepreneurship for men and women
- Rural development
- ♣ Basic, Societal, and applied research on Energy, Environment, and Empowerment.

DEPARTMENT OF COMPUTER SCIENCIC AND ENGINEERING

VISION	To be a leader in imparting advanced technical knowledge and skills in the field of
	Computer Science and Engineering with societal consciousness.

MISSION	DM1	To offer programmes with state of art facilities in the field of Computer
		Science and Engineering.
	DM2	To prepare the students to become globally competent by enhancing their
		skills to work in IT Industries and R & D organizations.
	DM3	To prepare the students to have universal values and an ability to relate
		engineering issues with environmental consciousness to broader social
		context.
	DM4	To promote significant research in cutting edge computing technologies.

Table: 1 Mapping of Institute Mission (IM) and Department Mission (DM)

	IM1	IM2	IM3	IM4	IM5
DM1	3	3	3	1	1
DM2	2	2	2	3	2
DM3	2	2	1	2	3
DM4	1	1	2	2	2

2- Medium 3 - High1-Low

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1	Graduates will be successful engineers in their career.									
PEO2	Graduates will demonstrate diversified technical, professional and entrepreneurial skills in Computer Science and Engineering and allied discipline.									
PEO3	Graduates will communicate, plan, coordinate, organize, make decisions and lead the team effectively.									
PEO4	Graduates will be a lifelong learner and exhibit ethical and social responsibility.									

Table: 2 Mapping of Program Educational Objectives (PEOs) with Department Mission (DM)

PEO / DM	DM1	DM 2	DM 3	DM4
PEO 1	3	3	2	3
PEO 2	3	3	2	3
PEO 3	3	2	2	2
PEO 4	3	2	3	3

2-Medium3-High 1- Low

GRADUATE ATTRIBUTES

- 1. **Knowledge base for Engineering:** Demonstrate competence in mathematics, natural sciences, engineering fundamentals and specialized engineering knowledge appropriate to the program.
- 2. **Problem Analysis:** Identify, formulate, analyze and solve diverse engineering problems.
- 3. **Design:** Solution for complicated open–ended engineering problems and design the components with appropriate standards to meet specified needs with proper attention to public health, safety, environment, and society.
- 4. **Experimental Investigation:** Technical skills to conduct investigation, interpretation of observed data and provide solution for multifaceted problems.
- 5. **Modern Engineering tools usage**: Acquire, select, manipulate relevant techniques, resources and advanced engineering ICT tools to operate simple to complex engineering activities.
- 6. **Impact of engineering on society:** Provide a product / project for use by the public towards their health, welfare, safety, and legal issues to serve society effectively.
- 7. **Environment and Sustainability:** Design eco-friendly and sustainable products in demonstrating the technology development to meet present and future needs.
- 8. **High Ethical Standards:** Practice ethical codes and standards endorsed by professional engineers.
- 9. **Leadership and teamwork:** Perform as an individual and as a leader in diverse teams and in multi-disciplinary scenarios.
- 10. **Communication Skills:** Professional communication with society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.
- 11. Project management and Finance: Appropriate in incorporating finance and business practices including project, risk and change management in the practice of engineering by understanding their limitations.
- 12. **Life-long learners:** Update the technical needs in a challenging world in equipping themselves to maintain their competence.

PROGRAM OUTCOMES (POs) & PROGRAM SPECIFIC OUTCOME (PSOs)

	PROGRAM OUTCOMES							
	Engineering knowledge: Apply the knowledge of mathematics, science,							
PO 1	engineering fundamentals, and an engineering specialization to the solution of							
	complex engineering problems.							
200	Problem analysis: Identify, formulate, review research literature, and analyze							
PO2	complex engineering problems reaching substantiated conclusions using first							
	principles of mathematics, natural sciences, and engineering sciences							
PO 3	Design/development of solutions: Design solutions for complex engineering							
103	problems and design system components or processes that meet the specified							
	needs with appropriate consideration for the public health and safety							
PO 4	Conduct investigations of complex problems: Use research-based knowledge							
	and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.							
	Modern tool usage: Create, select, and apply appropriate techniques, resources,							
PO 5	and modern engineering and IT tools including prediction and modeling to							
	complex engineering activities with an understanding of the limitations.							
	The engineer and society: Apply reasoning informed by the contextual							
PO 6	knowledge to assess societal, health, safety, legal and cultural issues and the							
	consequent responsibilities relevant to the professional engineering practice.							
	Environment and sustainability: Understand the impact of the professional							
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the							
	knowledge of, and need for sustainable development.							
PO 8	Ethics: Apply ethical principles and commit to professional ethics and							
	responsibilities and norms of engineering practice.							
PO 9	Individual and teamwork: Function effectively as an individual, and as a							
	member or leader in diverse teams, and in multidisciplinary settings.							
	Communication: Communicate effectively on complex engineering activities							
PO 10	with the engineering community and with society at large, such as, being able to							
	comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.							
	Project management and finance: Demonstrate knowledge and understanding							
DO 11	of the engineering and management principles and apply these to one's own work,							
PO 11	as a member and leader in a team, to manage projects and in multidisciplinary							
	environments.							
	Life-long learning: Recognize the need for and have the preparation and ability							
PO 12	to engage in independent and life-long learning in the broadest context of							
technological change.								
	PROGRAM SPECIFIC OUTCOMES							
	Ability to understand and analyze the computer engineering principles and to							
PSO1	acquire competency in design and development in the emerging areas including							
1301	Internet of Things, Data Science, Computer Vision, Computer Networks and							
	Security.							
6	B.Tech CSE – Curriculum and Syllabus (2021)							

PSO₂

Ability to evolve as an ethical computer engineer with up-to-date technical skills to solve societal and environmental problems in an innovative way.

Table 3 Mapping of Program Outcomes (POs) with Program Educational Objectives (PEOs)

PEO / PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
PEO 1	3	3	3	3	3	2	1	1	1	1	1	1	3	2
PEO 2	3	3	3	3	3	2	2	1	1	2	2	1	3	2
PEO 3	1	1	1	1	-	1	-	1	2	2	2	2	1	1
PEO 4	1	1	1	1	1	2	2	2	2	1	2	1	-	1

0-No Relation 1- Low Relation 2 - Medium Relation 3-High Relation

CURRICULUM AND SYLLABUS

SEMESTER I

S.No.	Description	AICTE	Course	Courses			edi	its	Hours			
		Abbr.	Code		L	T	P	Total	L	T	P	Total
1	MA-I	BSC	XMA101	Calculus and Linear Algebra	3	1	0	4	3	1	0	4
2	BE	ESC	XBE102	Electrical and Electronics	3	1	0	4	3	1	0	4
				Engineering Systems	3	1	0	4	3	1	0	4
3	С	BSC	XAC103	Applied Chemistry for Engineers	3	1	0	4	3	1	0	4
4	PPS-T	ESC	XCS104	Basics of Electronic Devices and	3	0	0	3	3	0	0	3
				Circuits.	3	U	U	3	3	U	U	3
5	SC	HSMC	XGS105	Speech Communication	0	1	2	3	0	1	4	5
6	UMAN-I	MC	XUM106	Constitution of India	0	0	0	0	3	0	0	3
7	BEL	ESC	XBE107	Electrical and Electronics	0	Λ	1	1	0	0	_	2
				Engineering Systems Laboratory	U	0	1	1	U	U	2	2
8	CL	BSC	XAC108	Applied Chemistry for Engineers	0 0		1	1	0	0	2	2
				Laboratory		0	1	1	U	U		2
				Total				20				27

Total Credits – 20 Total Hours- 27

SEMESTER II

S.No.	Description	AICTE	Course	Courses		Cr	edit	ts	Hours			
		Abbr.	Code		L	T	P	Total	L	T	P	Total
1.	MA-II	BSC	XMA201	Calculus, Ordinary								
				Differential Equations and	3	1	0	4	3	1	0	4
				Complex Variable								
2.	PPS-T	ESC	XCP202	Programming for Problem	3	0	0	3	3	0	0	3
				Solving	3	U	U)	3	U	U	3
3	P	BSC	XAP203	Applied Physics for Engineers	3	1	0	4	3	1	0	4
4	TC	HSMC	XGS204	Technical Communication	2	0	0	2	2	0	0	2
5	Works	ESC	XWP205	Workshop Practices	1	0	2	3	1	0	4	5
6	EM/BT	ESC	XEM206	Engineering Mechanics	3	0	0	3	3	0	0	3
7	PPS-L	ESC	XCP207	Programming for Problem	0	0	1	1	0	0	2	2
				Solving Laboratory	U	U	1	1	U	U		2
8	PL	BSC	XAP208	Applied Physics for Engineers	0	0	1	1	0	0	2	2
				Laboratory	U	U	1		U	U		2
				Total				21				25

Total Credits – 21 Total Hours- 25

SEMESTER III

S.No.	Description	AICTE	Course	Courses		Cr	edi	ts		I	Ιοι	ırs
		Abbr.	Code		L	T	P	Total	L	T	P	Total
1.	MA-III	BSC	XPS301	Probability and Statistics	3	0	0	3	3	0	0	3
2.	PCC T	PCC	XCS302	Digital Electronics	3	1	0	4	3	1	0	4
3.	PCC-T	PCC	XCS303	Data Structure & Algorithms	3	0	0	3	3	0	0	3
4.	PCC-T	PCC	XCS304	Object Oriented Programming		0	0	3	3	0	0	3
5.	PCC-T	PCC	XCS305	Signals & Systems	3	1	0	4	3	1	0	4
6.	MNGT-I	HSMC	XUM306	Entrepreneurship Development	2	0	0	2	2	0	0	2
7.	UMAN-I	MC (HSMC)	XUM307	Universal Human Values 2: Understanding Harmony and Gender	2	1	0	3	2	1	0	3
8	PCC-L	PCC	XCS308	Data Structure & Algorithms Laboratory	0	0	1	1	0	0	2	2
9	PCC-L	PCC	XCS309	Object Oriented Programming Laboratory	0	0	1	1	0	0	2	2
10	IPT-I	PROJ	XCS310	In-plant Training - I	-	-	-	1	-	-	-	-
				Total				25				26

Total Credits - 25 Total Hours - 26 SEMESTER IV

S.No.	Description		Course	Courage		Cre	dit	S	Н	ou	rs	
5.110.	Description		Code	Courses	L	T	P	Total	\mathbf{L}	T	P	Total
1.	MA-IV	BSC	XCS401	Discrete Mathematics	3	0	0	3	3	0	0	3
2.	PCC T	PCC	XCS402	Computer Organization & Architecture	3	1	0	4	3	1	0	4
3.	PCC-T	PCC	XCS403	Operating Systems	3	0	0	3	3	0	0	3
4.	PCC-T	PCC	XCS404	Design & Analysis of Algorithms	3	0	0	3	3	0	0	3
5.	MNGT-II	HSMC	XUM009	Economics for Engineers	3	0	0	3	3	0	0	3
6	UMAN-III	MC	XUM003	Disaster Management	0	0	0	0	3	0	0	3
7	PCC-L	PCC	XCS407	IT Workshop Laboratory	0	0	1	1	0	0	2	2
8	PCC-L	PCC	XCS408	Operating Systems Laboratory	0	0	1	1	0	0	2	2
9	PCC-L	PCC	XCS409	Design and Analysis of Algorithms Laboratory	0	0	1	1	0	0	2	2
				Total				19				25

Total Credits – 19 Total Hours- 25

SEMESTER V

C No	Decemention		Course	Courses		Cı	edit	S		H	lour	`S
5.110	Description		Code	Courses	L	T	P	Total	L	T	P	Total
1	PCC T	PCC	XCS501	Formal Language and Automata Theory	3	0	0	3	3	0	0	3
2	PCC-T	PCC	XCS502	Database Management Systems	3	0	0	3	3	0	0	3
3	PCC-T	PCC	XCS503	Software Engineering	3	0	0	3	3	0	0	3
4	PCC-T	PCC	XCS504	Computer Networks	3	1	0	4	3	1	0	4
5	PEC-I	PEC	XCSE**	Professional Elective Course	3	0	0	3	3	0	0	3
6	OE I	OE	XOE**	Open Elective Course	3	0	0	3	3	0	0	3
7	PCC-L	PCC	XCS507	Database Management Systems Laboratory	0	0	1	1	0	0	2	2
8	PCC-L	PCC	XCS508	Software Engineering Laboratory	0	0	1	1	0	0	2	2
9	IPT-II	PROJ	XCS509	In-Plant Training – II	-	-	ı	1	-	-	-	-
				Total				22				23

Total Credits -22 Total Hours -23

SEMESTER VI

S.No.	Description	AICTE	Course	Courses		Cre	dits		Н	our	s	
5.110.	Description	Abbr.	Code	Courses	L	T	P	Total	L	T	P	Total
1	PCC T	PCC	XCS601	Compiler Design	3	0	0	3	3	0	0	3
2	PCC-T	PCC	XCS602	Big Data Analytics	3	0	0	3	3	0	0	3
3	PEC-II	PEC	XCSE**	Professional Elective courses	3	0	0	3	3	0	0	3
4	OE II	OE	XOE**	Open Elective Course	3	0	0	3	3	0	0	3
5	ELS	HSMC	XGS605	Professional Skills	1	0	2	3	1	0	4	5
6	UMAN-IV/ PCC-T	PCC	XCS606	Cyber Security	3	0	0	3	3	0	0	3
9	PCC-L	PCC	XCS607	Compiler Design Laboratory	0	0	1	1	0	0	2	2
10	PCC-L	PCC	XCS608	Big Data Analytics Laboratory	0	0	1	1	0	0	2	2
				Total				20				24

Total Credits – 20 Total Hours- 24

SEMESTER VII

C No	Description	AICTE	Course	Courses		Cro	edit	S	Н	ours	5	
5.110.	Description	Abbr.	Code	Courses	L	T	P	Total	L	T	P	Total
1	PCC T	PCC	XCS701	Web Technology	3	0	0	3	3	0	0	3
2	PCC-T	PCC	XCS702	Machine Learning	3	0	0	3	3	0	0	3
3	PEC-III	PEC	XCSE**	Professional Elective courses	3	0	0	3	3	0	0	3
4	OE III	OE	XOE**	Open Elective Courses	3	0	0	3	3	0	0	3
5	UMAN-V	MC	XUM008	Environmental science	0	0	0	0	3	0	0	3
6	PCC-L	PCC	XCS706	Web Technology Laboratory	0	0	1	1	0	0	2	2
7	PCC-L	PCC	XCS707	Machine Learning Laboratory	0	0	1	1	0	0	2	2
8	Proj I	PROJ	XCS708	Project Work (Phase-I)	0	0	2	2	0	0	4	4
9	IPT III	PROJ	XCS709	In-plant Training - III	-	-	-	2	-	-	-	-
				Total				18				23

Total Credits – 18 Total Hours- 23

SEMESTER VIII

C No	Description	AICTE	Course	Courses		Cr	edit	ts	Н	our	S	
5.110.	Description	Abbr.	Code	Courses	L	T	P	Total	L	\mathbf{T}	P	Total
1	PEC-IV	PEC	XCSE**	Professional Elective courses	3	0	0	3	3	0	0	3
2	OE IV	OE	XOE**	Open Elective Courses	3	0	0	3	3	0	0	3
3	OE V	OE	XOE**	Open Elective Courses	3	0	0	3	3	0	0	3
4	Proj II	PROJ	XCS804	Project Work (Phase-II)	0	0	9	9	0	0	18	18
				Total				18				27

Total Credits -18 Total Hours-27

Grant Total Credits: 163

LIST OF ELECTIVES

The Professional Elective Courses are offered from the following Specialized Threads:

S. No.	Threads
I.	Theory and Algorithms
II.	Applications
III.	Data Science and Machine Intelligence
IV.	Systems

Semester V

S.No	Descriptio	AICTE	Course	Courses		Credits			Н	ou	rs	
5.110	n	Abbr.	Code	Courses	L	T	P	Total	L	T	P	Total
1	PEC-I	PEC	XCSE51	Graph Theory	3	0	0	3	3	0	0	3
2	PEC-I	PEC	XCSE52	Real Time Systems	3	0	0	3	3	0	0	3
3	PEC-I	PEC	XCSE53	Soft Computing	3	0	0	3	3	0	0	3
4	PEC-I	PEC	XCSE54	Human Computer Interaction	3	0	0	3	3	0	0	3

Semester VI

C No	Description	AICTE	Course	Courses		Cr	edi	ts	Н	ou	rs	
5.110	Description	Abbr.	Code	Courses	L	T	P	Total	L	T	P	Total
1	PEC-II	PEC	XCSE61	Information Theory and	3	0	0	3	3	Λ	0	3
				Coding	3	U	U	3	3	U	U	3
2	PEC-II	PEC	XCSE62	Distributed Systems	3	0	0	3	3	0	0	3
3	PEC-II	PEC	XCSE63	Data Mining	3	0	0	3	3	0	0	3
4	PEC-II	PEC	XCSE64	Cloud Computing	3	0	0	3	3	0	0	3
5	PEC-II	PEC	XCSE65	Mobile Communication	3	0	0	3	3	0	0	3

Semester VII

S.N	Decemintion	Description AICTE Abbr.	Course	Courses		Cr	edi	its	Н	ou	rs	
0.	Description	Abbr.	Code	Courses	L	T	P	Total	L	\mathbf{T}	P	Total
1	PEC-III	PEC	XCSE71	Parallel Algorithms	3	0	0	3	3	0	0	3
2	PEC-III	PEC	XCSE72	Internet of Things	3	0	0	3	3	0	0	3
3	PEC-III	PEC	XCSE73	Artificial Intelligence	3	0	0	3	3	0	0	3
4	PEC-III	PEC	XCSE74	Image Processing	3	0	0	3	3	0	0	3
5	PEC-III	PEC	XCSE75	Mobile Application Development	3	0	0	3	3	0	0	3

Semester VIII

S.N	Descriptio	AICTE	Course	Courses	Cre		edi	its	Η	ou	rs	
0.	n	Abbr.	Code	Courses	L	T	P	Total	L	T	P	Total
1	PEC-IV	PEC	XCSE81	Queuing Theory and Modeling	3	0	0	3	3	0	0	3
2	PEC-IV	PEC	XCSE82	Ad-Hoc and Sensor Networks	3	0	0	3	3	0	0	3
3	PEC-IV	PEC	XCSE83	Information Retrieval	3	0	0	3	3	0	0	3
4	PEC-IV	PEC	XCSE84	Cryptography and Network Security	3	0	0	3	3	0	0	3
5	PEC-IV	PEC	XCSE85	Project Management	3	0	0	3	3	0	0	3

Open Electives

S No	Course Code	e Courses		Cre	dit	S		Hours				
5.110.	Course Code	Courses	L	T	P	Total	L	T	P	Total		
1	XCSOE1	Web Design I	3	0	0	3	3	0	0	3		
2	XCSOE2	Web Design II	3	0	0	3	3	0	0	3		
3	XCSOE3	Multimedia Design and	3	0	0	3	3	0	0	3		
		Development			Ů))	·		
4	XCSOE4	Computer Installation and Troubleshooting		0	0	3	3	0	0	3		

SEMESTER I

COU	COURSE CODE XMA101			L	T	P	С
COURSE NAME			Mathematics I (Calculus and Linear Algebra)	3	1	0	4
С	P	A		L	T	P	Н
3	0.5	0.5		3	1	0	4

PREREQUISITE: Differentiation and Integration

Course	e outcomes:	Domain	Level
CO1	Apply orthogonal transformation to reduce quadratic form to canonical forms.	Cognitive	Apply
CO2	Apply power series to tests the convergence of the Sequences and series. Half range Fourier sine and cosine series.	Cognitive	Apply
CO3	Find the derivative of composite functions and Implicit functions. Euler's theorem and Jacobian	Cognitive	Remember
CO4	Explain the functions of two variables by Taylors expansion, by finding maxima and minima with and Without constraints using Lagrangian Method. Directional derivatives, Gradient, Curl and Divergence.	Cognitive	Understand
CO5	Apply Differential and Integral calculus to notions of Curvature and to improper integrals.	Cognitive	Apply

Unit 1: Matrices	9+3	

Linear Transformation - Eigen values and Eigen vectors - Properties of Eigen values and Eigen vectors - Cayley-Hamilton Theorem - Diagonalisation of Matrices - Real Matrices: Symmetric - Skew-Symmetric and Orthogonal Quadratic form - canonical form - Nature of Quadratic form and Transformation of Quadratic form to Canonical form (Orthogonal only).

Unit 2: Sequences and series

9+3

Sequences: Definition and examples-Series: Types and convergence- Series of positive terms — Tests of convergence: comparison test, Integral test and D'Alembert's ratio test-. Fourier series: Half range sine and cosine series- Parseval's Theorem.

Unit 3: Multivariable Calculus: Partial Differentiation

9+3

Limits and continuity —Partial differentiation — Total Derivative — Partial differentiation of Composite Functions: Change of Variables — Differentiation of an Implicit Function - Euler's Theorem- Jacobian.

Unit 4: Multivariable Calculus: Maxima and Minima and Vector Calculus

9+3

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers – Directional Derivatives - Gradient, Divergence and Curl.

Unit 5: Differential and Integral Calculus

9+3

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS

- 1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5).

REFERENCES

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
- 3. D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.
- 4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

Mapping of COs with GAs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	2	0	0	2	0	0	0	0	1	0	2
CO 2	3	1	0	0	0	0	0	0	0	1	0	1
CO 3	3	1	0	0	0	0	0	0	0	1	0	1
CO 4	3	2	0	0	0	0	0	0	0	1	0	1
CO 5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled	3	2	0	0	1	0	0	0	0	1	0	2
Value												

$$1-5 \to 1$$
, $6-10 \to 2$, $11-15 \to 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE	XBE102	L	T	P	C
COURSE NAME	ELECTRICAL AND ELECTRONICS	3	1	0	4
	ENGINEERING SYSTEMS				
PREREQUISITES	Physics	L	T	P	H
C: P: A	3:0:0	3	1	0	4

Course C	Outcomes	Domain	Level
CO1	Define and Relate the fundamentals of electrical	Cognitive	Understand
	parameters and build and explain AC, DC circuits by	_	
	Using measuring devices		
CO2	Define and Explain the operation of DC and AC	Cognitive	Understand
	machines.		
CO3	Recall and Illustrate various semiconductor devices	Cognitive	Understand
	and their applications and displays the input output		
	characteristics of basic semiconductor devices.		
CO4	Relate and Explain the number systems and logic	Cognitive	Understand
	gates. Construct the different digital circuit.		
CO5	Label and Outline the different types of	Cognitive	Understand
	microprocessors and their applications.		

UNIT-I: FUNDAMENTALS OF DC AND AC CIRCUITS, MEASUREMENTS 9+3

Fundamentals of DC- Ohm's Law - Kirchhoff's Laws - Sources - Voltage and Current Relations - Star/Delta Transformation - Fundamentals of AC - Average Value, RMS Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoidal quantities - Simple Series, Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).

UNIT-II: ELECTRICAL MACHINES

9 + 3

Construction, Principle of Operation, Basic Equations, Types and Application of DC Generators, DC motors - Basics of Single-Phase Induction Motor and Three Phase Induction Motor-Construction, Principle of Operation of Single-Phase Transformer, Three phase transformers, Auto transformer.

UNIT-III: SEMICONDUCTOR DEVICES

9 + 3

Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications.

UNIT- IV: DIGITAL ELECTRONICS

9 + 3

Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subtractors, multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.

UNIT- V: MICROPROCESSORS

9+3

Architecture, 8085, pin diagram of 8085, ALU timing and control unit, registers, data and address bus, timing and control signals, Instruction types, classification of instructions, addressing modes, Interfacing Basics: Data transfer concepts – Simple Programming concepts.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS

- 1. Metha V.K, Rohit Mehta, 2020. Principles of Electronics, 12th ed, S Chand Publishing.
- 2. Albert Malvino, David J.Bates., 2017. Electronics Principles. 7th ed, Tata McGraw-Hill. New Delhi
- 3. Rajakamal, 2014. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 2015. Digital Design. Prentice Hall of India.
- 5. Ramesh, S. Gaonkar, 2013, Microprocessor Architecture, Programming and its Applications with the 8085, 6th ed, India: Penram International Publications.

REFERENCE BOOKS

- 1. Corton, H., 2004 Electrical Technology. CBS Publishers & Distributors.
- 2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
- 3. Jacob Millman and Christos, C. Halkias, 1967, Electronics Devices, New Delhi: McGraw-Hill.
- 4. Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems, Tokyo: McGraw-Hill, Kogakusha Ltd.
- 5. Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

E-REFERENCES

- 1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.
- 2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.
- 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.
- 4. Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore.

Mapping of COs with GAs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3	1	1	1	1	0	0	1	1	1	0
CO 2	3	3	1	1	1	1	0	0	1	1	1	0
CO 3	2	2	2	1	2	2	1	1	1	1	1	0
CO 4	2	2	1	1	1	1	1	1	1	1	1	0
CO 5	2	2	1	1	1	1	1	1	1	1	1	0
Total	12	12	6	5	6	6	3	3	5	5	5	0
Scaled	3	3	2	1	2	2	1	1	1	1	1	0

COURSE CODE	XAC103	L	T	P	C
COURSE NAME	APPLIED CHEMISTRY FOR ENGINEERS	3	1	0	4
PREREQUISITES	NIL	L	T	P	H
C:P:A	2.5:1:0.5	3	1	0	4

COURSE OBJECTIVES

• Understand the application of chemistry in engineering.

COUR	RSE OUTCOMES	DOMAIN	LEVEL				
CO1	<i>Identify</i> the periodic properties and <i>demonstrate</i> the various water quality parameters like hardness and alkalinity.	I Comitive I is					
CO2	<i>Interpret</i> the bulk properties and processes using thermodynamic, kinetic and electrochemical aspects.	Cognitive	Understand				
CO3	<i>Illustrate</i> the wave mechanical properties of electrons in atomic models and <i>Identify</i> the possible orbital energy levels in atoms, molecules and intermolecular forces.	Cognitive	Apply				
CO4	<i>Explain</i> the theory, instrumentation, interpretation and applications of Electronic, Vibrational, Rotational and NMR spectroscopy techniques .	Cognitive	Analyse				
CO5	Apply the stereochemistry concept in a proper perspective and Predict the various types of fundamental reaction mechanisms involved in organic reactions.	Cognitive	Apply				
UNIT	UNIT I PERIODIC PROPERTIES AND WATER CHEMISTRY						

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. **Water Chemistry**-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity.

UNIT II USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA

12L+3T

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board (PCB).

UNIT III ATOMIC AND MOLECULAR STRUCTURE

10L + 37

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H₃, H₂F and HCN and trajectories on these surfaces.

UNIT IV | SPECTROSCOPIC TECHNIQUES AND APPLICATIONS

7L+3T

Principles of spectroscopy and selection rules. Electronic spectroscopy-chromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in

medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

UNIT V STEREOCHEMISTRY AND ORGANIC REACTIONS

8L+3T

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule-Aspirin and paracetamol.

Aspirin and paracetamor.										
LECT	ΓURE:45	TUTORIAL:15	PRACTICAL:0	TOTAL:60						
TEXT BOOKS										
1.	Puri B.R. Shar	rma, L.R., Kalia K.K. Princ	eiples of Inorganic Chemis	stry, (23 rd edition), New						
	Delhi, Shoban	LalNagin Chand & Co., 19	93.							
2.	Lee. J.D. Con	cise Inorganic Chemistry, U	JK, Black well science, 20	006.						
3.	Trapp. C, Ca	ady, M. Giunta. C, Atk	ins's Physical Chemistry	v, 10 th Edition, Oxford						
	publishers, 20	14.								
4.		Lewis D., Elements of Phy	sical Chemistry, London,	Mac Millan & Co. Ltd,						
	1983.									
5.		and Boyd R.N. Organic C	hemistry (6th edition), Ne	w York, Allyn						
	& Bacon Ltd.,		th.							
6.		Fundamentals of Molecul	ar Spectroscopy, (3 th Editi	ion), McGraw-Hill Book						
	Company, Eu	1	d-							
7.		d ArunBahl, Advanced C	Organic Chemistry, (4 th	edition), S./ Chand &						
	1 0	New Delhi, 1977.								
8.		ereochemistry: Conformati	on and mechanism, (9 th Eo	dition), New Age						
	International I	Publishers, 2017.								
REFE	ERENCES									
1.	Puri B R Sh	arma L R and Madan S	S Pathania, "Principles of	of Physical Chemistry",						
	Vishalpublish	ing Co., Edition 2004.								
2.	Kuriocose, J (C and Rajaram, J, "Engine	ering Chemistry", Volume	e I/II, Tata McGraw-Hill						
	Publishing Co. Ltd. New Delhi, 2000.									

E- RI	E- REFERENCES								
1.	http://www.mooc-list.com/course/chemistry-minor-saylororg								
2.	https://www.canvas.net/courses/exploring-chemistry								
3.	http://freevideolectures.com/Course/2263/Engineering-Chemistry-I								
4.	http://freevideolectures.com/Course/3001/Chemistry-I								
5.	http://freevideolectures.com/Course/3167/Chemistry-II								
6.	http://ocw.mit.edu/courses/chemistry/								

Mapping of COs with GAs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	2	2	2	2	1	2	1	1	1	0	1	1
CO 2	2	2	0	1	1	0	0	0	0	0	0	1
CO 3	2	2	2	1	1	2	0	0	0	0	0	1
CO 4	2	2	1	2	1	2	1	1	1	0	1	1
CO 5	2	2	1	3	1	2	0	0	0	0	1	1
Total	10	10	6	9	5	8	2	2	2	0	3	5
Scaled Value	2	2	2	2	1	2	1	1	1	0	1	1

COUR	SE CO	DE	XCS104	L	T	P	C	
COURS	SE NA	ME	BASIC ELECTRONIC DEVICES AND CIRCUITS 3 0 0					
PREREQUISITES		ITES	PHYSICS AND MATHEMATICS	L	T	P	Н	
С	P	A		2	Λ	Λ	2	
3	0	0		3	U	U	3	

LEARNING OBJECTIVES

- To introduce the operation of different types of semiconductor devices.
- To familiarize the integrated circuits technology.
- To provide knowledge on the characteristics of up to electronic devices

COUR	SE OUTCOMES:	Domain	Level
CO1	Define the principles of semiconductor physics.	Cognitive	Remember
CO2	Describe the operation and characteristics of semiconductor diodes.	Cognitive	Understand
CO3	Understand the operation and Characteristics of BJT and FET	Cognitive	Understand
CO4	Discuss the operation and characteristics of power electronic and optoelectronic diodes	Cognitive	Understand
CO5	<i>Illustrate</i> the Integrated Circuit fabrication processes.	Cognitive	Understand

UNIT - I Introduction To Semiconductor Technology

9

Review of Quantum Mechanics, Electrons in periodic Lattices, E- k diagrams. Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; sheet resistance, design of resistors.

UNIT - II Junction Diodes And Applications

9

Generation and recombination of carriers; Poisson and continuity equation P-N junction characteristics, I-V characteristics, and small signal switching models; Avalanche breakdown, Zenerdiode, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier and Voltage Regulators.

UNIT - III Transistors And Applications

9

Bipolar Junction Transistor, I-V characteristics, NPN and PNP Transistors, Ebers-Moll Model, MOS capacitor, C-V characteristics, Junction Field Transistor, VI Characteristics, MOSFET,I-V characteristics, and small signal models of MOS transistor.

UNIT - IV Special Electronic Devices

9

SCR, DIAC, TRIAC, LED, LDR, LCD, Photodiode, Photo Transistor and solar cell.

UNIT - V Introduction To Integrated Circuit Technology

9

Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography, etching, chemical vapor deposition, sputtering, twin-tub CMOS process.

HOURS	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	45		0	45

TEXT BOOKS

- 1. Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit Theory" 11th Edition, UBS Publishers, New Delhi, 2013.
- 2. G.Streetman, and S.K.Banerjee, "Solid State ElectronicDevices," 7th edition, Pearson, 2014.
- 3. D.Neamen, D.Biswas "Semiconductor Physics and Devices," McGraw-Hill Education Jacob
- 4. Millman and Christos C.Halkias, "Electronic Devices and Circuits" 3rd Edition, Tata McGraw Hill,New Delhi, 2010.

REFERENCES

- 1. C.T.Sah, "Fundamentals of solid state electronics," World Scientific publishing Co.Inc,1991.
- 2. S.M.Szeand K.N.Kwok, "Physics of Semiconductor Devices," 3rd edition, John Wiley & Sons, 2006.
- 3. Y.Tsividis and M.Colin, "Operation and Modeling of the MOSTransistor, "Oxford University .Press, 2011.
- 4. David A. Bell, "Electronic devices and circuits", Prentice Hall of India, 2004.
- 5. S.Salivahanan, "Electronics devices and circuits". 2nd Edition, Tata McGraw Hill, 2008.

E-REFERENCES

- 1. https://www.digimat.in/nptel/courses/video/108101091/L01.html
- 2. http://nptel.ac.in/courses/117103063/ (Prof. Chitralekha Mahanta, NPTEL, Basic Electronics, IIT-Guwahati)
- 3. http://nptel.ac.in/video.php?subjectId=117103063 (Prof. Gautam Barua, NPTEL, Basic Electronics, IIT-Guwahati)
- 4. http://nptel.ac.in/courses/117101106/ (Prof. A N chandorkar, NPTEL, Analog Electronics, IIT-Bombay)
- 5. https://www.digimat.in/nptel/courses/video/108108112/L01.html

Mapping of COs with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 2	1	2	0	0	0	0	0	0	0	0	0	0	0	0
CO 3	2	1	2	0	0	0	0	0	0	0	0	0	0	0
CO 4	1	1	2	0	0	0	0	0	0	0	0	0	0	0
CO 5	0	0	3	0	1	0	0	0	0	0	0	0	0	0
Total	5	4	7	0	1	0	0	0	0	0	0	0	0	0
Scaled value	3	3	3	0	1	0	0	0	0	0	0	0	0	0

0 - No Relation 1 - Low Relation , 2 - Medium Relation, 3- High Relation

COLI	DCE CODE	VCC105		т	T	ъ	66	<u>C</u>		
	RSE CODE RSE NAME	XGS105		L 0	<u>T</u>	P 2	SS	<u>C</u>		
		SPEECH COMMUNICATION		L	1 T	P	0 SS	<u>э</u> Н		
	REQUISITES C: P: A	2.6:0.4:0		0	1	4	0	<u>н</u> 5		
	RSE OUTCOM		Do	u mai		4				
CO1		If the types of speeches	Cogni			Don	Level Remember			
	, and the second							1		
CO2 Apply the techniques in public speaking Cognitive Apply CO3 Identify the common patterns in organizing a speech Cognitive Remember										
CO3		mmon patterns in organizing a speech	Cogni					r		
CO4	Construct the	nature and style of speaking	Cogni	tive	:	Crea				
CO5	Dugatiaina tha	anasking akilla	Dayah	omi	oto#	Gui	ded			
	Practicing the	speaking skills	Psych	OHIO	HOI	Res	ponse			
UNIT	I – Types of Sp	peeches	- L			1		9		
	Four types of spe									
1.2 - 1.2	Analyzing the au	idience								
		s and supporting materials								
UNIT	II – Public Spe	eaking						9		
2.1 - I	ntroduction to P	ublic Speaking								
2.2 - 0	Competencies No	eeded for successful speech making								
2.3 - 3	Speaking about 6	everyday life situations								
	' III – Organiza	L						9		
	Developing a spe									
	Organizing the s									
		evelopment – conclusion								
	' IV – Presentat							9		
		g the draft speech								
		nniques using ICT tools								
		from different sources								
	V – Activities							9		
5.1 – Reading activities										
5.2 – Creative presentations										
	Media presentati	•								
00	ested Readings:									
(1) Mi	chael Swan. <i>Pra</i>	ctical English Usage. OUP. 2010								

(ii) Sanjay Kumar and Pushp Lata. Communication Skills. Oxford University Press. 2011

Mapping of COs with GAs:

Маррі	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	0	0	0	1	0	0	1	1	3	0	3
CO2	0	0	0	0	1	0	0	1	1	3	0	3
CO3	2	0	0	0	1	0	0	1	1	3	0	3
CO4	3	0	0	0	1	0	0	1	3	3	1	3
CO5	3	0	0	0	1	0	0	1	1	2	1	3
Total	10	0	0	0	5	0	0	5	7	14	2	15
Scaled value	3	0	0	0	1	0	0	1	2	3	1	3

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

COURSE CODE	XUM106	L	T	P	C
COURSE NAME	CONSTITUTION OF INDIA	0	0	0	0
PREREQUISITE:		L	T	P	H
C:P:A	0:0:0	3	0	0	3

COURS	SE OUTCOMES	Domain	Level
CO1	Understand the Constitutional History	Cognitive	Understand
CO2	<i>Understand</i> the Powers and Functions	Cognitive	Understand
CO3	Understand the Legislature	Affective	Remember
CO4	Understand the Judiciary	Affective	Remember
CO5	Understand the Centre State relations	Cognitive	Understand

UNIT - I

Constitutional History- The Constitutional Rights- Preamble- Fundamental Rights-Fundamental Duties- Directive principles of State Policy.

UNIT - II

The Union Executive- The President of India (powers and functions)- Vice-President of India-The Council of Ministers-Prime Minister- Powers and Functions.

UNIT - III

Union Legislature- Structure and Functions of Lok Sabha- Structure and Functions of Rajya Sabha- Legislative Procedure in India- Important Committee of Lok Sabha- Speaker of the Lok Sabha.

UNIT - IV

The Union Judiciary- Powers of the Supreme Court- Original Jurisdiction- Appelete jurisdictions- Advisory Jurisdiction- Judicial review.

UNIT - V

Centre State relations- Political Parties- Role of governor, powers and functions of Chief Minister-Legislative Assembly- State Judiciary- Powers and Functions of the High Courts.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

REFERENCES

- 1. W.H.Morris Shores- Government and politics of India, NewDelhi, B.1. Publishers, 1974.
- 2. M.V.Pylee- Constitutional Government in India, Bombay, Asia Publishing House, 1977.
- 3. R.Thanker- The Government and politics of India, London: Macmillon, 1995.
- 4. A.C.Kapur- Select Constitutions S, Chand & Co., New Delhi, 1995
- 5. V.D.Mahajan- Select Modern Governments, S, Chand & Co, New Delhi, 1995.
- 6. B.C.Rout- Democractic Constitution of India.
- 7. Gopal K.Puri- Constitution of India, India 2005.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	0	0	0	0	0	1	1	1	0	0	0	0
CO 2	0	0	0	0	0	0	0	0	0	0	0	0
CO 3	0	0	0	0	0	0	0	0	0	0	0	0
CO 4	0	0	0	0	0	0	0	0	0	0	0	0
CO 5	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	1	1	1	0	0	0	0
Scaled	0	0	0	0	0	1	1	1	0	0	0	0
Value												

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

^{0 –} No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE	XBE107	L	T	P	C
COURSE NAME	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS LABORATORY	0	0	1	1
PREREQUISITE	Physics	L	T	P	H
C:P:A	0.3:0.3:0.3	0	0	2	2

COURSE OBJECTIVES:

The course helps to

- a. Learn the basic concepts of electrical and electronics components.
- b. Understand the basic wiring methods and connection.
- c. Study the characteristics of diodes, Zener diodes, NPN transistors.
- d. Verify the working of simple logic gates, adders and subtractors.

Course	Outcomes:	Domain	Level
CO1	Apply the fundamental electrical concepts and differentiate the various electronic components.	Cognitive Psychomotor Affective	Understand Set Value
CO2	Implement and execute the different types of wiring connections.	Cognitive Psychomotor Affective	Understand Set Value
CO3	Demonstrate the Fluorescent lamp connection with choke.	Cognitive Psychomotor Affective	Understand Set Value
CO4	Characterize and display the basic knowledge on the working of PN junction and Zener diode.	Cognitive Psychomotor Affective	Understand Set Value
CO5	Implement and execute the various digital electronic circuits such as Adders and Subtractors.	Cognitive Psychomotor Affective	Understand Set Value

List of Experiments:

- 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.
- 2. Study of Active and Passive elements Resistors, Inductors and Capacitors, Bread Board.
- 3. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.
- 4. Fluorescent lamp connection with choke.
- 5. Staircase Wiring
- 6. Forward and Reverse bias characteristics of PN junction diode.
- 7. Forward and Reverse bias characteristics of zener diode.
- 8. Input and Output Characteristics of NPN transistor.
- 9. Construction and verification of simple logic gates.
- 10. Construction and verification of adders and subtractors.

PRACTICAL	TOTAL	
30	30	

Mapping of COs with GAs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3	1	1	1	1	0	0	1	1	1	0
CO 2	3	3	1	1	1	1	0	0	1	1	1	0
CO 3	2	2	2	1	2	2	1	1	1	1	1	0
CO 4	2	2	1	1	1	1	1	1	1	1	1	0
CO 5	2	2	1	1	1	1	1	1	1	1	1	0
Total	12	12	6	5	6	6	3	3	5	5	5	0
Scaled Value	3	3	2	1	2	2	1	1	1	1	1	0

 $1\text{-}5 \Rightarrow 1,6\text{-}10 \Rightarrow 2,11\text{-}15 \Rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUR	RSE CODE	XAC108	L	T	P	C		
COUR	RSE NAME	APPLIED CHEMISTRYFOR ENGINEERS	0	0	1	1		
		LABORATORY						
C:P:A	-	0.4: 0.4:0.2	L	T	P	Н		
PRER	EQUISITE:	Basic Physics in HSC level	0	0	2	2		
COUR	RSE OUTCOM	MES	Dor	nain]	Level		
CO1	Analyse quan	titatively, the amount of hardness and chloride in	Cogni	tive	Ren	Remember		
	the given solu	ation by volumetric method	Psycho	omoto	r Me	Mechanism		
CO2	Estimate the		Cogni	tive	Ana	alyze		
		amount of substances present in the given solution	Psycho	omoto	r Med	chanism		
	using colorim	eter, potentiometer and conductivity meter.	Affect	ive	Rec	eive		
CO3	Determine the	e surface tension, viscosity of a given solution and	Cogni	tive	A	.l.,		
	rate constant	of a chemical reaction and synthesize	Psycho	omoto	App	chanism		
	drugs/polyme	rs.			Med	chamsm		

Ex. No.	Experiments	COs
1.	Determination of chloride ion present in the water sample by Argentometric method.	CO1
2.	Determination of total, temporary and permanent hardness of water sample by EDTA method.	CO1
3.	Determination of cell constant and conductance of solutions.	CO2
4.	Potentiometry - determination of redox potentials and emfs.	CO2
5.	Determination of surface tension and viscosity.	CO3
6.	Adsorption of acetic acid by charcoal.	CO3
7.	Determination of the rate constant of a reaction.	CO4
8.	Estimation of iron by colorimetric method.	CO4
9.	Synthesis of a polymer/drug.	CO5
10.	Saponification/acid value of oil.	CO5
LECURE	: 0 TUTORIAL: 0 PRACTICAL: 30 TOTAL:	30

TEXT BOOK

1. Laboratory Manual "Chemistry Lab", Department of Chemistry, PMIST, Thanjavur.

REFERENCES

- 1. Mendham, Denney R.C,. Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative
- 2. Chemical Analysis", 6th Edition, Pearson Education, 2004.

E-RESOURCES- MOOC's

- 1. http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques
- 2. http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques
- 3. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011

Mapping of COs with GAs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	3	3	0	1	1	1	0
CO2	2	2	2	2	1	2	2	1	1	1	1	1
CO3	2	2	2	2	1	2	2	0	1	1	0	0
Total	7	7	7	7	4	7	7	1	3	3	2	1
Scaled value	2	2	2	2	1	2	2	1	1	1	1	1

 $1-5 \rightarrow 1,\, 6-10 \rightarrow 2,\, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

SEMESTER II

COURSE CODE		DDE	XMA201	L	Т	P	C
COURSE NAME			Calculus, Ordinary Differential Equations and	3	1	0	4
			Complex Variable				
C	C P A			L	Т	P	H
3	0.5	0.5		3	1	0	4
DDEI	DEALIK	TTT.	Mathematics I (Coloulus and Linear Algebra)		k		*

PREREQUISITE: Mathematics I (Calculus and Linear Algebra)

On successful completion of this course, the students will be able to:

Course outcomes:	Domain	Level
CO1: Find double and triple integrals and to find line, surface and volume of an integral by Applying Greens, Gauss divergence and Stokes theorem.	Cognitive	Apply
CO2: Solve first order differential equations of different types which are solvable for p, y, x and Clairaut's type.	Cognitive	Apply
CO3: Solve Second order ordinary differential equations with variable coefficients using various methods.	Cognitive	Apply
CO4: Use CR equations to verify analytic functions and to find harmonic functions and harmonic conjugate. Conformal mapping of translation and rotation. Mobius transformation.	Cognitive	Apply
CO5: Apply Cauchy residue theorem to evaluate contour integrals involving sine and cosine function and to state Cauchy integral formula, Liouvilles theorem. Taylor's series, zeros of analytic functions, singularities, Laurent's series.	Cognitive	Apply

Unit 1: Multivariable Calculus (Integration)

9+3

Multiple Integration: Double integrals (Cartesian) - change of order of integration in double integrals - Change of variables (Cartesian to polar) - Triple integrals (Cartesian), Scalar line integrals - vector line integrals - scalar surface integrals - vector surface integrals - Theorems of Green, Gauss and Stokes.

Unit 2: First order ordinary differential equations

9+3

Exact - linear and Bernoulli's equations - Euler's equations - Equations not of first degree: equations solvable for p - equations solvable for y- equations solvable for x and Clairaut's type.

Unit 3: Ordinary differential equations of higher orders

9+3

Second order linear differential equations with variable coefficients- method of variation of parameters - Cauchy-Euler equation- Power series solutions- Legendre polynomials- Bessel functions of the first kind and their properties.

Unit 4: Complex Variable – Differentiation

9+3

Differentiation-Cauchy-Riemann equations- analytic functions-harmonic functions-finding harmonic conjugate- elementary analytic functions (exponential, trigonometric, logarithm) and their properties- Conformal mappings- Mobius transformations and their properties.

Unit 5: Complex Variable – Integration

9+3

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series - zeros of analytic functions- singularities- Laurent's series - Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

LECTURE	TUTORIAL	TOTAL
45	15	60

Text Book:

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

Reference Books:

- 1.G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 3.W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9thEdn. Wiley India, 2009.
- 4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.
- 5. E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
- 6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.
- 7. J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.
- 8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

Mapping of Cos with GAs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	2	0	0	2	0	0	0	0	1	0	2
CO 2	3	1	0	0	0	0	0	0	0	1	0	1
CO 3	3	1	0	0	0	0	0	0	0	1	0	1
CO 4	3	2	0	0	0	0	0	0	0	1	0	1
CO 5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled Value	3	2	0	0	1	0	0	0	0	1	0	2

$$1-5 \to 1$$
, $6-10 \to 2$, $11-15 \to 3$

0 –No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

Course code			:	XCP202	L	T	P	C
Course name			:	PROGRAMMING FOR PROBLEM SOLVING		0	0	3
Prerequisite			:	Mathematics knowledge, Analytical and Logical skills.	L	T	P	Н
С	P	A			3	0	0	3
3	0	0						

Course Objectives

- **Design** solutions to simple engineering problem by applying the basic programming principles of C language and basic mathematical knowledge.
- **Choos**e a suitable C-construct to develop C code for a given problem
- **Apply** the C-language syntax rules to correct the bugs in the C program
- **Develop** simple C programs to illustrate the applications of different data types such as arrays, pointers, functions.

Cours	e Outcome: After the completion of the course, students will be able	Domain	Level
to			
CO1	<i>Illustrate</i> and <i>explain</i> the basic computer concepts and programming principles of C language.	Cognitive	Apply
CO2	Determine C programs to solve simple mathematical and decision making problems.	Cognitive	Apply
CO3	Demonstrate the applications of derived data types such as arrays, pointers, strings and functions.	Cognitive	Apply
CO4	To <i>solve</i> a problem into functions and synthesize a complete program using divide and conquer approach.	Cognitive	Apply
CO5	Apply programming concepts to solve programs using files and store and retrieve data from it.	Cognitive	Apply

COURSE CONTENT

UNIT- I PROGRAMMING FUNDAMENTALS AND I/O STATEMENTS

q

Introduction to components of a computer system, Program – Flowchart – Pseudo code – Software – Introduction to C language – Character set – Tokens: Identifiers, Keywords, Constants, and Operators – sample program structure -Header files – Data Types- Variables - Output statements – Input statements.

UNIT - II CONTROL STRUCTURE AND ARRAYS

9

Control Structures – Conditional Control statements: Branching, Looping - Unconditional control structures: switch, break, continue, goto statements – Arrays: One Dimensional Array – Declaration – Initialization – Accessing Array Elements – Searching – Sorting – Two Dimensional arrays - Declaration – Initialization – Matrix Operations – Multi Dimensional Arrays - Declaration – Initialization. Storage classes: auto – extern – static. Strings: Basic operations on strings.

UNIT - III | FUNCTIONS AND POINTERS

9

Functions: Built in functions – User Defined Functions - Parameter passing methods - Passing arrays to functions – Recursion - Programs using arrays and functions. Pointers - Pointer declaration - Address operator - Pointer expressions & pointer arithmetic - Pointers and function - Call by value - Call by Reference - Pointer to arrays - Use of Pointers in self-referential structures-Notion of linked list

UNIT - IV | STRUCTURES AND UNIONS

9

Structures and Unions - Giving values to members - Initializing structure - Functions and structures - Passing structure to elements to functions - Passing entire function to functions - Arrays of structure - Structure within a structure and Union.

UNIT - V FILES

9

File management in C - File operation functions in C - Defining and opening a file - Closing a file - The getw and putw functions - The fprintf&fscanf functions - fseek function - Files and Structures.

	L	T	P	Total
	45	0	0	45

TEXT BOOKS

- 1. Byron Gottfried, "Programming with C", Schaum's Outlines Series, McGraw Hill Education, 3rd Edition, 2017.
- 2. ReemaThareja, "Programming in C", Oxford university press, 2nd Edition, 2016

REFERENCE BOOKS

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017.
- 2. R. S. Bichkar, "Programming with C", Universities Press, 2nd Edition, 2012.
- 3. Stephen G. Kochan, "Programming in C", Addison-Wesley Professional, 4th Edition, 2014.

E-REFERENCES

- 1. https://onlinecourses.nptel.ac.in/noc19_cs42/preview
- 2. https://www.javatpoint.com/c-programming-language-tutorial
- 3. https://www.w3schools.in/c-tutorial/

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO1	PSO2
CO 1	2	2	0	0	2	0	0	0	0	0	2	2	1	0
CO 2	2	2	0	0	2	0	0	0	0	0	2	2	1	0
CO 3	2	2	1	2	2	0	0	0	0	0	2	2	1	0
CO 4	2	2	1	2	2	0	0	0	0	0	2	2	1	0
CO 5	2	2	1	0	2	0	0	1	0	0	2	2	1	0
Total	10	10	3	4	10	0	0	1	0	0	10	10	5	0
Scaled Value	2	2	1	1	2	0	0	1	0	0	2	2	2	0

$$1-5 \rightarrow 1$$

$$6-10 \rightarrow 2$$

$$11 - 15 \rightarrow 3$$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURS	E CODE	XAP203	L	T		P	С		
COURS	E NAME	APPLIED PHYSICS FOR ENGINEERS	3	1		0	4		
C:P:A		2.8:0.8:0.4	L	Т		P	H		
PREREC	QUISITE:	3	1		0	4			
COURS	E OUTCON	MES	Ι	Oma	ain		Level		
CO1	elasticity a	ne basics of mechanics, <i>explain</i> the principles of and <i>determine</i> its significance in engineering systems alogical advances.	Cog	nitiv	e	Ur	Understand		
CO2	electromag	the laws of electrostatics, magneto-statics and gnetic induction; <i>use</i> and <i>locate</i> basic applications of gnetic induction to technology.	Cog	nitiv	e	Ar	Analyze		
CO3	Understand the fundamental phenomena in optics by measurement and describe the working principle and application of various lasers and fibre optics.								
CO4		<i>Inalyse</i> energy bands in solids, <i>discuss</i> and <i>use</i> physics Cognitive principles of latest technology using semiconductor devices.							
CO5	Develop K equation for	nitiv	e	Aŗ	pply				

UNIT - I MECHANICS OF SOLIDS

9+3

Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum - torque - law of conservation of energy and momentum - Friction.

Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus - Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Bending of beams - Experimental determination of Young's modulus: Uniform bending and non-uniform bending.

UNIT -II ELECTROMAGNETIC THEORY

9+3

Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarisation, Dielectric constant, internal field - Clausius Mossotti Equation - Laws of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - expression for plane, circularly and elliptically polarized light - quarter and half wave plates - production and detection of plane, circularly and elliptically polarized light.

UNIT -III OPTICS, LASERS AND FIBRE OPTICS

9+3

Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.

LASER: Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - CO₂ laser - Applications. **Fibre Optics:** Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system (Block diagram).

UNIT -IV SEMICONDUCTOR PHYSICS

9+3

Semiconductors: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes - doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

Diodes and Transistors: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations - Advantages of common emitter configuration - working of NPN transistor as an amplifier in common emitter configuration.

UNIT -V QUANTUM PHYSICS

9+3

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave – particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

TEXT BOOKS

- 1. Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.
- 2. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi, 2010.

REFERENCE BOOKS

- 1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.
- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- 3. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.
- 4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E RESOURCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
45	15	-	60

Mapping of CO's with GA's:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	0	0	0	1	0	0	1
CO2	3	0	1	0	1	0	0	0	0	0	0	1
CO3	3	2	2	2	1	0	0	0	1	0	0	1
CO4	3	2	2	2	1	0	0	0	1	0	0	1
CO5	3	0	2	0	0	0	0	0	0	0	0	1
Total	15	6	9	6	4	0	0	0	3	0	0	5
Scaled value	3	2	2	2	1	0	0	0	1	0	0	1

COU	RSE CODE	XGS204		L	T	P	SS	C			
COU	RSE NAME	TECHNICAL COMMUNICATION	CCHNICAL COMMUNICATION 2 0 0								
PRE-	1			L T P				Н			
	UISITES				1						
C: P:		3:0:0		2	0	0	0	2			
	RSE OUTCO		_	ma			Leve				
CO1	<u> </u>	derstand the basic principles	Cog	gniti	ive	R	emem	ber			
CO2	Apply the tec	chniques in writing	Cog	gniti	ive		Appl	y			
CO3	• • • • • • • • • • • • • • • • • • • •	municative styles	Cog	gniti	ive	R	emem	ber			
CO4	Construct th	e nature of writing	Cog	gniti	ive		Creat	e			
UNIT	T I – Basic Pri	nciples						8			
		es of Technical Writing									
1.2 –	Styles used in '	Technical Writing									
1.3 –	Language and	Tone									
	TII – Techniq							8			
		ques used in writing									
		Description of mechanism									
		lassification-Interpretation									
	TIII – Commu							8			
		opment in style of writing									
3.2 -	New letter wri	ting formats									
	TIV – Report							6			
	Types of Repo										
4.2 –	Project writing	formats									
Sugge	ested Reading	s:									
(i)	John Sealy, V	Writing and Speaking Author; Oxford University	ersity I	Pres	s, Ne	w De	lhi, 20	19.			
(ii)	Williams K.S	S, Communicating Business. Engage Learni	ng Ind	ia P	vt Lt	d, 201	2.				

Mapping of COs with GAs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	0	0	0	2	0	0	1	1	3	0	3
CO2	2	0	0	0	1	0	0	1	2	3	0	3
CO3	2	0	0	0	2	0	0	1	3	3	0	3
CO4	3	0	0	0	2	0	0	1	3	3	0	3
Total	10	0	0	0	7	0	0	4	9	12	2	12
Scale	3	0	0	0	2	0	0	1	2	3	1	3

1-5 = 1, 6-10 = 2, 11-15 = 3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

COURSE CODE			XWP205		L	T	P	C		
COUF	RSE	NAME	WORKSHOP PRACTICES		1	0	2	3		
PRE-I	REQ	UISITES			L	T	P	Н		
C:P:A			`1:2:0		1	0	4	5		
Cours	e Oı	ıtcome		Domain/Le						
				C or P or	A					
CO1			e machining methods and <i>Practice</i>	Cognitive			rstand			
COA		chining oper		Psychomoto	r		uided Response			
CO2			casting process, moulding	Cognitive			nderstand			
		tnoas ana re dications.	elates Casting and Smithy	Psychomoto	or	Guiae	buided Response			
CO3			pentry operations and <i>Practice</i>	Cognitive		Unda	Understand			
003		pentry opera		Psychomoto	ır		ed Res	nonse		
CO4			ng operations and <i>Practice</i> fitting	Cognitive	/1		rstand	ponse		
		erations.	ing operations and 1 ractice fitting	Psychomoto	r		ed Res	ponse		
CO5			etal joining operation and <i>Practice</i>	Cognitive			rstand	<u> </u>		
		lding operati		Psychomoto	r	Guide	ed Res	ponse		
CO6	Illı	<i>istrate</i> the el	lectrical and electronics basics and	Cognitive			nderstand			
			riate connections.	Psychomoto	r	Guide	ided Response			
COUR	RSE	CONTENT								
EXP.NO			TITLE				(CO		
						RELA	ATION			
1		Introduction to machining process					C	O1		
2		Plain turnir	ng using lathe operation				CO1			
3		Introduction	n to CNC				CO1			
4		Demonstrat	tion of plain turning using CNC				CO1			
5		Study of m	etal casting operation				C	O2		
6			tion of moulding process				C	O2		
7		Study of sn	nithy operation				C	O2		
8			rpentry tools					O3		
9		1 0	nt – Carpentry					O3		
10			d Tenon joint – Carpentry				C	O3		
11		Study of fit						O4		
12		Square fitti						O4		
13		Triangular					C	O4		
14			F WELDING TOOLS				CO5			
15			joint – welding					O5		
16		Tee joint –						O5		
17		Introduction to house wiring								

18	One lamp controlled by one switch	CO6
19	Two lamps controlled by single switch	CO6
20	Staircase wiring	CO6

TEXT BOOKS

- 1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay
- 2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCES

- 1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.
- 2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd., New Delhi
- 3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.
- 4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. http://nptel.ac.in/courses/112107145/

MAPPING OF COS WITH GAS

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	0	1	0	1	0	2	1
CO2	2	1	2	1	1	0	1	0	1	0	2	1
CO3	2	1	2	1	1	0	1	0	1	0	2	1
CO4	2	1	2	1	1	0	1	0	1	0	2	1
CO5	2	1	2	1	1	0	1	0	1	0	2	1
CO6	2	1	2	1	1	0	1	0	1	0	2	1
Total	12	6	12	6	6	0	6	0	6	0	12	6
Scaled value	3	2	3	2	2	0	2	0	2	0	3	2

$$1-5 = 1$$
, $6-10 = 2$, $11-15 = 3$

0- No Relation, 1-Low Relation, 2 - Medium Relation, 3- High Relation

COURSE CODE	XEM206	L	T	P	С
COURSE NAME	ENGINEERING MECHANICS	3	0	0	3
PREREQUISITES	NIL	L	T	P	H
C:P:A= 3:0:0		3	0	0	3

COURSE OBJECTIVES

Upon successful completion of the course, student will have:

- Ability to apply knowledge of mathematics, science, and engineering.
- Ability to design as well as to analyse and interpret data.
- Ability to identify, formulate, and solve engineering problems.
- Ability to apply techniques and resources to solve complex mechanical engineering activities with an understanding of the limitations.

COURSI	E OUTCOMES	DOMAIN	LEVEL
CO1	Explain the principles forces, laws and their applications.	Cognitive	Apply
CO2	Classification of friction, and apply the forces in Trusses and beams.	Cognitive	Apply
CO3	Explain and Apply moment of Inertia and Virtual work	Cognitive	Apply
CO4	Outline and Examine Dynamics	Cognitive	Apply
CO5	Explain free and forced vibration	Cognitive	Understand

UNIT I INTRODUCTION TO ENGINEERING MECHANICS

Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static indeterminacy.

UNIT II FRICTION AND BASIC STRUCTURAL ANALYSIS

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines.

9

UNIT III CENTROID, CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of

energy method for equilibrium. Stability of equilibrium. REVIEW OF PARTICLE DYNAMICS AND INTRODUCTION TO **UNIT IV KINETICS OF RIGID BODIES** Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid bodyrotation. **UNIT V MECHANICAL VIBRATIONS** Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums. TEXT BOOKS Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi. 1. 2. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi. REFERENCE BOOKS Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, 1. Biztrantra, 2nd Edition. Prasanna Chandra, 2009, Projects – Planning, Analysis, Selection, Implementation and 2. Reviews, Tata McGraw-Hill. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai. 3. Arya Kumar, 2012, Entrepreneurship: Creating and Leading an Entrepreneurial organisation, 4. Pearson Education India. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage 5. Learning India. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for 6. Development Programmes (EDP/WEDP/TEDP), EDI Publication. Entrepreneurship Entrepreneurship Development Institute of India, Ahmedabad. E-REFERENCES "Characteristics of a successful Jeff Hawkins, entrepreneur", ALISON Online

entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills

https://www.udemy.com/entrepreneurship-from-idea-to-launch/

TUTORIAL: 0

Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education,

PRACTICAL: 0

TOTAL:45

2.

LECTURE: 45

MAPPING OF COS WITH GAS

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	3	2	1	2	1	2	1	3
CO2	3	2	1	1	3	2	1	2	1	2	1	3
CO3	3	2	1	1	3	2	1	2	1	2	1	3
CO4	3	2	1	1	3	2	1	2	1	2	1	3
CO5	2	2	2	1	3	2	1	3	1	1	1	3
Total	14	10	6	5	15	10	5	11	5	9	5	15
Scaled	3	2	2	1	3	2	1	3	1	2	1	3
Value												

$$1-5 = 1, 6-10 = 2, 11-15 = 3$$

0- No Relation, 1-Low Relation, 2 - Medium Relation, 3- High Relation

COURSE CODE			XCP207	L	T	P	С
COURSE NAME			PROGRAMMING FOR PROBLEM SOLVING	0	0	1	1
			LABORATORY				
PRER	EQUIS	SITES	Basic Mathematics knowledge, Analytical, Logical skill	L	T	P	H
С	P	A		0	0	2	2

LEARNING OBJECTIVES

- Acquire knowledge about to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- Design and implement programs to store data in structures and files.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Apply the concepts of variables, data types, operators and expressions.	Cognitive	Apply
CO2	Demonstrate the usage of Conditional and Unconditional statements.	Cognitive	Apply
CO3	Demonstrate the usage of functions and relate functions with respect to arrays and strings.	Cognitive	Apply
CO4	<i>Implement</i> the concept of pointers and structures.	Cognitive	Apply
CO5	Demonstrate the usage of files and Command Line Arguments.	Cognitive	Apply

S.NO	List of Experiments	COs
1	Program to display a Leave Letter as per proper format	CO1
2	i. Program for addition of two numbers	CO1
	ii. Program to solve any mathematical formula.	
3	Program to find greatest of 3 numbers using Branching Statements	CO2
4	Program to display divisible numbers between n1 and n2 using looping Statement	CO2
5	Program to search an array element in an array.	CO2
6	Program to find largest / smallest element in an array.	CO2
7	Program to perform string operations.	CO3
8	Program to find area of a rectangle of a given number use four function types.	CO3
9	Programs to pass and receive array and pointers using four function types	CO3
10	Programs using Recursion for finding factorial of a number	CO3
11	Program to read and display student mark sheet of a student structures with	CO4
	variables	
12	Program to read and display student marks of a class using structures with arrays	CO4
13	Program to create linked list using structures with pointers	CO4

14	Program for copying contents of one	Program for copying contents of one file to another file.					
15	Program using files to store and	display student	mark list of a class using	CO5			
	structures with array						
		TUTORIAL	PRACTICAL	TOTA			
	HOURS		L				
0 30							

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	2	0	0	2	0	0	0	0	0	2	2	1	0
CO 2	2	2	0	0	2	0	0	0	0	0	2	2	1	0
CO 3	2	2	1	2	2	0	0	0	0	0	2	2	1	0
CO 4	2	2	1	2	2	0	0	0	0	0	2	2	1	0
CO 5	2	2	1	0	2	0	0	0	0	0	2	2	1	0
Total	10	10	3	4	10	0	0	0	0	0	10	10	5	0
Scaled	2	2	1	1	2	0	0	0	0	0	2	2	1	0
Value														

0- No relation 1- Low relation

2- Medium relation

3- High relation

COURS	E CODE	XAP208	L	T	P	C		
COURS	E NAME	APPLIED PHYSICS FOR ENGINEERS	0	0	1	1		
		LABORATORY						
C:P:A		1:0.8:0.2	L	T	P	H		
PRERE	PREREQUISITE: Basic Physics in HSC level 0 0							
COURS	E OUTCON	Don	nain	Level				
CO1	Determine	the significance of elasticity in engineering systems	Cogniti	ive	Understand			
	and techno	logical advances.	Psycho	motor	Mecha	anism		
CO2	use and lo	cate basic applications of electromagnetic induction to	Cogniti	ive	Understand			
	technology	<i>'</i> .	Psycho	Mechanism				
			Affecti	ve	Respo	nd		
CO3	Describe t	he working principle and application of various lasers	Cogniti	ive	Understand			
	and fibre o	ptics.	Psycho	motor	Mechanism			
CO4	use physic	s principles of latest technology using semiconductor	Cogniti	stand				
	devices.	Psycho	motor	Mechanism				

	<u>LABORATORY</u>
1.	Torsional Pendulum - determination of moment of inertia and rigidity modulus of the given material of the wire.
2.	Uniform Bending - Determination of the Young's Modulus of the material of the beam.
3.	Non-Uniform Bending - Determination of the Young's Modulus of the material of the beam.
4.	Meter Bridge - Determination of specific resistance of the material of the wire.
5.	Spectrometer - Determination of dispersive power of the give prism.
6.	Spectrometer - Determination of wavelength of various colours in Hg source using grating.
7.	Air wedge - Determination of thickness of a given thin wire.
8.	Laser - Determination of wavelength of given laser source and size of the given micro particle using Laser grating.
9.	Post office Box - Determination of band gap of a given semiconductor.
10.	PN Junction Diode - Determination of V-I characteristics of the given diode.
REI	FERENCE BOOKS

- 1. Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency (P) Ltd,
- 2. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.
- 3. UmayalSundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
0	0	30	30

Mapping of CO's with GAs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	0	0	0	1	0	0	1
CO2	3	0	1	0	1	0	0	0	0	0	0	1
CO3	3	2	2	2	1	0	0	0	1	0	0	1
CO4	3	2	2	2	1	0	0	0	1	0	0	1
Total	12	6	7	6	4	0	0	0	3	0	0	5
Scaled value	3	2	2	2	1	0	0	0	1	0	0	1

SEMESTER – III

COL	URSE (CODE	XPS301	L	T	P	C
COURSE NAME		AME	PROBABILITY AND STATISTICS	3	0	0	3
С	P	A		L	T	P	Н
3	0	0		3	0	0	3

PREREQUISITE: Nil

Learning Objectives

- 1. Appreciate the importance of probability and statistics in computing and research.
- 2. Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries and to use appropriate statistical method in the analysis of simple datasets.
- 3. Interpret and clearly present output from statistical analyses in a clear concise and understandable manner.
- 4. The main objective of this course is to provide students with the foundations of probabilities and statistical analysis mostly used in varied applications in engineering and science like disease modeling, climate prediction and computer networks etc.

Cours	e outcomes:	Domain	Level
CO1	Explain conditional probability, independent events; find	Cognitive	Understand
	expected values and Moments of Discrete random variables		
	with properties.		
CO2	Find distribution function, Marginal density function,	Cognitive	Remember
	conditional density function, Define density function of		
	conditional distribution functions normal, exponential and		
	gamma distributions.		
CO3	Find measures of central tendency, statistical parameters of	Cognitive	Remember
	Binomial, Poisson and Normal, correlation, regression.		
	Rank Correlation coefficient of two variables.		
CO4	Explain large sample test for single proportion, difference of	Cognitive	Understand
	proportion, single mean, difference of means and difference		
	of standard deviations with simple problems.		
CO5	Explain small sample test for single mean, difference of	Cognitive	Understand
	mean and correlation coefficients, variance test, chi-square		
	test with simple problems.		

UNIT I: Basic Probability	9								
Probability spaces, conditional probability, independence, Discrete random variable random variables, Poisson approximation to the binomial distribution, sums of independence	-								
variables; Expectation of Discrete Random Variables, Moments, Variance of a sum.									
UNIT II: Continuous Probability Distributions & Bivariate Distributions 9									
Continuous random variables and their properties, distribution functions and densities, normal exponential and gamma densities. Bivariate distributions and their properties, conditional densities.									
UNIT III: Basic Statistics	9								
Probability distributions: Binomial, Poisson and normal - evaluation of statistical parameters for these									
three distributions, Correlation and regression – Rank correlation.									

UNIT IV: Test for Large Sample

9

Test of significance: large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

UNIT V: Test for Small Sample

9

Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chisquare test for goodness of fit and independence of attributes.

LECTURE	TUTORIAL	TOTAL
45	-	45

TEXTBOOKS

- 1. Veerarajan T., "Probability, Statistics and Random Processes", Tata McGraw-Hill, New Delhi, 2010.
- 2. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015.

REFERENCES

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 2. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall, 2003 (Reprint).
- 3. S. Ross, "A First Course in Probability", 6th Ed., Pearson Education India, 2002.
- 4. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, 3rd Ed., Wiley, 1968.
- 5. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2010.

E-REFERENCE - (Nptel)

Probability and Statistics by Prof.Somesh kumar, Department of Mathematics, IIT Kharagpur. (http://nptel.ac.in/noc/noc_courselist.php)

Mapping of COs and GAs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	2	1	0	0	0	0	0	1	1	0	1
CO 2	3	2	1	0	0	0	0	0	1	1	0	1
CO 3	3	2	1	1	0	0	0	0	1	1	0	1
CO 4	3	2	1	1	1	1	0	0	1	1	1	1
CO 5	3	2	1	1	1	1	1	0	1	1	1	1
Total	15	10	5	3	2	2	1	0	5	5	2	5
Scaled value	3	2	1	1	1	1	1	0	1	1	1	1

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

Course Name : DIGITAL ELECTRONICS	Sem	este	r		:	III	L	T	P	C					
Prerequisite : Nil	Cou	rse	Code	е	:	XCS302	3	1	0	4					
C P A	Cou	rse	Nam	ıe	:	DIGITAL ELECTRONICS			ı						
Course Objectives Recall and Recognize number system conversions Demonstrate the operation of logic gates, Boolean algebra simplification and karnaugh map reduction Describe, Illustrate and Analyze Combinational, Sequential logic circuits and memory devices Course Outcome: After the completion of the course, students will be able to CO1 Describe the numerical values in various number systems and perform number conversions between different number systems. CO2 Demonstrate the operation of logic gates, Boolean algebra Cognitive simplification and karnaugh map reduction CO3 Identify, Analyze and Design the combinational and sequential cognitive circuits CO4 Analyze and Design the sequential digital circuits like flip-flops, registers, counters CO5 Explain the nomenclature and technology in the area of memory devices CO6 CO7 CO8 CONTENT UNIT I NUMBER SYSTEMS Review of Number Systems— Binary Arithmetic— Binary addition— Unsigned and Signed numbers— numbers— Number system conversions— Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION	Prer	equ	isite		:	Nil									
Course Objectives Recall and Recognize number system conversions Demonstrate the operation of logic gates, Boolean algebra simplification and karnaugh map reduction Describe, Illustrate and Analyze Combinational, Sequential logic circuits and memory devices Course Outcome: After the completion of the course, students will be able to CO1 Describe the numerical values in various number systems and perform number conversions between different number systems. CO2 Demonstrate the operation of logic gates, Boolean algebra simplification and karnaugh map reduction CO3 Identify, Analyze and Design the combinational and sequential Cognitive Analyze circuits CO4 Analyze and Design the sequential digital circuits like flip-flops, Cognitive Analyze registers, counters CO5 Explain the nomenclature and technology in the area of memory Cognitive Understand devices COURSE CONTENT UNIT I NUMBER SYSTEMS Review of Number Systems— Binary Arithmetic — Binary addition — Unsigned and Signen numbers — one's and two's complements of Binary numbers — Arithmetic operations wit signed numbers — Number system conversions — Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION	C	P	A				L	T	P	Н					
 Recall and Recognize number system conversions Demonstrate the operation of logic gates, Boolean algebra simplification and karnaugh map reduction Describe, Illustrate and Analyze Combinational, Sequential logic circuits and memory devices Course Outcome: After the completion of the course, students will be able to Domain Level CO1 Describe the numerical values in various number systems and perform number conversions between different number systems. CO2 Demonstrate the operation of logic gates, Boolean algebra simplification and karnaugh map reduction CO3 Identify, Analyze and Design the combinational and sequential cognitive circuits CO4 Analyze and Design the sequential digital circuits like flip-flops, registers, counters CO5 Explain the nomenclature and technology in the area of memory devices COURSE CONTENT UNIT I NUMBER SYSTEMS Review of Number Systems—Binary Arithmetic — Binary addition — Unsigned and Signe numbers — one's and two's complements of Binary numbers — Arithmetic operations wit signed numbers — Number system conversions — Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION 	3	0	0				3	1	0	4					
Demonstrate the operation of logic gates, Boolean algebra simplification and karnaugh map reduction Describe, Illustrate and Analyze Combinational, Sequential logic circuits and memory devices Course Outcome: After the completion of the course, students will be able to Domain Level Domain Lev		Cot	ırse	Obj	ect	ves		I							
 ◆ Describe, Illustrate and Analyze Combinational, Sequential logic circuits and memory devices Course Outcome: After the completion of the course, students will be able to	•	•	Reca	ıll aı	nd I	Recognize number system conversions									
CO1 Describe the numerical values in various number systems and perform number conversions between different number systems. CO2 Demonstrate the operation of logic gates, Boolean algebra simplification and karnaugh map reduction CO3 Identify, Analyze and Design the combinational and sequential circuits CO4 Analyze and Design the sequential digital circuits like flip-flops, cognitive registers, counters CO5 Explain the nomenclature and technology in the area of memory devices CO4 CO4 CO5 Explain the nomenclature and technology in the area of memory cognitive Understand devices CO5 Explain the nomenclature and technology in the area of memory cognitive Understand devices CO6 Review of Number Systems—Binary Arithmetic—Binary addition—Unsigned and Signe numbers—one's and two's complements of Binary numbers—Arithmetic operations wit signed numbers—Number system conversions—Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION	•					e the operation of logic gates, Boolean algebra simplification and k	arna	nugh	map)					
CO1 Describe the numerical values in various number systems and perform number conversions between different number systems. CO2 Demonstrate the operation of logic gates, Boolean algebra Cognitive Apply simplification and karnaugh map reduction CO3 Identify, Analyze and Design the combinational and sequential Cognitive Analyze circuits CO4 Analyze and Design the sequential digital circuits like flip-flops, Cognitive registers, counters CO5 Explain the nomenclature and technology in the area of memory devices COURSE CONTENT UNIT I NUMBER SYSTEMS Review of Number Systems—Binary Arithmetic—Binary addition—Unsigned and Signenumbers—one's and two's complements of Binary numbers—Arithmetic operations wit signed numbers—Number system conversions—Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION	•	•	Desc	ribe	e, II	ustrate and Analyze Combinational, Sequential logic circuits and a	mem	ory	devi	ces					
Demonstrate the operation of logic gates, Boolean algebra Cognitive Apply	to														
simplification and karnaugh map reduction CO3 Identify, Analyze and Design the combinational and sequential Cognitive Analyze circuits CO4 Analyze and Design the sequential digital circuits like flip-flops, registers, counters CO5 Explain the nomenclature and technology in the area of memory devices COURSE CONTENT UNIT I NUMBER SYSTEMS Review of Number Systems— Binary Arithmetic — Binary addition — Unsigned and Signed numbers — one's and two's complements of Binary numbers — Arithmetic operations with signed numbers—Number system conversions—Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION	CO1				е	Un	ders	tand							
CO4 Analyze and Design the sequential digital circuits like flip-flops, registers, counters CO5 Explain the nomenclature and technology in the area of memory devices COURSE CONTENT	CO2					e	Apply								
registers, counters CO5 Explain the nomenclature and technology in the area of memory devices COURSE CONTENT UNIT I NUMBER SYSTEMS Review of Number Systems— Binary Arithmetic — Binary addition — Unsigned and Signed numbers — one's and two's complements of Binary numbers — Arithmetic operations with signed numbers—Number system conversions—Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION	CO3	е	Analyze												
COURSE CONTENT	CO ₄		е	Analyze											
UNIT I NUMBER SYSTEMS Review of Number Systems— Binary Arithmetic — Binary addition — Unsigned and Signer numbers — one's and two's complements of Binary numbers — Arithmetic operations with signed numbers — Number system conversions — Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION	COS		_		he	nomenclature and technology in the area of memory Cognitive	е	Un	ders	tand					
Review of Number Systems—Binary Arithmetic — Binary addition — Unsigned and Signed numbers — one's and two's complements of Binary numbers — Arithmetic operations with signed numbers — Number system conversions — Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION		CO													
numbers – one's and two's complements of Binary numbers – Arithmetic operations with signed numbers – Number system conversions – Digital codes. UNIT II BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION	UNI	TI	I	NUI	MB	ER SYSTEMS									
			1	num sign	ber ed 1	s – one's and two's complements of Binary numbers – Arithmet numbers – Number system conversions – Digital codes.	_			_					
Logic gates – AND, OR, NOT, NAND, NOR, XOR and XNOR Gates – Laws and Rules of	UNI	TI													
Boolean algebra – DeMorgan's Theorems – Standard forms of Booleans Expressions – Sur of products – Product of sums – Boolean Expression and Truth Tables – Boolean Expression Minimization using Boolean laws – The kamaugh Map – Sum of Products and Products of Sum Minimization.]	Logic gates – AND, OR,NOT,NAND, NOR, XOR and XNOR Gates – Laws and Rules of Boolean algebra – DeMorgan's Theorems – Standard forms of Booleans Expressions – Sum of products – Product of sums – Boolean Expression and Truth Tables – Boolean Expression Minimization using Boolean laws – The kamaugh Map – Sum of Products and Products of Sum Minimization.											
UNIT III COMBINATIONAL LOGIC	UNI	T II													
Combinational circuits – Analysis and design procedures – Circuits for arithmeti operations - Code conversion - Decoders and encoders - Multiplexers and Demultiplexers Introduction to Hardware Description Language (HDL) - HDL for combinational circuits.]	oper Intro	atio	ns - Code conversion - Decoders and encoders - Multiplexers and etion to Hardware Description Language (HDL) - HDL for combin	Der	nulti	plex	ers –					
UNIT IV SEQUENTIAL LOGIC	UNI	TI	V	SE(UĮ —	ENTIAL LOGIC									
Synchronous Sequential Logic				Syn	chr	onous Sequential Logic									

	Sequential circuits – Flip flops – Analysis and design procedures - State reduction and state
	assignment - Shift registers - Counters - HDL for sequential logic circuits.
	Asynchronous Sequential Logic
	Analysis and design of asynchronous sequential circuits - Reduction of state and flow tables
	– Race-free state assignment – Hazards.
UNIT V	MEMORY AND PROGRAMMABLE LOGIC
	RAM and ROM- Memory Decoding - Error Detection and Correction - Programmable
	Logic Array - Programmable Array Logic - Sequential Programmable Devices -
	Application Specific Integrated Circuits.

	1.1	1	U				
				L	T	P	Total
				45	15	0	60

TEXT BOOKS

- 1. M.Morris Mano, "Digital Design", 6th edition, 2018, Pearson Education.
- 2. Peter Norton. "Introduction to Computers". 6th Edition, Tata Mc Graw Hill, New Delhi, 2006.
- 3. Thomas L.Floyd and R.P.Jain, "digital Fundamentals", 8th Edition, Pearson Education, 2007.

REFERENCE BOOKS

- Charles H.Roth, Jr. "Fundamentals of Logic Design", 6th Edition, Jaico Publishing House.
 Raj kamal, "Digital System: Principles and Design", 1st Edition, Pearson Educaion, 2007.
 Albert Paul Malvino, Donald P.Leech,"Digital Principles and Applications", 6th Edition, Mc Graw Publishers, 2007.
- 4. Donald D.Givone, "Digital Principles and Design", Tata McGraw-Hill, 2003.

E-REFERENCES

- 1. Digital System Design, Dr.S.Srinivasan, IIT Madras
- 2. www.deploy.virtual-labs.ac.in/labs/cse15

 														
	PO1 PO2			PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	1	0	0	1	0	0	1	0	3	2	1	0
CO 2	0	2	1	0	0	0	0	0	0	1	0	2	1	0
CO 3 1		3	2	0	1	1	0	1	0	2	1	3	2	0
CO 4	3	1	0	0	0	2	0	0	0	1	3	1	0	0
CO 5	0	3	0	2	0	0	0	0	1	1	0	3	0	2
Total	Total 7		4	2	1	4	0	1	2	5	7	11	4	2
Scaled Value			1	1	1	1	0	1	1	1	2	3	1	1
Note:	Note: Total			0		1-5		6-10					1	1-15
	Scaled value			0		1		2						3
	Re	lation		No		Low]	Mediui	n]	High

SEM	IES	TER	L	:	III											
COU	JRS	E C	ODE	:	XC	S303										
COL	JRS	E N	AME	:	DA	TA STR	UCTUI	RES &	ALGO	RITH	MS					
PRE	RE	QUI	SITE	:	PR	OGRAM	IMING	FOR I	PROBI	EM SO	OLVI	٧G				
	L	T	P	C			C	P	A			L	T	P	Н	
	3	0	0	3			3	0	0			3	0	0	3	
Cou	rse	Obje	ectives													
• T	o ir	npar	t the bas	sic c	once	ots of dat	a structi	ures and	l algori	thms						
• T	o u	nder	stand ba	sic o	conce	pts abou	t linear	data str	uctures	stack, o	queue a	and li	sts			
						pts abou										
															Le	
be al			оте: Ал	ter t	ne co	mpletion	of the	course,	stuaen	is wiii	_	main P or			Le	vei
CO1			ve the	con	cept	of data	structu	res and	analy	sis of		nitive		Unc	lerstaı	nd
	a	lgori	thms						_							
CO ₂				Cho	ose	the linea	r data s	tructure	es for so	olving	Cogi	nitive	:	Unc	lerstai	nd
CO3	_		oblems	Cho	ose 1	he nonli	near dat	a struct	ures tre	es for	Cogi	nitive		Und	lerstaı	nd
COS			g the pr				near aat	u struct	ares tre	25 101	005			One	ici stai	IG
CO4						the nonl	inear da	ata stru	ctures g	graphs	Cog	nitive	;	Unc	lerstai	nd
CO5			lving the and <i>Ill</i>			ns appropri	oto obsi	troot do	to type	o and	Cog	nitive		Ilno	lerstaı	-d
COS			thm tecl			арргоргі	ale absi	naci ua	ла турс	s and	Cogi	iiiiiv		Onc	ierstai	IU
COU			ONTEN													
UNI	ΤI	I	NTROI	DUC	CTIO	N										9
						algorithn			nalysis	and co	omplex	kity,	Data	strı	icture	-
TINIT					-	of data st		S								0
UNI	1 11					STRUC		1. 1	D.							9
				-		ntion of 3 e, Repres			-				_	arra	ay and	1
UNI	T II					ATA ST				<u> </u>	and II	incu	1101			9
						ot – Oper					traver	sals -	- Bin	arv	searcl	
						ion – AV										
UNI	TI	V	NON LI	NE	AR D	ATA ST	RUCT	URE -	GRAP	HS						9
					nolog	gy – R	epresen	tation	of Gra	aph- G	raph	trave	rsal	_	Grapl	n
***	m		Algorith													
UNI	TV					ESIGN					•	<u>C</u>	1_	1.	.141	9
						quer alg Branch &		•	mic Pi	ogrami	nıng,	Gree	ay a	Igor	ıthms	,
		1 -			,		. JO J WIIG	-				L	T	١	P	Total

TEXT BOOKS

- 1. Data Structures Using C and C++ 2e, Pearson Education India, 2015
- 2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education, 2007.
- 3. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, "Computer Algorithms", Galgotia Publications Pvt. Ltd., 2002.
- 4. Jean-Paul Tremblay & Paul G. "An Introduction to Data Structures with Applications". Sorenson Publisher-Tata McGraw Hill.

REFERENCE BOOKS

- 1. A.V. Aho, J.E. Hopcroft and J.D. Ullman "Data Structures and Algorithms" Pearson Education Delhi, 2002
- 2. Data Structures and Algorithms, 2008, G. A. V. Pai, TMH

E-REFERENCES

- 1. www.tutorialspoint.com
- 2. www.nptel.com
- 3. www.virtuallab.ac.in
- 4. www.mhhe.com/engcs/compsci/forouzan/

Mapping of CO with PO's

	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	1	1	1	1	0	0	0	0	0	1	1	3	0
CO 2	3	2	1	1	1	0	0	0	1	0	1	1	3	2
CO 3	3	1	1	1	1	0	0	0	1	0	1	1	3	2
CO 4	3	2	1	2	1	0	0	0	1	0	1	1	3	2
CO 5	3	1	1	2	0	0	0	0	1	0	1	2	3	2
Total	15	7	5	7	4	0	0	0	4	0	5	6	15	8
Scaled Value	3	2	1	2	1	0	0	0	1	0	1	2	3	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SEN	MES	TER	R		:]	III										
CO	URS	E C	ODE		:]	XCS304										
CO	URS	E N	AME		: (OBJECT	ORIEN	TED I	PROGI	RAMMI	NG					
PR	ERE	QUI	SITE		:]	PROGRA	MMIN	G FOI	R PRO	BLEM S	OLV	ING	r			
	L	T	P	C			C	P	A			L	T	P	Н	
	3	0	0	3			3	0	0			3	0	0	3	
Cou	ırse	Obje	ectives													
	• T	o ex	plore th	ne O	bjec	t Oriented	Prograi	nming	concep	ts and Ja	va.					
Cou able		Outco	ome: Aj	fter i	the o	completion	of the	course	, studer	ıts will b	e	Don	nain		Le	evel
CO	1 T	o un	derstan	d the	e bas	sic concep	ts of OC	OP.			C	ognit	ive	U	Inder	stand
CO	2 T	o un	derstan	d the	e co	ncept of Ja	ıva.				C	ognit	ive	A	pply	
CO	3 T	o ap	ply the	cond	cepts	s of Inherit	tance ar	nd Pack	ages.		C	ognit	ive	A	pply	
CO	4 T	o ap	ply the	cond	cepts	s of Apple	ts and S	wing.			C	ognit	ive	A	pply	
CO					oase	Connectiv	ity and	Netwo	rking.		C	ognit	ive	A	pply	
-			ONTE													
UN	IT I					ON TO C										9
		F		da 1 a	ita 1 and	Programn types, AI operator	OT imp	olement	ation-	Constru	ctors	and	des	struct	ors,	
UN	IT II	[]	NTRO	DU	CTI	ON TO JA	AVA									9
		S	Control String l	Sta Hand	teme dling	Java, Datents, Corg; Special arching Str	ntrol Fl I String	low St g Oper	atemen rations;	ts, Array Charac	s an ter l	d St Extra	rings	: Arr	ays;	
UN	IT II	I I	NHER	ITA	NC	E AND PA	ACKA(GES								9
		F U	Generali Package	izatio s, de Inte	on, efini erfac	ekage and Inheritanc ng a Packa ees, Interfa	e in Ja age, Cla	ava, Ao isspath,	ccess S Interfa	Specifiers ace, Defir	s, Th	e Al an In	ostrac terfac	et Cl	ass;	
UN	IT I	V A	APPLE'	TS A	ANI	SWING										9
		g C S	graphics Compon Swing: (Cl ents Conc	ass; to cepts	Painting user interest of Swing with Swing	the A face; A g; Java	pplet; WT (A Founda	User labstract tion Cl	Interfaces Windov ass (JFC	s for ving (); Sv	· Ap Tool ving	plet; kit) (Ado Contr	ding ols,	
UN	IT V	Ι	DATAB	BASI	E C	ONNECT	IVITY	AND N	NETWO	ORKINO	3					9
		N		men		se Conne Iechanism RMI,	-	necting	g to a b		data	base;	Loa	ding		

Application, Web Architecture.				
	L	T	P	Total
	45	0	0	45

TEXT BOOKS

- 1. Java: The Complete Reference, Eleventh Edition (PROGRAMMING & WEB DEV OMG), Herbert Schildt, 11thEdition, McGraw Hill Education, 2019, ISBN: 978-1260440232.
- 2. Cay S. Horstmann, Gary cornell, —Core Java Volume –I Fundamentals , 9th Edition, Prentice Hall, 2013.
- 3. Java 8 Black Book, 8th edition, D.T. Editorial Services, ISBN-13: 978-9351197584

REFERENCE BOOKS

- 1. Java How to Program, Early Objects (Deitel: How to Program), Paul Deitel and Harvey Deitel, Eleventh Edition, ISBN-13:978-0134743356
- 2. Paul Deitel, Harvey Deitel, Java SE 8 for programmers, 3rd Edition, Pearson, 2015.
- 3. Steven Holzner, Java 2 Black book, Dreamtech press, 2011.
- 4. Timothy Budd, Understanding Object-oriented programming with Java, Updated Edition, Pearson Education, 2000.

E-REFERENCES

https://java-iitd.vlabs.ac.in/List%20of%20experiments.html

https://docs.oracle.com/en/java/

Mapp	oing	of	\mathbf{CO}	with	PO	's

Mapping of		y with i	US												
		P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		3	3	3	3	3	2	2	2	1	0	0	2	1	1
CO 2		3	3	3	3	3	2	2	2	1	0	0	2	1	1
CO 3		2	2	2	3	3	3	2	2	1	0	0	1	1	1
CO 4		2	2	2	2	0	0	0	0	0	0	0	0	1	1
CO 5		3	2	3	3	3	0	2	2	2	0	0	0	1	1
Total		13	12	13	14	12	7	8	8	5	0	0	5	5	5
Scaled Value	ıe	3	3	3	3	3	2	2	2	1	0	0	1	1	1
Note:		To	tal	0		1-5	5	6-1	0	11-1	15				
	So	caled va	lue	0		1		2		3					
		Relat	ion	No		Lov	V	Medi	um	Hig	şh				

COURSE CODE	XCS305	L	T	P	С
COURSE NAME	SIGNALS AND SYSTEMS	3	1	0	4
C:P:A	3:0:0	L	T	P	Н
		3	1	0	4

PREREQUISITES DIGITAL SIGNAL PROCESSING

COUR	SE OUTCOMES	Domain	Level
CO1	Describe and classify the signals & systems	Cognitive	Understand
CO2	<i>Find</i> and <i>analyze</i> the properties of continuous time signal using Fourier and Laplace Transform,	Cognitive	Analyze
CO3	<i>Find</i> and solve the continuous time LTI system performance of Fourier and Laplace Transform.	Cognitive	Apply
CO4	Find, apply and analyze the properties of discrete time signal using Fourier and Z Transform.	Cognitive	Analyze
CO5	Explain, Solve and determine the performance of Discrete Time LTI system in Fourier and Z Transform.	Cognitive	Apply

UNIT I - CLASSIFICATION OF SIGNALS AND SYSTEMS

9

Continuous time signals (CT signals) - Discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Sinusoidal, Exponential, Classification of CT and DT signals - Periodic & Aperiodic signals, Deterministic Random signals, Energy & Power signals - CT systems and DT systems Classification of systems – Static & Dynamic, Linear & Nonlinear, Time-variant & Time-invariant, Causal & Noncausal, Stable & Unstable.

UNIT II - ANALYSIS OF CONTINUOUS TIME SIGNAL

9

Fourier series analysis-spectrum of Continuous Time (CT) signals- Fourier and Laplace Transforms in CT Signal Analysis - Properties.

UNIT III - LINEAR TIME INVARIANT- CONTINUOUS TIME SYSTEMS

1

Differential Equation-Block diagram representation-impulse response, convolution integrals-Fourier and Laplace transforms in Analysis of CT systems.

UNIT IV - ANALYSIS OF DISCRETE TIME SIGNALS

9

Baseband Sampling of CT signals- Aliasing, Reconstruction of CT signal from DT signals DTFT and properties, Z-transform & properties.

UNIT V - LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

9

Difference Equations-Block diagram representation-Impulse response - Convolution sum-Discrete Fourier and Z Transform Analysis of Recursive & Non-Recursive systems.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	45	0	0	45

TEXT BOOKS

- 1. Ramesh Babu ," Signals And Systems" Scitech Publications (India) Pvt Ltd,2018, ISBN-10: 9385983407, ISBN-13: 978-9385983405.
- 2. P.Ramakrishna Rao, "Signals and Systems" 2nd Edition, Tata McGraw Hill Publications, 2013.
- 3. B.P.Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford University Press, 2009.

REFERENCES

- 1. R.EZeimer, W.H.Tranter. and .R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson Education, 2009.
- 1. John Alan Stuller, "An Introduction to Signals and Systems", Thomson Learning, 2007.
- 2. M.J.Roberts, "Signals & Systems Analysis using Transform Methods & MATLAB", Tata McGraw Hill, 2007.
- 3. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson Education, Indian Reprint, 2007.

E-REFERENCES

- 1. http://nptel.ac.in/courses/117104074 (Prof.K.S.Venktesh, "NPTEL, Signals and Systems", IIT-Kanpur)
- 2. http://tutorialspoint.com/signals_and_systems/index.htm
- 3. http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	3	2	3	2	1	0	0	2	1	0	2	3	2
CO 2	2	3	2	3	2	1	0	0	2	1	0	1	3	2
CO 3	1	3	3	2	1	1	0	0	1	1	0	2	3	2
CO 4	2	2	2	2	2	2	0	0	1	1	0	1	3	2
CO 5	2	3	3	1	1	1	0	0	1	1	0	1	3	2
Total	9	14	12	11	8	6	0	0	7	5	0	7	15	10
Scaled Value	2	3	3	3	2	2	0	0	2	1	0	2	3	2

$$1-5 \rightarrow 1$$
, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE NAME ENTREPRENEURSHIP DEVELOPMENT 2 0 0	nd nd
C:P:A 2.7:0:0.3 2 0 0 1 CO1 Recognise and describe the role of innovation and motivation for an entrepreneur. CO2 Self-assess and appraise your entrepreneurship interest with your chosen entrepreneur. CO3 Outline the importance of generation of new ideas for entrepreneurship and illustrate market assessment. CO4 Explain the competition in business and sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small cognitive business and its management. CO6 Describe and Discuss various government policies and global cognitive opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	2 ad
CO1 Recognise and describe the role of innovation and motivation Cognitive Inderstary for an entrepreneur. CO2 Self-assess and appraise your entrepreneurship interest with your chosen entrepreneur. CO3 Outline the importance of generation of new ideas for entrepreneurship and illustrate market assessment. CO4 Explain the competition in business and sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small Cognitive Understary business and its management. CO6 Describe and Discuss various government policies and global Cognitive Understary opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP	id d
for an entrepreneur. CO2 Self-assess and appraise your entrepreneurship interest with your chosen entrepreneur. CO3 Outline the importance of generation of new ideas for entrepreneurship and illustrate market assessment. CO4 Explain the competition in business and sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small business and its management. CO6 Describe and Discuss various government policies and global cognitive understant opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	nd nd
for an entrepreneur. CO2 Self-assess and appraise your entrepreneurship interest with your chosen entrepreneur. CO3 Outline the importance of generation of new ideas for entrepreneurship and illustrate market assessment. CO4 Explain the competition in business and sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small business and its management. CO6 Describe and Discuss various government policies and global cognitive Understand opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	nd nd
CO2 Self-assess and appraise your entrepreneurship interest with your chosen entrepreneur. CO3 Outline the importance of generation of new ideas for entrepreneurship and illustrate market assessment. CO4 Explain the competition in business and sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small business and its management. CO6 Describe and Discuss various government policies and global cognitive understand opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP	ıd
your chosen entrepreneur. CO3 Outline the importance of generation of new ideas for entrepreneurship and illustrate market assessment. CO4 Explain the competition in business and sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small business and its management. CO6 Describe and Discuss various government policies and global opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP Analyze Analyze Analyze Cognitive Understandard Cognitive Understandard Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Cognitive Understandard Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Understandard Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understandard Sometime to the importance of generation of new ideas for Cognitive Understand	ıd
CO3 Outline the importance of generation of new ideas for entrepreneurship and illustrate market assessment. CO4 Explain the competition in business and sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small business and its management. CO6 Describe and Discuss various government policies and global cognitive understant opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP Show	ıd
entrepreneurship and <i>illustrate</i> market assessment. CO4	ıd
CO4 Explain the competition in business and sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small business and its management. CO6 Describe and Discuss various government policies and global cognitive understant opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	ıd
sketch/demonstrate/comply business model for dealing with competition. CO5 Describe and Explain venture creation and launching of small business and its management. CO6 Describe and Discuss various government policies and global cognitive opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	ıd
competition. CO5	
CO5 Describe and Explain venture creation and launching of small Cognitive business and its management. CO6 Describe and Discuss various government policies and global cognitive opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	
business and its management. CO6	
CO6 Describe and Discuss various government policies and global Cognitive Understand opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	d
opportunities for Entrepreneurship Development UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	
UNIT I- INNOVATION AND ENTREPRENEURSHIP 5 ho	
Definition of Imposition Continues and E. C. 1. 1. C. 1.	urs
Definition of Innovation, Creativity and Entrepreneurship; role of innovation in	
entrepreneurship development (2)- Entrepreneurial motivation (1)-Competencies and traits of	
an entrepreneur (1)-Role of Family and Society; Entrepreneurship as a career and its role in	
national development (1)	
UNIT II – SELF ASSESSMENT OF ENTREPRENEURIAL INCLININATION 4 ho	urs
Self-assessment of entrepreneurial inclination (1)-Presentation by students on their	
entrepreneurial inclination rating (2)-Case study of successful entrepreneurs (1)	
TANKE HE AND A CENTER A FROM THE A COPECIA FRANCE	
UNIT III - NEW IDEA GENERATION TO MARKET ASSESSMENT 9 ho	urs
Importance of Idea generation-filtering-refinement (1)-opportunity recognition (1)-	
Description of chosen idea - value proposition, customer-problem-Solution statement) (1)-benefits; development status; IP ownership (1)-Market Validation- Technology/	
user/decision makers/ partners (1)-market need; segmentation (1)-market TAM,SAM and	
SOM (1)-case study on market segmentation by popular companies (1)	
UNIT IV- CUSTOMER – COMPETITION- BUSINESS MODEL 9 ho	urs
Customer-Target primary customer research, Decision making unit/ process-Beach head	
market; Cost of Customer Acquisition (2)-Competition- comparative analysis, competitive	
advantages-; (2)-Business model (1) -Financial planning (1)-Pitch documentation and	
presentation (3)	
UNIT V- VENTURE CREATION AND LAUNCHING OF SMALL BUSINESS AND 9 ho	urs
ITS MANAGEMENT	
New enterprise creation - organizational and legal matters (1)-Operational plan (1)-Sales and	
distribution plan (1)-Accounting (1)-Team recruitment and management (1)-Fund raising and	
management (1)-Profile of a startup – case studies (2)	

UNIT VI- GOVERNMENT INITIATIVES AND GLOBAL OPPORTUNITIES	9 hours
Incubators and accelerators - capacity building (2)-Startup policies- Startup India (2)-Support for MSME; GeM Portal(2) Funding—national and international sources(2)-Bilateral programmes by Govt. of India -Global reach for promoting cross-cultural entrepreneurship (1)	
Total	45 Hours

References

- 1. A.P.Aruna, "Lecture Notes on Entrepreneurship Development", available as softcopy @ www.brain.net
- 2. Thomas W. Zimmerer, Norman M. Scarborough, "Essentials of Entrepreneurship and Small Business Management", Pearson; 3rd edition, 2001.
- 3. John Burnett, "Introducing Marketing", Open Text Book available at http://solr.bccampus.ca:8001/bcc/file/ddbe3343-9796-4801-a0cb-7af7b02e3191/1/Core%20Concepts%20of%20Marketing.pdf
- 4. Toubia, Olivier. "Idea Generation, Creativity, and Incentives", Marketing Science. Vol. 25. pp.411-425. 10.1287/mksc.1050.0166, 2006.
- 5. Alexander Osterwalder and Yves Pigneur, "Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers", Wiley; 1st edition, 2010.
- 6. Gerardus Blokdyk,"3C's model The Ultimate Step-By-Step Guide"5starcooks, 2018.

Mapping of CO with GAs

CO/GA	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	0	0	0	0	0	2	0	0	0	0	0
CO2	0	0	0	0	0	0	0	0	0	0	0	2
CO3	1	3	2	1	0	0	1	0	0	0	0	0
CO4	0	2	0	1	0	0	0	1	0	0	0	0
CO5	0	0	0	0	0	0	0	0	1	0	3	0
CO6	0	0	0	2	0	0	0	0	0	0	0	3
Original	4	5	2	4	0	0	3	1	1	0	3	5
Scaled	1	1	1	1	0	0	1	1	1	0	1	1

COUF	RSE CODE	XUM307		L	T	P	C
COUF	RSE NAME	UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY AND GE	NDER	2	1	0	3
PRE-		UNIVERSAL HUMAN VALUES-I (DESIR	ABLE)	L	T	P	Н
REQU							
C:P:A		3	0	0	3		
CO1	Explore abo	out the need of value education	Cognit	ive	Unders		and
CO2		If and body needs and responses to ensure	Cognit		Unders		
CO3	•	harmony in the family and society	Cognit	ive	Unders		and
CO4	Explore abo	Cognit	Cognitive		derst	and	
CO5	Discuss abo	Cognit	ive	Underst		and	

1. COURSES ON HUMAN VALUES

During the Induction Program, students would get an initial exposure to human values through Universal Human Values-I. This exposure is to be augmented by this compulsory full semester foundation course.

Objective

This introductory course input is intended:

- 1. To help the students appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspiration so fall human beings.
- 2. To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- 3. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with Nature.

Thus, this course is intended to provide a much needed orientation input in value education to the young enquiring minds.

Salient Features of the Course

The salient features of this course are:

1. It presents a universal approach to value education by developing the right

understanding of reality (i.e. a worldview of the reality "as it is") through the process of self-exploration.

- 2. The whole course is presented in the form of a dialogue whereby a set of proposals about various aspects of the reality are presented and the students are encouraged to self-explore the proposals by verifying them on the basis of their natural acceptance within oneself and validate experientially in living.
- 3. The prime focus throughout the course is toward affecting a qualitative transformation in the life of the student rather than just a transfer of information.
- 4. While introducing the holistic world view and it simplications, a critical appraisal of the prevailing notions is also made to enable the students discern the difference on their own right.

Course Methodology

- 1. The methodology of this course is explorational and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.
- 2. The course is in the form of 28lectures (discussions) and 14 practice sessions.
- 3. It is free from any dogma or value prescriptions.
- 4. It is a process of self-investigation and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a proposal and the students are facilitated to verify it in their own right, based on their Natural Acceptance and subsequent Experiential Validation the whole existence is the lab and every activity is a source of reflection.
- 5. This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student in every activity, leading to continuous self-evolution.
- 6. This self-exploration also enables them to critically evaluate their pre-conditionings and present beliefs.

2. COURSE TOPICS

The course has 28 lectures and 14 tutorials in 5 modules. The lectures and tutorials are of 1-hour duration. Tutorial sessions are to be used to explore and practice what has been proposed during the lecture sessions.

The Teacher's Manual provides the outline for lectures as well as practice sessions. The teacher is expected to present the issues to be discussed as propositions and encourage the students to have a dialogue.

The syllabus for the lectures and practice sessions is given below:

Module 1 – Introduction to Value Education (6 lectures and 3 tutorials for practice session)

Lecture1: Understanding Value Education

Lecture2: Self-exploration as the Process for Value Education

Tutorial 1: Practice Session PS1 Sharing about Oneself

Lecture3: Continuous Happiness and Prosperity– the Basic Human Aspirations

Lecture 4: Right Understanding, Relationship and Physical Facility

Tutorial 2: PracticeSessionPS2 Exploring Human Consciousness

Lecture 5: Happiness and Prosperity—Current Scenario **Lecture 6:** Method to Fulfill the Basic Human Aspirations

Tutorial 3: Practice Session PS³ Exploring Natural Acceptance

Expected outcome:

The students start exploring themselves: get comfortable with each other and with the teacher; they start appreciating the need and relevance for the course.

The students start finding that technical education without study of human values can generate more problems than solutions. They also start feeling that lack of understanding of human values is the root cause of most of the present-day problems; and a sustained solution could emerge only through understanding of value-based living. Any solution brought out through fear, temptation of dogma will not be sustainable.

The students are able to see that verification on the basic of natural acceptance and experiential validation through living is the only way to verify right or wrong, and referring to any external source like text or instrument or any other person cannot enable them to verify with authenticity; it will only develop assumptions.

The students are able to see that their practice in living is not in harmony with their natural acceptance most of the time, and all they need to do is to refer to their natural acceptance to overcome this disharmony.

The students are able to see that lack of right understanding leading to lack of relationship is the major cause of problems in their family and not the lack of physical facility in most of the cases, while they have given higher priority to earning of physical facility in their life giving less value to or even ignoring relationships and not being aware that right understanding is the most important requirement for any human being.

Module 2 – Harmony in the Human Being (6 lectures and 3 tutorials for practice session)

Lecture7: Understanding Human being as the Co-existence of the Self and the Body

Lecture8: Distinguishing between the Needs of the Self and the Body

Tutorial 4: Practice Session PS4 Exploring the difference of Needs of Self and Body

Lecture9: The Body as an Instrument of the Self

Lecture10: Understanding Harmony in the Self

Tutorial 5: Practice Session PS *Exploring Sources of Imagination in the Self*

Lecture11: Harmony of the Self with the Body

Lecture12: Programme to ensure self-regulation and Health

Tutorial 6: Practice Session PS6 Exploring Harmony of Self with the Body

Expected outcome:

The students are able to see that they can enlist their desires and the desires are not vague. Also they are able to relate their desires to 'I' and 'Body' distinctly. If any desire appears

related to both, they are able to see that the feeling is related to I while the physical facility is related to the body. They are also able to see that 'I' and Body are two realities, and most of their desires are related to 'I' and not body, while their efforts are mostly centered on the fulfillment of the needs of the body assuming that it will meet the needs of 'I' too.

The students are able to see that all physical facility they are required for a limited time in a limited quantity. Also they are able to see that in case of feelings, they want continuity of the naturally acceptable feelings and they do not want feelings which are not naturally acceptable even for a single moment.

The students are able to see that activities like understanding, desire, though and selection are the activities of 'I' only the activities like breathing, palpitation of different parts of the body are fully the activities of the body with the acceptance of 'I' while the activities they do with their sense organs like hearing through ears, seeing through eyes, sensing through touch, tasting through tongue and smelling through nose or the activities they do with their work organs like hands, legs etc. are such activities that require the participation of both 'I' and body.

The students become aware of their activities of 'I' and start finding their focus of attention at different moments. Also they are able to see that most of their desires are coming from outside (through preconditioning or sensation) and are not based on their natural acceptance

The students are able to list down activities related to proper upkeep of the body and practice them in their daily routine. They are also able to appreciate the plants wildly growing in and around the campus which can be beneficial in curing different diseases.

Module 3 – Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)

Lecture13: Harmony in the Family –the Basic Unit of Human Interaction

Lecture14: Values in Human-to-Human Relationship

Lecture 15: 'Trust' – the Foundational Value in Relationship

Tutorial 7: Practice Session PS 7 Exploring the Feeling of Trust

Lecture16: 'Respect'—as the Right Evaluation

Tutorial 8: Practice Session PS 8 Exploring the Feeling of Respect

Lecture17: Understanding Harmony in the Society

Lecture18: Vision for the Universal Human Order

Tutorial 9: Practice Session PS 9 Exploring Systems to fulfill Human Goal

Expected outcome:

The students are able to note that the natural acceptance (intention) is always for living in harmony, only competence is lacking! We generally evaluate ourselves on the basis of our intention and others on the basis of their competence! We seldom look at our competence and others' intention as a result we conclude that I am a good person and other is a badperson.

The students are able to see that respect is right evaluation, and only right evaluation leads to fulfillment in relationship. Many present problems in the society are an outcome of differentiation (lack of understanding of respect), like gender biasness, generation gap, caste conflicts, class struggle, dominations through power play, communal violence, clash of isms and so on so forth.

All these problems can be solved by realizing that the other is like me a she has the same natural acceptance, potential and program to ensure a happy and prosperous life for them and for others through he may have different body, physical facility or beliefs.

The students are able to use their creativity for education children. The students are able to see that they can play a role in providing value education for children. They are able to put in simple words the issues that are essential to understand for children and comprehensible to them. The students are able to develop an outline of holistic model for social science and compare it with the existing model.

Module 4 – Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session)

Lecture19: Understanding Harmony in the Nature

Lecture 20: Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature

Tutorial 10: Practice Session PS 10 Exploring the Four Orders of Nature

Lecture21: Realizing Existence as Co-existence at All Levels

Lecture22: The Holistic Perception of Harmony in Existence

Tutorial11: Practice Session PS 11Exploring Co-existence in Existence

Expected outcome:

The students are able to differentiate between the characteristics and activities of different orders and study the mutual fulfillment among them. They are also able to see that human being s are not fulfilling to other orders today and need to take appropriate steps to ensure right participation (in terms of nurturing, protection and right utilization) in the nature.

The students feel confident that they can understand the whole existence; nothing is a mystery in this existence. They are also able to see the interconnectedness in the nature, and point out how different courses of study relate to the different units and levels. Also they are able to make out how these courses can be made appropriate and holistic.

Module 5 – Implications of the Holistic Understanding – a Look at Professional Ethics (6lectures and 3 tutorials for practice session)

Lecture23: Natural Acceptance of Human Values

Lecture24: Definitiveness of (Ethical) Human Conduct

Tutorial 12: Practice Session PS 12 Exploring Ethical Human Conduct

Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order

Lecture26: Competence in Professional Ethics

Tutorial 13: Practice Session PS13 Exploring Humanistic Models in Education

Lecture 27: Holistic Technologies, Production Systems and Management Models-Typical Case Studies

Lecture28: Strategies for Transition towards Value-based Life and Profession

Tutorial 14: Practice Session PS 14 Exploring Steps of Transition towards Universal Human Order

Expected outcome:

The students are able to present sustainable solutions to the problems in society and nature. They are also able to see that these solutions are practicable and draw roadmaps to achieve them.

The students are able to grasp the right utilization of their knowledge in their streams of Technology/Engineering/Management/any other area of study to ensure mutual fulfilment. E.g. mutually enriching production system with rest of nature.

The students are able to sincerely evaluate the course and share with their friends. They are also able to suggest measures to make the course more effective and relevant. They are also able to make use of their understanding in the course for the happy and prosperous family and society.

Guidelines and Content for Practice Sessions (Tutorials)

In order to connect the content of the proposals with practice (living), 14 practice sessions have been designed. The full set of practice sessions is available in the Teacher's Manual as well as the website.

Practice Sessions for Module 1 – Introduction to Value Education

PS1 Sharing about Oneself

PS2 Exploring Human Consciousness

PS3 Exploring Natural Acceptance

Practice Sessions for Module 2 – Harmony in the Human Being

PS4 Exploring the difference of Needs of Self and Body

PS5 Exploring Sources of Imagination in the Self

PS6 Exploring Harmony of Self with the Body

Practice Sessions for Module 3 – Harmony in the Family and Society

PS7 Exploring the Feeling of Trust

PS8 Exploring the Feeling of Respect

PS9 Exploring Systems to fulfil Human Goal

Practice Sessions for Module 4 – Harmony in the Nature (Existence)

PS10 Exploring the Four Orders of Nature

PS11 Exploring Co-existence in Existence

Practice Sessions for Module 5 – Implications of the Holistic Understanding – a Look at Professional Ethics

PS12 Exploring Ethical Human Conduct

PS13 Exploring Humanistic Models in Education

PS14 Exploring Steps of Transition towards Universal Human Order

As an example, PS7 is a practice session in module 3 regarding trust. It is explained below:

PS 7: Form small groups in the class and in that group initiate dialogue and ask the eight questions related to trust. The eight questions are:

1a.DoIwai	nt to make myself happy?	1b. Am I able to make myself always happy?						
2a.DoIwai	nt to make the other happy?	2b. Am I able to make the other always happy?						
3a.Does th	e other want to make him happy?	3b. Is the other able to make him always happy?						
4a.Does th	ne other want to make me happy?	4b. Is the other able to make me always happy?						
Inte	ention(Natural Acceptance)	Competence						
	What is the answer?	What is the answer?						

Let each student answer the questions for himself and everyone else. Discuss the difference between intention and competence. Observe whether you evaluate your intention and competence as well as the others' intention and competence.

Expected outcome of PS 7: The students are able to see that the first four questions are related to our Natural Acceptance i.e. intention and the next four to our Competence. They are able to note that the intention is always correct, only competence is lacking! We generally evaluate ourselves on the basis of our intention and others on the basis of their competence! We seldom look at our competence and others' intention, as a result we conclude that I am a good person and other is a bad person.

3. READINGS:

3.1 Text Book and Teachers Manual

a. The Textbook

A Foundation Course in Human Values and Professional Ethics, R R Gaur, RAsthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

b. The Teacher's Manual

Teachers' Manual for *A Foundation Course in Human Values and Professional Ethics*, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, NewDelhi, 2019.ISBN 978-93-87034-53-2

3.2 Reference Books

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan VidyaPrakashan, Amarkantak, 1999.
- 2. HumanValues, A.N. Tripathi, NewAge Intl.Publishers, NewDelhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth-by Mohandas Karam chand Gandhi
- 5. Small is Beautiful -E. F Schumacher.

- 6. Slow is Beautiful-Cecile Andrews
- 7. Economy of Permanence-JC Kumarappa
- 8. Bharat Mein Angreji Raj –Pandit Sunderlal
- 9. Rediscovering India- by Dharampal
- 10. Hind Swarajor Indian Home Rule-by Mohandas K.Gandhi
- 11. India Wins Freedom-Maulana Abdul Kalam Azad
- 12. Vivekananda-Romain Rolland (English)
- 13. Gandhi-Romain Rolland(English)

4. MODE OF CONDUCT (L-T-P-C2-1-0-3)

- Lecture hours are to be used for interactive discussion, placing the proposals about the topic sat hand and motivating students to reflect, explore and verify them.
- Tutorial hours are to be used for practice sessions.
- While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.
- In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.
- Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life.

Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values. It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this

Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty.

Teacher preparation with a minimum exposure to at least one 8-day Faculty Development Program on Universal Human Values is deemed essential.

5. SUGGESTEDASSESSMENT:

content.

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment.

etc. will be used in evaluation.

Example:

Assessment by faculty mentor: 10 marks

Self-assessment: 10 marks Assessment by peers: 10marks

Socially relevant project/Group Activities/Assignments: 20 marks

Semester End Examination: 50 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

6. OUTCOME OF THE COURSE:

By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.

They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

This is only an introductory foundational input. It would be desirable to follow it up by

- a) Faculty-student or mentor-mentee programs throughout their time with the institution
- b) Higher level courses on human values in every aspect of living.

Mapping of CO with GAs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	2	1	0	0	2	2	3	0	0	0	2
CO2	0	0	0	0	0	2	2	3	0	0	0	2
CO3	0	0	0	0	0	2	2	3	0	0	0	2
CO4	0	0	0	0	0	2	2	3	0	0	0	2
CO5	0	0	0	0	0	2	2	3	0	0	0	2
Total	0	2	1	0	0	10	10	15	0	0	0	10
Scaled Value	0	1	1	0	0	2	2	3	0	0	0	2

COURSE CODE	XCS308	L	T	P	C
COURSE NAME	DATA STRUCTURES & ALGORITHMS	0	0	1	1
	LABORATORY				
PREREQUISITES	PROGRAMMING FOR PROBLEM SOLVING	L	T	P	H
C:P:A	0.5:0.5:0	0	0	2	2

LEARNING OBJECTIVES

To impart the basic concepts of data structures and algorithms

To understand basic concepts about linear data structures stack, queues and lists

To understand basic concepts about nonlinear data structures trees and graphs

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Compute the concept of analysing of algorithms	Cognitive Psychomotor	Apply Guided Response
CO2	Use and Solve the linear data structures for the problems	Cognitive Psychomotor	Apply Guided Response
CO3	Use and Solve the non-linear data structures trees for the problems	Cognitive Psychomotor	Apply Guided Response
CO4	Use and Solve the non-linear data structures graphs for the problems	Cognitive Psychomotor	Apply Guided Response
CO5	Compute the appropriate abstract data types and algorithm techniques	Cognitive Psychomotor	Apply Guided Response

S.No	List of Experiments			COs					
1	Analysing Searching Algorithm			CO1					
	Analysing Sorting Algorithm								
2	Application of List			CO2					
	Stack using Array and Linked List								
	Queue using Array and Linked List								
3	Tree Traversal			CO3					
	Binary Tree Creation								
4	Graph Traversal			CO4					
	Shortest Path Algorithms								
5	Applications of Algorithm Design Techniques	3		CO5					
HOUR		TUTORIAL	PRACTICAL	TOTAL					
11001		0	30	30					

Mapping	of C	O wit	h PO	's										
	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	1	1	1	1	0	0	0	0	0	1	1	3	0
CO 2	3	2	1	1	1	0	0	0	1	0	1	1	3	2
CO 3	3	1	1	1	1	0	0	0	1	0	1	1	3	2
CO 4	3	2	1	2	1	0	0	0	1	0	1	1	3	2
CO 5	3	1	1	2	0	0	0	0	1	0	1	2	3	2
Total	15	7	5	7	4	0	0	0	4	0	5	6	15	8
Scaled Value	3	2	1	2	1	0	0	0	1	0	1	2	3	2

Total	0	1-5	6-10	11-15		
Scaled value	0	1	2	3		
Relation	No	Low	Medium	High		

SEN	ИES	STEI	₹	:	III											
CO	UR	SE C	ODE	:	XCS	5309										
CO	UR	SE N	AME	:	OBJ	ECT ORII	ENTED	PROG	RAMM	IN	G LABOR	ATO	RY			
			SITE	:		GRAMM										
	L	T	P		C		С	P	A			L	Т	P	Н	
	0	0	1		1		0.5	0.5	12			0	0	2	2	
Cou	ırse		ectives					1 333				1 -				
• ′	То є	explo	re the pri	ncip	oles, al	gorithms a	and met	thods to	design	and	l d construc	tion o	f con	pile	r	
											ı					
Cou be a			ome: Aft	er tl	he con	ipletion of	the cou	rse, stu	dents w	ill	Doma C or P			L	evel	
CO	1 ′	To ur	nderstand	the	basic	concepts of	of OOP.				Cognitiv	e	Un	derst	and	
	Psychomotor Guided I												Resp	onse		
CO	2 '	To ur	nderstand	the	conce	ept of Java.					Cognitiv		Ap		_	
~~	<u> </u>	т.	1	_		CT1. '	17)1			Psychon		_		Resp	onse
CO	3	To ap	oply the c	onc	epts o	f Inheritan	ce and F	ackage	es.		Cognitiv Psychom		Ap Gu		Resp	onse
CO	4 ′	To apply the concepts of Applets and Swing. Cognitive Apply Cognitive Apply										ply ided Respons				
CO	_												Resp	onse		
CO	5 '	To cr	eate a Da	ıtaba	ase Co	onnectivity	and Ne	tworkir	ıg.		Cognitiv Psychom				Resp	onse
							r of ex	XPERI	MENT	S			ı,			
S.N						EIMENTS										O'S
UNI	IT I	[N TO OO										4
1						nd their O		-1-!4	_						C	O 1
UNI	TT I	т				estructor to JAV		object	S.						1	10
2		1	3.Functi				A									O2
<i>_</i>			4.Inherit			unig									C	02
			5.Polym													
			6.String	-												
NIT	'III	[AND PAC	CKAGE	ES							(6
3			7.Learni	ng c	of abst	raction thre	ough In	terface							C	O3
						apsulation			ge							
			9.Handli	ng l	Except	tions in Jav	va.									
UNI	IT I	V	APPLE	TS	AND S	SWING									(6
4			-			of Applet									C	O4
						of Swing										
UN	IT V	V				NNECTIV				RKI	ING					4
5						of Databa	ase Con	nectivit	y.						C	O 5
			13.Web	App	oncatio	on]	Hours	T	Cutorial		Pra	ıcti	To	otal
								-		-			cal	•		30
											0		3	V		30

Mapping of CO with PO's

	PO1	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	2	2	2	1	1	0	0	2	1	0	2	1	2
CO 2	2	1	1	1	1	1	0	0	2	1	0	1	2	2
CO 3	1	3	2	2	1	1	0	0	1	1	0	2	1	2
CO 4	2	2	2	2	2	1	0	0	1	1	0	1	1	2
CO 5	2	3	3	1	1	1	0	0	1	1	0	1	1	2
Total	9	11	10	8	6	5	0	0	7	5	0	7	6	10
Scaled Value	2	3	2	2	2	1	0	0	2	1	0	2	2	2
Note:	 	Total	0		1-5	5	6-1	0	11-1	15				
Scaled va		value	0		1		2		3					
	Rel	ation	No		Low		Medium		High					

COURSE CODE	XCS310	L	T	P	C
COURSE NAME	IN-PLANT TRAINING – I	0	0	0	1
C:P:A	0.5:0.5:0				
		L	Т	P	Н
		0	0	0	0

COUF	RSE OUTCOMES	Domain	Level	
CO1	Relate classroom theory with workplace practice	Cognitive	Understand	
CO2	<i>Comply with</i> Factory discipline, management, and business practices.	Psychomotor	Guided Response	
CO3	Demonstrates teamwork and time management.	Psychomotor	Guided Response	
CO4	Describe and display hands-on experience on practical skills obtained during the programme.	Psychomotor	Perception	
CO5	Summarize the tasks and activities done by technical documents and oral presentations	Psychomotor	Guided Response	

CO Vs PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	0	0	0	0	0	0	0	0	0	0	0
CO2	0	0	0	0	0	0	1	3	0	0	1	0
CO3	0	0	0	0	0	0	0	0	3	1	3	1
CO4	0	1	2	1	3	0	0	0	0	0	0	3
CO5	0	0	0	3	0	0	0	0	0	3	0	1
Total	2	1	2	4	3	0	1	3	3	4	4	5
Scaled	1	1	1	1	1	0	1	1	1	1	1	1

SEMESTER - IV

COU	RSE C	ODE	XCS401	L	T	P	C
COU	RSE N	AME	DISCRETE MATHEMATICS	3	0	0	3
C	P	A		L	T	P	H
2.5	0.5	0		3	0	0	3

PREREQUISITE: Nil

Learning Objectives

- 5. Be able to understand logical arguments and logical constructs. Have a better understanding of sets, functions and relations
- 6. Be able to construct simple mathematical proofs, Permutations & Combinations.
- 7. Acquire ability to describe computer programme in a format mathematical manner.
- 8. Be able to use effectively algebraic techniques to analyze basic discrete structures and algorithms.

COURSE OUTCOMES:

Cours	se outcomes:	Domain	Level
CO1	Define Sets, Relation, and Function and to explain some	Cognitive	Understand
	simple problems related to that.		
CO2	Define and Explain Basic counting techniques- inclusion	Cognitive	Understand
	and exclusion, pigeon-hole principle, permutation and		
	combination.		
CO3	Define and Explain the Laws of Logic, Logical Implication,	Cognitive	Understand
	Rules of Inference, The use of Quantifiers. Disjunctive and		
	Conjunctive Normal Form		
CO4	Define and Explain Algebraic Structures with one Binary	Cognitive	Understand
	Operation and two Binary Operations.		
CO5	Define and Explain Graphs and their properties.	Cognitive	Understand

UNIT I: SETS, RELATION AND FUNCTION

9

Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Countable and uncountable Sets, Cantor's diagonal argument and The Power Set theorem.

UNIT II: PRINCIPLES OF MATHEMATICAL INDUCTION

9

The Well-Ordering Principle, Recursive definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, Basic counting techniques- inclusion and exclusion, pigeon-hole principle, permutation and combination.

UNIT III: PROPOSITIONAL LOGIC

9

Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. Proof Techniques: Proof by Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency, Disjunctive and Conjunctive Normal Form.

UNIT IV: ALGEBRAIC STRUCTURES

9

Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Groups, Permutation Groups, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields.

UNIT V: GRAPHS AND TREES

g

Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs-Shortest Distances.

LECTURE	TUTORIAL	TOTAL
45	-	45

TEXTBOOKS

- 1. Kenneth H. Rosen, "Discrete Mathematics and its Applications", seventh edition, Tata McGraw Hill, (12th reprint) 2015.
- 2. J.P. Tremblay and R. Manohar, "Discrete Mathematical Structure and It's Application" to Computer Science", 2nd edition, Tata Mcgraw-Hill, 1988.
- 3. C L Liu and D P Mohapatra, "Elements of Discrete Mathematics A Computer Oriented Approach", 3rd Edition, Tata McGraw Hill, 1985.

REFERENCES

- 1. Susanna S. Epp, "Discrete Mathematics with Applications", 5th edition, Cengage Learning India Private Limited, 2021.
- 2. C.V. Sastry, Rakesh Nayak, "A Textbook on Discrete Mathematics", Wiley, 2020.
- 3. Seymour Lipschutz, Marc Lipson, "Schaum's Outline of Discrete Mathematics", Fourth Edition (Schaum's Outlines) 4th Edition, 2021.

E REFERENCES

Nptel: Mathematical Logic by Prof. Arindama Singh, Department of Mathematics, IIT Madras.

Mapping of CO with GA's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	2	1	0	0	0	0	0	1	1	0	1
CO 2	3	2	1	0	0	0	0	0	1	1	0	1
CO 3	3	2	1	1	0	0	0	0	1	1	0	1
CO 4	3	2	1	1	1	1	0	0	1	1	1	1
CO 5	3	2	1	1	1	1	1	0	1	1	1	1
Total	15	10	5	3	2	2	1	0	5	5	2	5
Scaled value	3	2	1	1	1	1	1	0	1	1	1	1

1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

SEN	MES	ΓER		:	I	V											
CO	URS	E CC	DE	:	X	TCS402											
CO	URS	E NA	ME	:	C	COMPUTER ORGANIZATION AND ARCHITECTURE											
PRE	EREC	QUIS	ITE	:	A	NAL	OG ANI	D DIGI	TAL EI	LECTR	ONIC C	RCU	ITS				
	L	T	P		C			C	P	A			L	T	P	Н	
	3	1	0		4	3 0 0 3 1 0 4											
Con	Course Objectives																

Course Objectives

- **Understand** the digital representation of data in a computer system.
- Understand the general concepts in digital logic design, including logic elements, and their use in combinational and sequential logic circuit design.
- Understand the computer arithmetic formulate and solve problems

Course be able	e Outcome: After the completion of the course, students will e to	Domain C or P or A	Level
CO1	Explain the basic organization of a computer system	Cognitive	Understand
CO2	Describe and Analyze the simple arithmetic and logical units	Cognitive	Analyze
CO3	<i>Interpret the</i> different ways of communication with I/O devices	Cognitive	Understand
CO4	<i>Illustrate</i> hardwired control and micro programmed control, pipelining, embedded and other computing systems	Cognitive	Analyze
CO5	<i>Categorize</i> the functioning of different sub systems, such as processor, Input/output, and memory	Cognitive	Analyze

COURSE CONTENT

UNIT I	BASIC STRUCTURE OF COMPUTERS	9
	Functional units - Basic operational concepts - Bus structures - Software performance - Memory locations and addresses - Memory operations - Instruction and instruction sequencing - Addressing modes - Assembly language - Basic I/O operations - Stacks and queues- Measuring, Reporting and Summarizing Performance.	
UNIT II	ARITHMETIC UNIT	9
	Addition and subtraction of signed numbers – Design of fast adders – Multiplication of positive numbers - Signed operand multiplication and fast multiplication – Integer division – Floating point numbers and operations.	
UNIT III	BASIC PROCESSING UNIT	9
	Fundamental concepts – Execution of a complete instruction – Multiple bus organization – Hardwired control – Micro programmed control. Pipelining – Basic concepts – Data hazards – Instruction hazards – Influence on Instruction sets – Data path and control consideration – Superscalar operation	
UNIT IV	MEMORY SYSTEM	9
	Basic concepts – Semiconductor RAMs - ROMs – Speed - size and cost – Cache memories - Performance consideration – Virtual memory- Memory Management requirements – Secondary storage.	

UNIT V	I/O ORGANIZATION					9
	Accessing I/O devices – Interrupts – Direct Memory Accessing I/O devices – Interrupts – Direct Memory Accessing I/O Interfaces (PCI, SCSI, USB).	Access	– Bus	ses – I	nterfa	ce
			L	T	P	Total
			45	Λ	Λ	45

TEXT/ REFERENCE BOOKS

- 1. Carl Hamacher, ZvonkoVranesic and SafwatZaky, 6thEdition "Computer Organization", McGraw- Hill, 2012
- 2. John L. Hennessey and David A. Patterson," Computer Architecture: A Quantitative Approach", 6th Edition, Morgan Kaufmann, 2017.
- 3. William Stallings, "Computer Organization and Architecture Designing for Performance", 9th Edition, Pearson Education, 2010.
- 4. John P.Hayes, "Computer Architecture and Organization", 3rd Edition, McGraw Hill, 2017

Mapping of Co	O with P	O's
_		

mapping (-	- 1111111													
		P01	PO2	PO 3	PO 4	PO 5	9 Od	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		3	0	2	0	0	1	1	0	0	0	1	1	2	1
CO 2		3	3	3	2	2	1	1	0	0	0	1	1	2	1
CO 3		3	0	2	0	0	1	1	0	0	0	1	1	2	1
CO 4		3	3	3	2	2	1	1	0	0	0	1	1	2	1
CO 5		3	3	3	2	2	1	1	0	0	0	1	1	2	1
Total		15	9	13	6	6	5	5	0	0	0	5	5	10	5
Scaled Val	lue	3	2	3	2	2	1	1	0	0	0	1	1	2	1
Note:	To	tal		0		1-5	5	6-1	0	11-1	15				
	Sca	aled valu	ıe	0		1		2		3					
	Re	lation		No		Lov	V	Medi	um	Hig	h				

SE	MES	TER	}	:	I	V										
CO	URS	SE C	ODE	:	X	XCS403										
CO	URS	SE N.	AME	:	0	OPERATING SYSTEMS										
PR	ERE	QUI	SITE	:	P	ROGRA	MMIN	G FOI	R PRO	BLEM S	OLV	ING	,			
					D	ATA ST	RUCT	URES.	AND A	LGORI	THN	IS				
	L	T	P	C			C	P	A			L	T	P	Н	
	3	0	0	3			3	0	0			3	0	0	3	

Course Objectives:

- To understand the functions of operating system and their services.
- To learn different process scheduling algorithms and process synchronization techniques.
- To understand the concept of deadlocks and various memory management schemes.
- To learn I/O management and file systems.

	e Outcome: After the completion of the course, students e able to	Domain	Level
CO1	Describe the functions of operating system and system calls.	Cognitive	Understand
CO2	Explain the process management concepts and solve the various CPU scheduling algorithms.	Cognitive	Apply
CO3	Develop solutions to process synchronization problems and deadlock.	Cognitive	Apply
CO4	<i>Identify</i> the role of paging, virtual memory in operating systems.	Cognitive	Apply
CO5	<i>Explain</i> the concepts of storage management, disk management and file management.	Cognitive	Understand

COURSE CONTENT

UNIT I OPERATING SYSTEMS OVERVIEW

9

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.

UNIT II PROCESS MANAGEMENT

9

Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching. **Thread:** Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads. **Process Scheduling:** Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor Scheduling: Real Time scheduling.

UNIT III PROCESS SYNCHRONIZATION

9

Process Synchronization: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson' Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem. **Deadlocks:** Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

UNIT IV | MEMORY MANAGEMENT

9

Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory Allocation –Fixed and variable partition—Internal and External fragmentation and Compaction; Paging: Principle of Operation – Page allocation— Hardware support for paging, Protection and sharing, Disadvantages of paging. **Virtual Memory:** Basics of Virtual Memory—Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not Recently Used (NRU) and Least Recently Used (LRU).

UNIT V I/O SYSTEMS

9

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms. **Disk Management:** Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks. **File Management:** Concept of File, Access methods, File types, File operation, Directory structure, File Systemstructure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

	L	T	P	Total
	45	0	0	45

TEXT BOOKS:

- 1.Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 10thEdition, John Wiley and Sons Inc., 2018.
- 2. William Stallings, "Operating Systems Internals and Design Principles", 7th Edition, Prentice Hall, 2012.

REFERENCE BOOKS:

- 1. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education, 2012.
- Gary J. Nutt, "Operating Systems: A Modern Perspective", 2nd Edition, Addison-Wesley,2002.
 Maurice Bach, "Design of the Unix Operating Systems", 8th Edition, Prentice-Hall of India,
- 2012.
- 4. Daniel P. Bovet, Marco Cesati, "Understanding the Linux Kernel", 3rd Edition, O'Reilly and Associates, 2005.

E-RESOURCES:

https://nptel.ac.in/courses/106108101

Mapping of CO with PO's

mapping or o														
	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1	0	0	0	0	0	0	0	0	0	0	3	2
CO 2	3	2	1	1	1	0	0	0	0	0	0	0	3	2
CO 3	3	2	1	1	1	0	0	0	0	0	0	0	3	2
CO 4	3	2	1	1	1	0	0	0	0	0	0	0	3	2
CO 5	2	1	0	0	1	0	0	0	0	0	0	0	3	2
Total	13	8	3	3	4	0	0	0	0	0	0	0	15	10
Scaled Value	3	2	1	1	1	0	0	0	0	0	0	0	3	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SEN	IEST	ER		:	IV													
CO	URSE	CO	DE	:	XC	S404												
CO	URSE	C NA	ME	:	DE	SIGN A	ND AN	ALYSI	S OF A	LGO	RI	THN	1S					
PRI	EREQ	UIS	ITES	:		OGRAM			PROBI	EM S	SO	LVI	NG,	DAT	A STRI	JCTU	JRE	C
		-		0	AN	D ALGC		1		I			l -			1 1		
	<u>L</u>	T	P	C			C	P	A				L	T	P	H		
	3	0	0	3			3	0	0				3	0	0	3		
Cou	rse O	bject	tives															
				t the	proce	ess of pro	blem so	olving.		il entre de la constante de la								
•	• To	be c	onvers	ant v	vith a	lgorithm	s for co	mmon _l	problen	ıs.								
•	• To	anal	yse the	e algo	orithr	ns for tin	ne/space	e compl	exity.									
•						hms for a		_		differ	ent	desi	gn pa	aradi	gms.			
						tional con										1		
Cou to	rse O	utcon	nes: Aj	tter t	he co	mpletion	of the	course,	the sti	ıdents	wi	ll be	able	? L	Oomain		Lev	el
CO 1	1 Ex	plain	the ba	asic c	once	pts of alg	gorithm	s and ar	nalyze 1	he pe	rfoı	man	ce of	f C	ognitive	Une	dersi	tand
		gorith					-		.	1								
CO	2 Ap	ply c	livide a	and c	onqu	er strateg	gy for so	olving s	uitable	proble	ems	S.		С	ognitive	Ap	ply	
CO.	3 Ar	nalyse	e the al	gorit	hms	using dyı	namic p	rogram	ming ap	proac	ch.			С	ognitive	Ana	alyz	e
CO	1 Ar	nalyse	e the co	ompl	exity	of the pr	oblems	using b	acktrac	king a	algo	rithr	n.	С	ognitive	Ana	alyz	e
CO	5 Ex	plain	NP co	mple	etene	ss and ide	entify d	ifferent	NP co	nplete	pr	obler	ns.	С	ognitive	Un	dersi	tand
CO	URSE	CO:	NTEN	TS														
UNI	TI	INI	ROD	UCT	ION													9
		Not	ion of	Alg	gorith	m - Fu	ndamen	tals of	Algor	thmic	P	roble	m S	olvi	ng – In	porta	ant	
				• -		Fundame			•		_				•	•		
					•	ptotic No				•						•		
						Algorithn sis of rec									_			
		Puz		1041 0	urary.	919 01 100		.150111111	115 110	Cuisi	. •	oraci		, 1110	10,,01	1 1101		
UNI	TII	DIV	VIDE A	AND	CO	NQUER	TECH	NIQUE	2									9
		Div	ide an	d Co	nque	r Techni	que – l	Multipli	cation	of La	rge	Inte	gers	- S	trassen's	Mat	rix	
			-			osest Pa						- (Greec	ly M	Iethod –	Prin	n's	
		Alg	orithm	- K1	ruska	l's Algor	ithm – I	Dijkstra	's Algo	rithm	١.							
UNI	T III	DY	NAMI	[C P]	ROG	RAMM	ING											9
						ning - Co												
		_				ation of V		_				_		-	_		for	
		the	All Pa	ırs Sl	ortes	st Paths F	'roblem	- The I	Snapsa	k Pro	ble	m an	d Me	emor	y Functi	on.		
UNI	TIV	BA	CKTR	RACI	KINC	j												9

	Backtracking – N-Queens Problem – Hamiltonian Circuit I – Branch and Bound – Assignment Problem – Knapsack Problem.					
UNIT V	NP COMPLETENESS					9
	P, NP and NP-complete problems – Approximation algor Traveling salesman problem – Knapsack problem – Alg Equations.			-		
		L	T	P	Tot	tal
		45	0	0	45	5

TEXT BOOKS

- 1. S. Sridhar, "Design and Analysis of Algorithms", Oxford University Press, 2015
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2014.
- 3. Anany Levitin "Introduction to the Design and Analysis of Algorithms", 3rd Edition, Pearson Education 2009.

REFERENCE BOOKS

- 1. S.K. Basu, "Design methods and Analysis of Algorithms", 2nd Edition, Prentice Hall, 2013.
- 2. Steven S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2010.
- 3. Robert Sedgewick, Kevin Wayne, "Algorithms", Fourth Edition, Pearson Education, 2011.
- 4. Donald E. Knuth, "Art of Computer Programming, Volume I Fundamental Algorithms", Third Edition, Addison Wesley, 1997

E-REFERENCES

- 1. https:\\nptel.org
- 2. https://www.coursera.org

Mapping of CO with PO's

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1	2	0	0	0	0	0	0	0	0	0	1	1
CO 2	2	3	2	1	0	0	0	0	0	0	0	0	1	1
CO 3	2	3	2	1	0	0	0	0	0	0	0	0	1	1
CO 4	2	3	2	1	0	0	0	0	1	0	0	0	1	1
CO 5	2	2	2	0	0	0	0	0	1	0	0	0	1	1
Total	10	12	10	3	0	0	0	0	2	0	0	0	5	5
Scaled Value	2	3	2	1	0	0	0	0	1	0	0	0	1	1

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

COURSI	E CODE	XUM009	L	T	P	C
COURSI	E NAME	ECONOMICS FOR ENGINEERS	3	0	0	3
PRERE(UISITE		L	T	P	H
S						
C:P:A		2.64:0.24:0.12	3	0	0	3
COURSI	E OUTCO	MES	DOM	1AIN	LE	VEL
CO1	_	he concepts of economics in engineering ify element of cost to prepare cost sheet	Cogn	itive	Uno	lerstand
CO2	Calculate marginal	and Explain the Break-even point and costing	Cogn	itive	Uno	lerstand
CO3	Summari for cost an	ze and Use value engineering procedure nalysis	Cogn	itive	Uno	lerstand
CO4	Estimate	replacement problem	Cogn	itive	Uno	lerstand
CO5		Explain and make Use of different of depreciation	Cogn	itive	Unc	lerstand
TINITE	INTROD	LICTION TO ECONOMICS				ΛO

UNIT I INTRODUCTION TO ECONOMICS

08

Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics- types of costing, element of costs, preparation of cost sheet and estimation, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost

UNIT IIBREAK-EVEN ANALYSIS&SOCIAL COST BENEFIT ANALYSIS

12

Margin of Safety, Profit, Cost & Quantity analysis-Product Mix decisions and CVP analysis, Profit/Volume Ratio (P/V Ratio), Application of Marginal costing, Limitations

Social Cost Benefit Analysis: compare different project alternatives, Calculate direct, indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.

UNIT III VALUE ENGINEERING & COST ACCOUNTING:

10

Value engineering – Function, aims, Value engineering procedure - Make or buy decision Business operating costs, Business overhead costs, Equipment operating costs

UNIT IV REPLACEMENT ANALYSIS

07

Replacement analysis –Types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset.

UNIT V DEPRECIATION

08

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the year's digits method of depreciation, sinking fund method of depreciation, Annuity method of depreciation, service output method of depreciation.

	LECTURE	TUTORIAL	TOTAL
HOURS	45	0	45

TEXT BOOKS

- 1. Sp Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012
- 2. S.P.Jain&Narang, "Cost accounting Principles and Practice", Kalyani Publishers, Calcutta, 2012
- 3. PanneerSelvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.

4. William G.Sullivan, James A.Bontadelli& Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

REFERENCES

- 1. Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 2. Truett&Truett, "Managerial economics- Analysis, problems & cases "Wiley India 8th edition 2004.
- 3. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

Mapping of COs with GAs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	3	2	3	2	1	1	3	1	1
CO2	1	0	3	0	0	2	1	0	3	1	0	1
CO3	2	3	1	1	2	3	1	1	1	2	3	1
CO4	1	3	2	3	3	1	3	3	1	1	0	2
CO5	1	1	1	3	1	2	2	1	2	3	3	1
Scaled	6	8	8	10	8	11	9	6	8	9	7	6
	•	•	•	•	•	•	•	•	•	•	•	•
Mata	п	Cotol		Λ	1 5		6 10		11 15	,		

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

Sen	nesto	er		:	IV													
Coı	ırse	Code		:	XU	M(03											
		Nam		:			TER N	IANA(SEME!	NT								
Pre		ıisite		:	NII			Τ ~	Τ_	Τ.			1	T _		Τ_		
	L	Т	P	C				С	P	A				L	T	P	H	
	0	0	0	0	١			3	0	0				3	0	0	3	
		Outco able t		· Afi	ter t	he	complet	ion of th	he cour	se, stud	ents			main P or			Lev	vel
CO		Under		ıd tl	ne co	onc	epts of	disaster	s, their	signific	ance	C	ognit	tive		Und	ersta	and
CO	CO2 Understand the relationship between vulnerability, disasters, disaster prevention and risk reduction CO3 Able to understanding of preliminary approaches of Cognitive Underst										ersta	and						
CO	Disaster Risk Reduction (DRR)										and							
CO	CO4 Develop awareness of institutional processes in the country Cognitive Application										ion							
CO	5	surrou	ındi	ngs	with	ı p	otential	to resp disaster nsitivity	respon	their se in ar	eas	C	ognit	tive		App	licat	ion
CO	URS	SE C	ON	ΓEN	T													
UN	IT I		IN	ΓRO	DDU	J C '	TION T	TO DIS	ASTEI	RS								6
			Imp	ort	ance	&	Signific	ance, T	ypes of	Disaste	rs, C	lima	te C	hange	e, DN	И сус	le	
UN	IT I	I	RISK ASSESSMENT											12				
			Risk, Vulnerability, Types of Risk, Risk identification, Emerging Risk, Assessment, Damage Assessment, Risk modeling.											s, Risk				
UN	IT I	II	DISASTER MANAGEMENT											10				
			Phases, Cycle of Disaster Management, Institutional Framework, Incident C System, DM Plan, Community Based DM, Community health and safet Warning and Disaster Monitoring, Disaster Communication, Role of Remote Sensing, Do's and Don'ts in various disasters.											afety	, Early			
UN	IT I	V	DISASTER RISK MANAGEMENT IN INDIA									10						
			Foo (Mi	od, tiga	Sani ation	itat ı, F	ion, Sh Respons	elter, H e and F	ealth, repared	Waste I	Mana Disas	gem ter]	ent, Mana	Insti	tutio	nal a	rrang	Water, gements Policy –
UN	IT V	7		DISASTER MANAGEMENT: APPLICATIONS AND CASE 5TUDIES 7														
										ıake Vu , Coasta								
		_						ım and S			41 I I	Juli	15, 1	orest	1 II C,	, 17141	1 1416	

disasters, Space Based Inputs for Disaster Mitigation	and I	Manag	gemen	ıt, Cast	Study
		L	T	P	Total
		45	0	0	45

TEXT BOOKS

- 1. Singhal J.P. Disaster Management, Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10:** 1259007367, **ISBN-13:** 978-1259007361)
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. KapurAnu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010

REFERENCE BOOKS

- 1. Siddhartha Gautam and K Leelakrisha Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012
- 2. Arun Kumar, "Global Disaster Management", SBS Publishers, 2008
- 3. PardeepSahni, AlkaDhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000
- 4. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 5. Government of India, National Disaster Management Policy, 2009

E-REFERENCES

- NIDM Publications at http://nidm.gov.in- Official Website of National Institute of Disaster Management (NIDM), Ministry of Home Affairs, Government of India
- http://cwc.gov.in , http://ekdrm.net , http://www.emdat.be , http://www.nws.noaa.gov , http://pubs.usgs.gov , http://nidm.gov.ini http://www.imd.gov.ini

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	1	0	0	1	0	2	2	1	1	0	0	1
CO 2	1	1	2	2	0	1	1	0	1	1	1	1
CO 3	1	1	2	1	3	1	1	0	1	0	1	1
CO 4	1	1	2	2	0	1	1	2	2	2	1	1
CO 5	1	1	0	1	0	1	0	1	1	1	1	1
Total	5	4	6	7	3	6	5	4	6	4	4	5
Scaled Value	1	1	2	2	1	2	1	1	2	1	1	1

Sen	neste	er		:	I	I												
Cor	urse	Code	e	:	X	CCS407												
Cor	urse	Nam	ie	:	IT	WORKSHOP												
Pre	erequ	iisite		:	kn	owle	ng know edge of c a are hig	ompute	r progra	_	-				•			and linear
	L	T	P	(C			C	P	A				L	T	P	Н	
	0	0	1	1	1		_	0.4	0.4	0.2				0	0	2	2	
Cor	urco	Ohia	octiv	'AC														

Course Objectives

- Understanding the MATLAB environment
- Being able to do simple calculations using MATLAB
- Being able to carry out simple numerical computations and analyses using MATLAB

	e Outcome: After the completion of the course, students e able to	Domain C or P or A	Level									
CO1	Understand the main features of the MATLAB development environment	Cognitive, Psychomotor Affective	Understand Guided Response Respond									
CO2	Use the MATLAB GUI effectively	Cognitive Psychomotor	Understand Guided Response									
CO3	Design simple algorithms to solve problems	Cognitive Psychomotor Affective	Apply Guided Response Respond									
CO4	Write simple programs in MATLAB to solve scientific and mathematical problems	Cognitive Psychomotor Affective	Apply Guided Response Respond									
CO5	graphical representations and tips for designing and implementing MATLAB code	Cognitive Psychomotor Affective	Apply Guided Response Respond									

COURSE CONTENT

UNIT I	INTRODUCTION & BASICS	9
	Why MATLAB? - History Familiar with MATLAB windows - Basic	
	Operations - MATLAB-Data types - Rules about variable names - Predefined	
	variables	
	Practical	
	1. Basic Operations on Matrices.	
	2. Write a program for Generation of Various Signals and Sequences	
	(Periodic and Aperiodic), such as Unit impulse, unit step, square, saw	
	tooth, triangular, sinusoidal, ramp, sinc.	
UNIT II	CONDITIONAL STATEMENTS AND LOOPING	9
	Relational and Logical Operators - If-else statements - Switch-case statements -	
	For loop - While loop - Special commands(Break and continue) - Import data	
	from large database - Export data to own file or database	
	Practical	

	 Write a program to perform operations like addition, multiplication, scaling, shifting, and folding on signals and sequences and computation of energy and average power. Find the roots of the equations 6x5 -41x4 +97x3 -97x2 +41x-6 Find the values of x,y,z of the equations x+y+z=3,x+2y+3z=4,x+4y+9z=6 For f(x)=8x8 -7x7 +12x6 -5 x5 +8 x4 +13 x3 -12x+9 compute f(2),roots 											
	of f(x) and plot for 0 20											
UNIT III	MATLAB PROGRAMMING I	9										
	Vector – Matrix - Array Addressing - Built-in functions - Mathematical Operations - Script file – Input commands – Output commands – Structure of function file – Inline functions Practical 1. Solution of Linear equations for Underdetermined and over determined cases. 2. Determination of Eigen values and Eigen vectors of a Square matrix. Solution of Difference Equations. 3. Solution of Difference Equations using Euler Method.											
UNIT IV	2D & 3D PLOTTING	9										
	In-built functions for plotting - Multiple plotting with special graphics - Curve fitting – Interpolation - Basic fitting interface - Mesh plot - Surface plot PRACTICAL 1. Determination of polynomial fit, analyzing residuals, exponential fit and error bounds from the given data. 2. Determination of polynomial using method of Least Square Curve Fitting.											
UNIT V	GRAPHICAL USER INTERFACE	9										
	Creating menu window for providing input - Creating graphical user interface table - Modifying table content - Creating a database Practical 1. GRAPHICS - 2D PLOTS											
	L T P Total											
	45 0 0 45											

REFERENCE BOOKS

- Amos Gilat 'MATLAB, An Introduction With Applications',3rd edition, Wiely publishers,2008
 Stephen J. Chapman' MATLAB Programming for Engineers' 5th edition, Cengauge learninb,2016
 Holly Moore 'MATLAB for Engineers', 5th edition, Pearson, 2012

E-REFERENCES

- 1. https://nptel.ac.in/courses/111/102/111102137/
- 2. https://in.mathworks.com/help/matlab/

Mapping	of C	O witl	h PO	's											
		P01	PO2	PO 3	PO 4	PO 5	9 Od	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		0	0	0	1	3	0	0	0	0	0	0	1	0	0
CO 2		2	2	0	1	3	0	0	0	0	0	0	1	0	0
CO 3		0	2	1	2	2	0	0	0	0	0	0	1	0	0
CO 4		0	0	0	0	2	0	0	0	0	0	0	0	0	0
CO 5		0	0	0	2	2	0	0	0	0	0	0	0	0	0
Total		2	4	1	6	12	0	0	0	0	0	0	3	0	0
Scaled Va	lue	1	1	1	2	3	0	0	0	0	0	0	1	0	0
Note:	Note: Total		otal	0		1-5	í	6-1	0	11-1	15				
	Sca val	aled lue		0		1		2		3					
		Relat	ion	No		Lov	v	Medi	um	Hig	gh				

COURSE CODE	XCS408	L	T	P	C
COURSE NAME	OPERATING SYSTEMS LABORATORY	0	0	1	1
PREREQUISITES	PROGRAMMING FOR PROBLEM SOLVING,	L	T	P	H
	DATA STRUCTURES AND ALGORITHMS				
C:P:A	0.8:0.2:0	0	0	2	2

COURSE OBJECTIVES

- To make aware of different types of Operating System and their services.
- To learn different process scheduling algorithms and synchronization techniques to achieve better performance of a computer system.
- To know memory management concepts.
- To learn implementation of file system.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Experiment with UNIX Commands	Cognitive	Apply
CO2	Solve various CPU scheduling algorithms.	Cognitive	Apply
CO3	Demonstrate the process synchronization and deadlocks.	Cognitive	Understand
CO4	Demonstrate the memory management strategies.	Cognitive	Understand
		Psychomotor	Guided Response
CO5	Demonstrate File Organization and File Allocation	Cognitive	Understand
	Strategies.	Psychomotor	Guided Response

S.No	List of Experir	nents			COs			
1	Basics of UNIX commands				CO1			
2	Write programs using the following system ca exec, getpid, exit, wait, close, opendir, readdir		erating system forl	k,	CO1			
3	Write C programs to simulate UNIX command	ds like cp, ls, gr	ep.		CO1			
4	Implement the various CPU scheduling algorithms like FCFS, SJF scheduling, Priority and Round robin scheduling.							
5	Implement Producer – Consumer Problem.							
6	Implementation of Banker's Algorithm.							
7	Implementation of the Memory Allocation Me	ethods.			CO4			
8	Implementation of the Page Replacement Algorithms	orithms.			CO4			
9	File Organization Techniques.				CO5			
10	File Allocation Strategies.							
	HOUDS	TUTORIAL	PRACTICAL	T	OTAL			
	HOURS	0	30		30			

Mapping of	Mapping of CO with PO's														
		P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		3	2	1	1	0	0	0	0	1	0	0	0	3	2
CO 2		3	2	1	1	1	0	0	0	1	0	0	0	3	2
CO 3		2	1	0	0	1	0	0	0	1	0	0	0	3	2
CO 4		2	1	0	0	1	0	0	0	1	0	0	0	3	2
CO 5		2	1	0	0	1	0	0	0	1	0	0	0	3	2
Total		12	7	2	2	4	0	0	0	5	0	0	0	15	10
Scaled Val	lue	3	2	1	1	1	0	0	0	1	0	0	0	3	2
Note:	Note: Total		tal	0		1-5	5	6-1	0	11-1	15				
Sca val		aled ue		0		1		2		3					
			ion	No		Lov	V	Medi	um	Hig	h				

COU	JRSE	COD	E	XCS409	XCS409								
COU	JRSE	NAN	1E	DESIGN	DESIGN AND ANALYSIS OF ALGORITHMS								
				LABORA	TORY								
PRE	REQ	UISI	ГES	PROBLE	PROBLEM SOLVING USING C,								
				DATA ST	TRUCTU:	RES							
L	T	P	C		C P A							P	H
0	0	1	1	0.5 0.5 0						0	0	2	2

COURSE OBJECTIVES

The course should enable the students to:

- Learn how to analyze a problem and design the solution for the problem.
- Design and implement efficient algorithms for a specified application.
- Strengthen the ability to identify and apply the suitable algorithm for the given real world problem.

	SE OUTCOMES: After the completion of the course, the	DOMAIN	LEVEL
CO1	s will be able to Analyze the time complexities of recursive and non-	Cognitive	Analyze
COI	recursive algorithms.		1
	recursive digorithms.	Psychomotor	Guided
			Response
CO2	<i>Solve</i> the problems using divide and conquer approach.	Cognitive	Apply
		Psychomotor	Guided
			Response
CO3	Solve the problems using dynamic programming	Cognitive	Apply
	approach.	Psychomotor	Guided
			Response
CO4	Solve the problems using backtracking method.	Cognitive	Apply
		Psychomotor	Guided
			Response
CO5	Solve a problem using approximation algorithm.	Cognitive	Apply
		Psychomotor	Guided
			Response

S.No.		List of Exercises	COs
1	i.	Implementation of the complexity of non-recursive algorithm for finding a	CO1
		factorial of a number.	
	ii.	Implementation of the complexity of non-recursive algorithm for bubble sorting technique.	
	iii.	Implementation of the complexity of finding a factorial value using recursive algorithm	
	iv.	Implementation of Towers of Hanoi puzzle using recursive algorithm and display its complexities.	
2	i.	Implementation of Prim's algorithm for finding a minimum spanning tree	CO2
		using divide and conquer approach.	
	ii.	Implementation of Kruskal's algorithm for finding the Minimum Spanning	

		Tree of a given undirected graph.			
	iii.	Implementation of Dijkstra's algorithm	m for finding	the shortest paths	to
		other vertices from a given vertex in a	weighted connec	cted graph.	
3	i.	Implementation of Warshall's algorith	m to compute t	he transitive closi	ire CO3
		of a given directed graph.			
	ii.	Implementation of Floyd's algorithm to	o find all-pairs s	shortest paths for	the
		given directed weighted graph.			
	iii.	Implementation of 0/1 Knapsack pro	blem using dyn	namic programmi	ng
		approach.			
4	i.	Implementation of N Queen's problem	•	0 11	CO4
	ii.	Implementation of the Hamiltonian approach.	Cycle problem	using backtracki	ng
	iii.	Implementation of the sum subset prob	lem using backt	racking approach.	
	iv.	Implementation of job assignment papproach.	problem using	branch and bou	nd
5	i.	Implementing travelling salesman pro	blem for finding	g the minimum to	our CO5
		cost.		-	
		HOUDS	TUTORIAL	PRACTICAL	TOTAL
		HOURS	0	30	30

Mappin	g of C	O with 1	PO's												
		P01	P02	PO 3	PO 4	PO 5	9 Od	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		2	1	2	1	0	0	0	0	0	0	0	0	1	1
CO 2		2	3	2	2	0	0	0	0	0	0	0	0	1	1
CO 3		2	3	2	0	0	0	0	0	0	0	0	0	1	1
CO 4		2	3	2	2	0	0	0	0	1	0	0	0	1	1
CO 5		2	2	2	2	0	0	0	0	1	0	1	0	1	1
Total		10	12	10	7	0	0	0	0	2	0	1	0	5	5
Scaled V	Value	2	3	2	2	0	0	0	0	1	0	1	0	1	1
Note		Caled va	Fotal alue		0 0		1-5		6-10	0	11-				
		Rela	ation	1	Vo		Low		Medi	ım	Hi	gh			

SEMESTER - V

SEN	IEST I	ER		:	V								
COI	URSE	COI	ЭE	:	XCS501								
COI	URSE	NAN	ИE	:	FORMAL L	ANGU	AGE A	ND A	UTOMATA TH	DERY	7		
PRE	EREQ	UISI	TE	:	DATA STR	UCTUI	RES AN	ND AL	GORITHMS				
	L	T	P	С		C	P	A		L	T	P	Н
	3	0	0	3		3	0	0		3	0	0	3
					1								

Course Ou able to	stcome: After the completion of the course, students will be	Domain C or P or A	Level
COURSE	OUTCOMES		
CO1	Understand the fundamental of the basic kinds of finite automata and their capabilities	Cognitive	Understand
CO2	Categorize regular and context-free languages	Cognitive	Understand
CO3	Interpret transform regular expressions to grammars	Cognitive	Understand
CO4	Construct of Turing Machines	Cognitive	Understand
CO5	Identify the key results in algorithmic and computational complexity.	Cognitive	Understand

Introduction- Basic Mathematical Notation and techniques- Finite State systems – Basic Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with €-moves – Regular Languages- Regular Expression – Equivalence of NFA and DFA – Equivalence of NDFA's with and without €-moves – Equivalence of finite Automaton and regular expressions –Minimization of DFA- - Pumping Lemma for Regular sets – Problems based on Pumping Lemma.

UNIT II GRAMMARS

UNIT I FINITE AUTOMATA

9

Grammar Introduction— Types of Grammar - Context Free Grammars and Languages— Derivations and Languages— Ambiguity- Relationship between derivation and derivation trees— Simplification of CFG— Elimination of Useless symbols - Unit productions - Null productions— Greiback Normal form— Chomsky normal form— Problems related to CNF and GNF.

UNIT III PUSHDOWN AUTOMATA

9

Pushdown Automata- Definitions – Moves – Instantaneous descriptions –Deterministic pushdown automata – Equivalence of Pushdown automata and CFL - pumping lemma for CFL – problems based on pumping Lemma.

UNIT IV TURING MACHINE

9

Turing Machines- Introduction – Formal definition of Turing machines –Instantaneous descriptions-Turing Machine as Acceptors – Turing Machine as Transducers Computable Languages and functions – Turing Machine constructions – Modifications of Turing Machines.

UNIT V COMPUTATIONAL COMPLEXITY

9

Undesirability- Basic definitions- Decidable and undecidable problems - Properties of Recursive and Recursively enumerable languages – Introduction to Computational Complexity: Definitions-Time and Space complexity of TMs –complexity classes – introduction to NP-Hardness and NP-Completeness.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS

- 1. Peter Linz An Introduction to Formal Languages and Automata 6th edition, Jones & Bartlett, 2016
- 2. Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Third Edition, Pearson Education, 2008.ISBN-13: 978-8131720479

REFERENCES

- 1. John.C.Martin, "Introduction to Languages and the Theory of Computation" McGraw-Hill Education, 01-May-2010.
- 2. Michael Sipser, "Introduction to the Theory of Computation" Cengage Learning, 2012.

E-REFERENCES

- 1. Theory of Computation by Prof.Somenath Biswas, Computer Science and Engineering, IIT Kanpur
- 2. Swayam Theory of Computation: https://onlinecourses.nptel.ac.in/noc19_cs79/preview#:~:text=PRE%2DREQUISITES%3A%2 0It%20is%20recommended,in%20Data%20Structures%20and%20Algorithms.&text=Categor y%20%3A,Computer%20Science%20and%20Engineering

Mapping of COs with POs:

							РО						PS	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	3	0	0	0	1	1	1	0	0	1	1
CO2	2	3	2	3	0	0	0	0	0	0	0	2	1	1
CO3	2	2	3	1	1	2	1	2	2	0	0	0	1	1
CO4	3	2	2	2	0	0	0	0	0	1	0	1	1	1
CO5	1	1	3	3	1	2	1	1	1	0	0	2	1	1
Total	10	10	12	12	2	4	2	4	4	2	0	5	5	5
Scale Value	2	2	3	3	1	1	1	1	1	1	0	1	1	1

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SE	MES	TER	2	:	V											
CO	URS	SE C	ODE	:	XC	CS502										
CO	URS	SE N.	AMI	E :	DA	TABAS	E MAN	IAGEN	MENT S	SYSTEM	1S					
PR	ERE	QUI	SITI	E :	DA	TA STR	RUCTU	RES A	ND AL	GORIT	HMS	5				
	L	T	P	C			C	P	A			L	T	P	Н	
	3	0	0	3			3	0	0			3	0	0	3	

Course Objectives

- To learn the fundamentals of data models and to represent a database system using Entity Relationship diagrams
- To learn SQL and relational database design
- To understand the internal storage structures using different file and indexing techniques
- To understand the fundamental concepts of transaction processing, concurrency control techniques and recovery procedures

Cours	e Outcome: After the completion of the course, students will	Domain	Level
be abl	e to		
CO1	Relate and Apply the design principles for logical design of databases, including Entity Relationship model.	Cognitive	Apply
CO2	Build queries with the basics of Structured Query	Cognitive	Apply
	Languange and relational algebra.		
CO3	Explain the basic database storage structures and access	Cognitive	Understand
	techniques: file organizations, indexing methods including		
	B-tree, B+ tree and hashing.		
CO4	Explain the basic issues of transaction processing	Cognitive	Understand
	concurrency control and recovery procedure.		
CO5	Develop a real database application with the advanced	Cognitive	Apply
	concepts.		

COURSE CONTENT

COURSE		
UNIT I	INTRODUCTION	9
	Introduction to File and Database systems- Database system structure – Data	
	Models – Types of Data models – ER model – Relational Model – Keys –	
	Relational Algebra and Calculus.	
UNIT II	RELATIONAL MODEL	9
	SQL – Data definition- Queries in SQL- Updates- Views – Integrity and Security	
	 Relational Database design – Functional dependencies and Normalization for 	
	Relational Databases – Decomposition - Desirable Properties of Decomposition -	
	Boyce-Codd Normal Form.	
UNIT III	DATA STORAGE AND QUERY PROCESSING	9
UNIT III	DATA STORAGE AND QUERY PROCESSING Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary storage	_
UNIT III		_
UNIT III	Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary storage	_
UNIT III	Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary storage – File Organization –Organization of Records in Files – Indexing and Hashing –	_
UNIT III UNIT IV	Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary storage – File Organization –Organization of Records in Files – Indexing and Hashing – Ordered Indices – B+ tree Index Files – B tree Index Files – Static Hashing –	_
	Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary storage – File Organization –Organization of Records in Files – Indexing and Hashing – Ordered Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing – Query Processing.	9
	Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary storage – File Organization –Organization of Records in Files – Indexing and Hashing – Ordered Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing– Query Processing. TRANSACTION MANAGEMENT	9

	Deadlock- Time stamp based concurrency control Immediate Update- Deferred Update - Shadow Paging		cover	y Tec	hniques –	
UNIT V	ADVANCED DATABASES					9
	Distributed databases - Homogenous and Heterogenous Complex Oriented Databases - Need for Commodel- Nested relations - Complex Types - Inheritant Structure of XML Data - XML Document Schema - Quantum - Data Mining and Data Warehousing - Web database database - Multimedia database.	iplex de Ref Queryii	Data terence	ypes - Type Trans	OO data s - XML - sformation	
		L	T	P	Total	
		45	0	0	45	

TEXT BOOKS

1. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Seventh Edition, Tata Mc Graw Hill, 2021.

REFERENCE BOOKS

- 1. Ramez Elmasri and Shamkant B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education, 2008.
- 2. Raghurama Krishnan, Johannes Gehrke, "Database Management Systems", 3rd edition, Tata McGraw Hill, 2002.

E-REFERENCES

- 1. https://onlinecourses.nptel.ac.in/noc22_cs91/preview
- 2. http://spoken-tutorial.org
- 3. http://vlab.co.in/

Mapping of CO with PO's

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	1	1	1	0	0	0	0	0	0	0	3	2
CO 2	3	2	1	1	1	0	0	0	0	0	0	0	3	2
CO 3	2	1	0	0	1	0	0	0	0	0	0	0	3	2
CO 4	2	1	0	0	1	0	0	0	0	0	0	0	3	2
CO 5	3	2	1	1	1	0	0	0	0	0	0	0	3	2
Total	13	8	3	3	5	0	0	0	0	0	0	0	15	10
Scaled Value	3	2	1	1	1	0	0	0	0	0	0	0	3	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SEM	EST	ER		:	7	V									
COU	IRSE	CO	DE	:	7	XCS503									
COU	IRSE	NA	ME	:	5	SOFTWA	RE EN	IGINE	ERING	j					
PRE	REQ	UIS	ITE	:	-										
	L	T	P	C			C	P	A		L	T	P	H	
	3	0	0	3			3	0	0		3	0	0	3	
Course Objectives															

Level

Domain

- To impart knowledge on the basic principles of software development life cycle.
- To familiarize with the importance of the software design concepts
- To develop correct and software quality assurance products.
- To understand the concept software project management.
- To understand the various software development and testing tools.

Course Outcome: After the completion of the course, students will be able

to		C or	P or A		
CO1	Describe the software development activities and various development process models.	software Cogn	nitive	Understa	and
CO2	Apply the knowledge of design concepts to various applic	ations. Cogn	nitive	Apply	
CO3	Apply various software testing techniques to an application	n. Cogr	nitive	Apply	
CO4	Determine the project cost by various estimation techniq	ues Cogi	nitive	Apply	
CO5	Describe the advanced software engineering concepts development tools	and the Cogn	nitive	Understa	and
COU	RSE CONTENTS				
UNIT	SOFTWARE PROCESS AND REQUIREMENT	S			9
	Process life cycle models (Water Fall, Incremental, I – Agile development - System Engineering. Requirement gathering techniques - Requirements Requirement Analysis - Eliciting Requirements - Bu	Requirements Engineering ta	Enginee sks – Pr	ering -	
UNIT	TII DESIGN CONCEPTS AND PRINCIPLES				9
	Design Engineering – Design Process and Des Architectural design - software architecture – data do transform and transaction mapping- Modeling the User interface analysis and design - Coupling and C interface, component level and deployment level.	esign – architect Component Le	ural desig vel Desig	gn – gn <i>-</i>	
UNIT					9
	Testing Strategies - A strategic approach to software strategy for Conventional software, Object oriente Testing - System testing and debugging - Testing fu White Box testing - Basis Path testing - control Performance testing - Object oriented testing.	d software – So ndamentals - Bla	QA - Va ack Box t	lidation testing -	
UNIT	TIV SOFTWARE PROJECT MANAGEMENT				9
	Project Management life cycle – Need of applicate spectrum - Testing Rationale Management – Confi Management – project process product measures	guration Manag	gement –	Project	

	software projects – Decomposition techniques and empirical estimation model Risk analysis and mitigation plans - Procurement management.	S -	
UNIT V	ADVANCED TOPICS IN SOFTWARE ENGINEERING		9
	Formal Methods – Basic Concepts – Mathematical preliminaries-Apply Mathematical notations for formal specification – Formal specification language Clean room software Engineering-Clean room Approach- Reengineering-Software Reengineering-Reverse Engineering- Forward Engineering- Introduction to CA tools and testing tools – Software process improvement – Automation testing tools	es- are SE	
		Tota	ıl
	45 0 0	45	

TEXT BOOKS

- 1. Ian Sommerville, "Software engineering", Pearson Education Asia, 10th Edition, 2016.
- 2. Roger S.Pressman, Software engineering- A practitioner's Approach, McGraw- Hill International Edition, 8th edition, 2015

REFERENCE BOOKS

- 1. PankajJalote- An Integrated Approach to Software Engineering, 3rdEdition 2011.
- 2. C.RavindranathPandian, "Software Metrics A guide to planning, analysis and application", AuerbachPublication, Newyork 2011.
- 3. Ali Behforooz, Frederick J Hudson, "Software Engineering Fundamentals", 2nd Edition, Oxford University Press, Noida, 2009.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	2	1	0	2	1	0	0	0	0	0	2	2	1
CO 2	2	3	3	2	2	1	3	0	0	0	0	1	2	2
CO 3	3	3	3	1	1	3	0	1	2	0	3	3	2	2
CO 4	3	3	3	1	1	3	0	1	2	0	3	3	2	2
CO 5	1	3	0	0	3	0	1	0	0	1	0	1	2	1
Total	10	14	10	4	9	8	4	2	4	1	6	10	10	8
Scaled Value	2	3	2	1	2	2	1	1	1	1	2	2	2	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SE	MES	TEF	}		:	V											
CO	URS	SE C	ODE	C	:	XC	S504										
CO	URS	SE N	AMI	E	:	CO	MPUTE	ER NET	TWOR	KS							
PR	PREREQUISITE : PROGRAMMING FOR PROBLEM SOLVING AND DATA STRUCTURES																
	L	T	P	C	1			С	P	A			L	T	P	Н	
	3	1	0	4			3 0 0 3 1 0 4										
Co	urse	Obj	ective	es					•	•	•			•		•	

- To make students understand the basic structure and various principles computer networking.
- To familiarize with the concepts of error detection and correction techniques.
- To study the functions of switching and routing.
- To study the functions of multiplexing and demultiplexing in transport layer.
- To understand the various principles, protocols and design aspects of computer networking.

				_
Cours able t	e Outcome: After the completion of the course, students will be	Domain	Leve	el
CO1	Understand the networks components and the various network	Cognitive	Underst	and
	components			
CO2	Describe and Recognize the network error detection and correction methods.	Cognitive	Underst	and
CO3	Identify and interpret the network switching and addressing	Cognitive	Apply	
	methods and <i>apply</i> the various routing simulations.		11.	
CO4	Understand the transport layer functions and setup connection	Cognitive	Underst	and
	oriented protocol.			
CO5	Describe the Application layer functions and network security.	Cognitive	Underst	and
COU	RSE CONTENT			
UNIT	TI DATA COMMUNICATIONS			9
	Network Components- Direction of Data flow-network	ks- Compone	nts and	
	Categories – types of connections- Topologies- Proto			1
	ISO/OSI model – Transmission Media –Coaxial Cable	 Fiber Optics 	– Line	1
	Coding – Modems			
UNIT	'II DATA LINK LAYER			9
	Error – Detection and Correction – Parity – LRC - CRC -	- Hamming cod	le – low	
	Control and Error control – stop and wait – go back –N	-	-	ı
	ARQ – Sliding window – HDLC – LAN – Ethernet IEEE	E 802.3 - IEEE	802.5 -	1
	IEEE 802.11 – FDDI – SONET – Bridges.			-
UNIT	TIII NETWORK LAYER			9
	Internetworks – Packet switching and Datagram appromethods – subnetting – Routing – Distance Vector Routin – Routers			

UNIT IV	TRANSPORT LAYER						9
	Duties of Transport Layer – Multiplexing – De mu User Datagram Protocol(UDP) – Transmission Con Congestion Control – Quality of Service (QOS) – Inte	trol P	rotoc	ol (TC	CP) –		
UNIT V	APPLICATION LAYER						9
	Domain Name Space (DNS) – SMTP – POP 3 – F Security - Cryptography ,Case study on TCP/IP Arch			P – W	WW-		
		L	T	P		Total	
		45	0	0		45	

TEXT/ REFERENCE BOOKS

- 1. Behrouz A Forouzan "Data Communications Networking" 5^h Edition Tata McGraw Hill, 2017.
- 2. Andrew S. Tanenbaum, David J. Wetherall, "Computer Networks", 5th Edition, 2013
- 3. W. Stallings, "Data and Computer Communication", 10th edition, Pearson Education, 2017.
- 4. Larry L. Peterson and Peter S.Davie, "Computer Networks", Morgan Kauffman Publishers 5th Edition 2011.

E REFERENCES

- 1. http://nptel.ac.in/courses/106105081/
- 2. NPTEL videos Computer Networks by Prof. Sujoy Ghosh Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur.

Mapping of CO with PO's

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1	1	1	0	0	0	0	1	0	1	1	3	2
CO 2	3	2	2	1	0	0	0	0	1	0	1	0	3	2
CO 3	3	2	3	1	0	0	0	0	1	0	1	0	3	2
CO 4	2	1	2	1	0	0	0	0	0	0	1	0	3	2
CO 5	2	1	1	1	2	0	0	0	0	0	1	1	3	2
Total	12	7	9	5	2	0	0	0	3	0	5	2	15	10
Scaled Value	3	2	2	1	1	0	0	0	1	0	1	1	3	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

COURSE CODE	XCS507	L	T	P	C
COURSE NAME	DATABASE MANAGEMENT SYSTEMS	0	0	1	1
	LABORATORY				
		L	T	P	H
C:P:A	0.7:0.3:0	0	0	2	2

COURSE OBJECTIVES

- To facilitate students in database design using Entity Relationship data model.
- To learn the basics of SQL and construct queries using SQL.

To develop solutions using database concepts for real time applications.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Apply the design principles for logical design of databases,	Cognitive	Apply
	including ER model and normalization approach.	Psychomotor	Guided
			Response
CO2	Construct queries with the basics of SQL.	Cognitive	Apply
		Psychomotor	Guided
			Response
CO3	Construct database applications using high level language	Cognitive	Apply
	extensions with cursors and triggers		Guided
			Response
CO4	Demonstrate the programs PL/SQL using stored	Cognitive	Understand
	procedures and functions.		Guided
			Response
CO5	Work successfully in a team to design and develop the	Cognitive	Apply
	database applications.	Psychomotor	Guided
			Response

S.No	List of Experin	nents			COs
1	Database design using E-R model and Normal	ization			CO1
2	Data Definition Language (DDL) commands i	n RDBMS			CO2
3	Data Manipulation Language (DML) and Data	Control Langua	age (DCL)		CO2
4					CO2
5	5 High level language extensions with cursors and Triggers				CO3
6 Procedures and Functions					CO4
7	Design and implementation of payroll process:	ing system			CO5
8	Design and implementation of Banking syster	n			CO5
9	Design and implementation of Library Inform	ation System			CO5
10	10 Design and implementation of Student Information System				
	HOURS TUTORIAL PRACTICAL TO				
	HOURS 0 30 :				

Mapping	of CO	O with	PO's												
		PO1	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		3	2	1	1	1	0	0	0	1	0	0	0	3	2
CO 2		3	2	1	1	1	0	0	0	1	0	0	0	3	2
CO 3		3	2	1	1	1	0	0	0	1	0	0	0	3	1
CO 4		2	1	0	0	1	0	0	0	1	0	0	0	3	1
CO 5		3	2	1	1	1	0	0	0	1	0	0	0	3	3
Total		14	9	4	4	5	0	0	0	5	0	0	0	15	9
Scaled Va	lue	3	2	1	1	1	0	0	0	1	0	0	0	3	2
Note:	To	tal		0		1-5	;	6-1	0	11-1	15				
	Sca	aled va	alue	0		1		2		3					
	Re	lation		No		Lov	V	Medi	um	Hig	h				

COURSE CODE	XCS508	L	T	P	C
COURSE NAME	SOFTWARE ENGINEERING LABORATORY	0	0	1	1
PREREQUISITES	PROGRAMMING FOR PROBLEM SOLVING	L	T	P	H
C:P:A	0.5:0.5:0	0	0	2	2

LEARNING OBJECTIVES

- Ability to translate end-user requirements into system and software requirements.
- Create traceability matrix and design SRS document
- Ability to generate a high-level design of the system from the software requirements.
- Ability to translate and implement of high level design into software product.
- Students to get experience and/or awareness of testing problems and will be able to develop a simple testing report.

COUR	SE OUTCOMES	DOMAIN	LEVEL
The stu	dents are able to		
CO1	Exercise the preparation of Software Requirements	Cognitive	Apply
	Specification with reference to standard IEEE format.	Psychomotor	Guided
			Response
CO2	<i>Draw</i> the UML static and behaviour diagrams.	Cognitive	Apply
		Psychomotor	Guided
			Response
CO3	Derive the test cases for white box and black box testing	Cognitive	Apply
	techniques.	Psychomotor	Guided
			Response
CO4	Estimate the project cost using estimation techniques.	Cognitive	Apply
		Psychomotor	Guided
			Response
CO5	Demonstrate the forward and reverse engineering tasks.	Cognitive	Apply
		Psychomotor	Guided
			Response

S.No.	List of Exercises	COs
1	For any given case/ problem statement do the following;	CO1
	i. Prepare a SRS document in line with the IEEE recommended standards.	
	ii. Develop Software Requirements Specification (SRS) for a given problem in	
	IEEE template.	
2	i. Draw the use case diagram and specify the role of each of the actors.	CO2
	ii. Draw Class Diagram with the identified class along with its relationships.	
	iii. Draw the sequence diagram.	
	iv. Draw the collaboration diagram	
	v. Draw the activity diagram.	
	vi. Draw the state chart diagram.	
	vii. Draw the component and deployment diagrams.	
3	i. Prototype model –Develop the prototype of the product.	CO3
	ii. Develop test cases for various white box and black box testing techniques.	
	iii. Develop test cases for unit testing and integration testing.	
4	i. Estimate the Project cost using COCOMO model.	CO4

			HOURS	0	30		30
			HOURS	TUTORIAL	PRACTICAL	T(OTAL
			Model conversion).				
		ii. Perform reverse engineering for any one module of a project (Code to					
			code conversion).				
	5	i.	Perform forward engineering for any	one module of	a project (Model	to	CO5
ii. Prepare Project Management Document for any one of the project.							

Mapping of	f C	O with 1	PO's												
		P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		2	2	1	0	1	0	0	0	2	2	1	1	1	2
CO 2		2	2	3	0	2	0	0	0	2	2	1	2	1	1
CO 3		2	2	3	0	2	0	0	0	1	1	2	2	1	1
CO 4		2	2	0	0	0	0	0	0	1	0	1	0	1	1
CO 5		2	2	0	0	0	0	0	0	1	0	0	0	1	1
Total		10	10	7	0	5	0	0	0	7	5	5	5	5	6
Scaled Valu	ıe	2	2	2	0	1	0	0	0	2	1	1	1	1	2
Note:		7	Cotal		0		1-5		6-10)	11-	15			
	S	caled va	alue		0		1		2		3	;			
		Rela	ation	l	No		Low		Mediu	ım	Hi	gh			

COURSE CODE	XCS509	L	T	P	C
COURSE NAME	IN-PLANT TRAINING – II	0	0	0	1
C:P:A	0.5:0.5:0				
		L	T	P	Η
		0	0	0	0

COUR	RSE OUTCOMES	Domain	Level
CO1	Relate classroom theory with workplace practice	Cognitive	Understand
CO2	<i>Comply with</i> Factory discipline, management, and business practices.	Psychomotor	Guided Response
CO3	Demonstrates teamwork and time management.	Psychomotor	Guided Response
CO4	Describe and display hands-on experience on practical skills obtained during the programme.	Psychomotor	Perception
CO5	Summarize the tasks and activities done by technical documents and oral presentations	Psychomotor	Guided Response

CO Vs PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	0	0	0	0	0	0	0	0	0	0	0
CO2	0	0	0	0	0	0	1	3	0	0	1	0
CO3	0	0	0	0	0	0	0	0	3	1	3	1
CO4	0	1	2	1	3	0	0	0	0	0	0	3
CO5	0	0	0	3	0	0	0	0	0	3	0	1
Tota 1	2	1	2	4	3	0	1	3	3	4	4	5
Scal ed	1	1	1	1	1	0	1	1	1	1	1	1

SEMESTER- VI

SEI	MES	TER)		:	V	Т											
		SE C			:	1	CS601											
		SE N			:	1	OMPILE	ER DES	IGN									
PR	ERE	QUI	SITE	E	:	1	ORMAL			AND A	UTO	MA	ATA	THE	ORY	7		
	L	T	P	C	:			C	P	A				L	Т	P	Н	
	3	0	0	3	,			3	0	0				3	0	0	3	
Coı	ırse	Obje	ective	es						l			L. L.			II.	ı	•
•	Lea	rn to	unde	rsta	and t	he	internals	of Com	piler D	esign.								
•	Lea	rn the	e pro	cess	s of t	tran	ıslating a	moderi	n high-l	evel lar	nguage	e to	exec	cutab	le co	de.		
•	Lear	n to a	apply	the	e opt	imi	ization te	chnique	es for bo	etter co	de.							
Cou													vel					
be able to					Y Y													
CO								its co	nstructi	on too	ls and	d	Cogr	nitive	,	Un	derst	and
CO		pecif Descr					ous parsing techniques for parsing the Cognitive Under											
	s	tring							1									
CO							diate lan						Cogr				derst	
CO			escribe the code generation to generate target code. Cognitive Understa															
CO						iza	tion tech	niques					Cogn	itive)	Un	derst	and
CO	URS	SE C	ONT	EN	T													
UN	IT I	I	NTR	OI	OUC	TI	ON TO	COMP	ILING									9
							lysis of t											
							groupif lexical											
		L	ex-S	Sim	ple l	Pro	gram usi	•	_	ar ourre		J.						
UN	IT I	I S	YNT	ΓΑΣ	X AN	NA]	LYSIS											9
							er –Writi											
							rsive De Reduce P											
							anonical											
			sing					_ ~_										
UN	IT I						TE COL											9
							guages -				_					Boole	an	
IIN	IT I						ase States ATION	ments –	раск р	atemng	; – Pr()ce(ure (cans.				9
011							esign of	code o	enerato	or – Tł	ne tar	σet	mac	hine	_ R	luntir	ne	
							ement –	_				_						
		I	nforn	nati	on -	- <i>P</i>	A simple	Code	genera									
TINT	IT V					•	le Optim IZATIO			TIME	CNIX/I	DC	NIN #	ENT	'C			9
UIN.	11 1	(עטע	L U	וויו	LI VI .	IZA HU	IN AND	KUN	TIVIL	CINVI	N	7171VI.	DIN I	3			9

Introduction— Principal Sources of Optimization — Optimization of basic Blocks—Introduction to Global Data Flow Analysis—Runtime Environments—Source Language issues—Storage Organization—Storage Allocation strategies—Access to non-local names—Parameter Passing.

	L	T	P	Total
	45	0	0	45

TEXT BOOKS

- 1. Godfrey Winster, Aruna Devi, Sujatha "Compiler Design" Second Edition Paperback, Yes Dee Publishing, 2020 ISBN 10: 9388005201/ ISBN-13: 978-9388005203
- 2. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, "Compilers- Principles, Techniques, and Tools (Second Edition)", Reprint ISBN 10: 8131721019 / ISBN 13: 9788131721018, Pearson Education India, 2012.

REFERENCE BOOKS

- 1. Torben Ægidius Mogensen , Introduction to Compiler Design, Springer International Publishing, 2017, 2nd edition , ISBN: 3319669656, 9783319669656.
- 2. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques, and Tools Pearson New International Edition 2nd Edition,ISBN-10-1292024348, ISBN-13:978-1292024349,2nd edition, Pearson Education India, 2013.
- 3. Allen I. Holub "Compiler Design in C", Prentice Hall of India, 2003.
- 4. C. N. Fischer and R. J. LeBlanc, "Crafting a compiler with C", Benjamin Cummings, 2003.

E-REFERENCES

- 1. http://nptel.ac.in/downloads/106108113/
- 2. http://www.svecw.edu.in/Docs%5CCSECDLNotes2013.pdf
- 3. https://www.wiziq.com/tests/compiler-design
- 4. http://spoken-tutorial.org/
- 5. http://vlab.co.in/

Mapping of CO with F	PO's
----------------------	------

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	1	0	1	1	1	0	0	1	1	0	2	3	2
CO 2	1	1	0	1	2	1	0	0	0	0	0	1	2	2
CO 3	1	2	2	2	1	1	1	0	1	0	0	1	1	1
CO 4	2	2	2	2	2	1	0	0	1	1	0	1	2	2
CO 5	2	3	3	2	3	1	0	0	1	1	0	1	3	2
Total	7	9	7	8	9	5	1	0	4	3	0	6	11	9
Scaled Value	2	2	2	2	2	1	1	0	1	1	0	2	3	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

Sen	nest <i>i</i>	er		•	7	/I																					
		Code	e	<u>:</u>	_	CS6	502																				
		Nam	_	:	_	Big D		An	alv	tics																	
		ıisite	-	:	-	-8-			<u>J</u>																		
	L	T	P	T	С					С		P		A					L	, [T	P		I	I		
	3	0	0		3					3		0		0					3		0	0		3	3		
Cou	ırse	Obje	ectiv	ves			,					•							,			•					
•	 To learn and expose the basics of Big Data and Big Data tools and its analysis techniques To learn and familiar with data streams, classification and clustering 																										
•	To l	earn	and	fan	nil	liar w	ith	data	a st	ream	s,	classi	fi	cation	an	d c	luste	ering	3								
•	To l	earn	and	fan	nil	liar w	ith	the	fra	mew	or	ks and	l v	visual	zat	ioı	n										
Сои	Course Outcome: After the completion of the course, students Domain Level																										
	will be able to C or P or A																										
CO																											
		with Big Data tools and its analysis techniques																									
CO		-	<i>Inalyze</i> data by utilizing clustering and classification Cognitive Apply Igorithms																								
00					cc			<u>.</u>				1~- '4	l.			.1	C				-	A 1					
CO		Apply different mining algorithms and Cognitive Apply																									
		recommendation systems for large volumes of data **Describe** stream computing in Big Data Analytics																									
CO																											
CO			terpret Big Data Framework and Applications Cognitive Understand																								
	COURSE CONTENT UNIT I INTRODUCTION TO BIG DATA														Δ.												
UN	111												٠.	ioos f	0.41	D:	~ D	oto	A 10.	.1.	tion	Т) i ~	Г)ot		9
							_					t Prac ne pro					_			•			_				
										_		of I								_			•	_			
												rstand															
												ture –															
				_		ogra											•								•		
UN	IT I	I (CLU	JST	Έ	RIN	\mathbf{G}	ND	C :	LAS	SI	IFICA	T	NOI													9
												nd Me															
												Metho					_										
			_									se and															
												Γhe Go Naïν-			_								_				
			Clas			_	נו נו	CCIS	1011	116	C	-ivaiv	/6	Ваус	·S -	- 1	Saye	5 1	пес	1161	111 -	ivaiv	C	Da	iye	8	
UN	IT I)N	ANI	D R	RECO) [MME	N	DAT	ON	18	SYST	EN	1								9
												and M								es	- (Over	vie	w	-		
							•			•		tion (
										_		sociati				_			•								
			•									menda													-		
¥ 7 % ***	TER T				_							ation-	H	lybrid	Re	CO	mme	nda	tion	A	ppro	oache	es.				•
UN	11 1	 MINING DATA STREAMS Introduction to Streams Concepts – Stream data model and architecture - Stream 											9														
											-	ots – S a stre															
				-		_	-	_				a sue ting m					_					_					
												e Ana						_									
												ilysis,												•			
UN	IT V											ALIZ															9
												MapI				ing	3 –	NoS	QL	D	ata	bases	; -	S	3	-	
		ŀ	Hade	oop		Distr	ibu	ted	fil	e sy	'st	tems	_	Visi	ıali	zai	tions	-	Vis	sua	1 c	lata	ar	nal	ysi	S	

techniques, interaction techniques; Systems and applications:										
	L	T	P	Total						
	45	0	0	45						

- 1. Subhashini Chellappan Seema Acharya, "Big Data and Analytics", Wiley publication, ISBN 10: 812657951X, ISBN 13: 978-8126579518,2019.
- 2. David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann/Elsevier Publishers, 2013.
- 3. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.

REFERENCE BOOKS

- 1. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley publishers, 2015.
- 2. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2015.
- 3. Dietmar Jannach and Markus Zanker, "Recommender Systems: An Introduction", Cambridge University Press, 2010.
- 4. Kim H. Pries and Robert Dunnigan, "Big Data Analytics: A Practical Guide for Managers " CRC Press, 2015.
- 5. Jimmy Lin and Chris Dyer, "Data-Intensive Text Processing with MapReduce", Synthesis Lectures on Human Language Technologies, Vol. 3, No. 1, Pages 1-177, Morgan Claypool publishers, 2010.

E-REFERENCES

1. https://onlinecourses.nptel.ac.in/noc15_mg05/preview NPTEL, Introduction to Data Analytics, Dr. Nandan Sudarsanam, Department of Management Studies, IIT Madras.

Mapping	of CO	with	PO	's

and the same of th														
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1	1	1	2	0	0	0	0	0	0	1	3	2
CO 2	3	2	2	2	2	0	0	0	0	0	0	0	3	2
CO 3	3	2	2	2	2	0	0	0	0	0	0	0	3	2
CO 4	2	1	1	1	2	0	0	0	0	0	0	0	3	2
CO 5	2	1	1	1	2	0	0	0	1	0	0	1	3	2
Total	12	7	7	7	10	0	0	0	1	0	0	2	15	10
Scaled Value	3	2	2	2	2	0	0	0	1	0	0	1	3	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

COU	RSE CODE	XGS605		L	T	P	SS	С						
COU	RSE NAME	PROFESSIONAL SKILLS		1	0	2	0	3						
PRE-	REQUISITES	-		L	T	P	SS	Н						
	C: P: A	2.6:0.4:0		1	0	4	0	5						
COU	RSE OUTCOM	ES:	De	oma	in	Lev	el							
CO1	Ability to under	estand communications	Cogi	nitiv	e	Ren	nembe	r						
CO2	<i>Apply</i> the know	n skills for career	Cogn	nitiv	e	App	ly							
CO3	Identify inner s	trength	Cogn	nitiv	e	Ren	nembe	r						
CO4	Construct the a	ttitude as a professional	Cogn	nitiv	e	Crea	ate							
CO5	CO5 Practicing Etiquettes Psychomotor Guide													
	Practicing Etiquettes Psychomotor Response													
	NIT I – Communication													
	Brainstorming													
	LSRW						•							
	' II – Career Ski							9						
	Resume & CV pr	eparing Skills												
	Interview Skills													
	Exploring Career						•							
	<u> III – Team Skil</u>							9						
	Listening as a Te													
3.2 - 7	Team Building at	work place												
UNIT	IV – Profession	al Skills						9						
4.1 - 1	Attitude and Goa	l Setting												
4.2 - 7	Verbal and Non V	Verbal Communications												
UNIT	V – Professiona	al Etiquettes						9						
	Etiquettes													
	ral Ethics at work	place												
	ested Readings:													
(i) I	Er. A. K. Jain, Dr	. Pravin S. R. Bhatia, Dr. A. M. Sh	eikh Profession	nal C	Comm	nunica	ition S	kills						

- S. Chand Publications, 2015
- Alan Pannett. Key Skills for Professionals: How to Succeed in Professional Services, Kogan Page; 1st edition, 2013

Mapping of COs with GAs:

	PO1	PO2	PO3		PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	0	0	0	1	0	0	1	1	3	0	3
CO2	0	0	0	0	1	0	0	1	1	3	0	3
CO3	2	0	0	0	1	0	0	1	1	3	0	3
CO4	3	0	0	0	1	0	0	1	3	3	1	3
CO5	3	0	0	0	1	0	0	1	1	3	1	3
Total	10	0	0	0	5	0	0	5	7	15	2	15
Scale	3	0	0	0	1	0	0	1	2	3	1	3

1-5= 1, 6-10 = 2, 11-15= 3

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

COI	URSE (CODE	XCS606		L	T	P	C
COI	URSE N	NAME	CYBER SECURITY		3	0	0	3
PRE	E-REQU	UISITES	-					
С	P	A			L	T	P	Н
3	0	0			3	0	0	3
COI	URSE (DUTCOME	SS	DOMA	IN		LEV	EL

COU	RSE OUTCOMES	DOMAIN	LEVEL
CO1	To identify, learn, practice, and understand the basic	Cognitive	Understand
	concepts of networks and cyber-attacks.		
CO2	To <i>define</i> the concepts of system vulnerability scanning and	Cognitive	Understand
	the scanning tools		
CO3	To demonstrate, describe, and differentiate the network	Cognitive	Apply
	defense mechanisms and <i>identify and apply</i> the tools used to		
	detect and quarantine network attacks.		
CO4	To <i>describe</i> , <i>differentiate</i> , <i>apply</i> the different tools for	Cognitive	Apply
	scanning.		
CO5	To <i>identify</i> and <i>list</i> the types of cybercrimes, cyber laws and	Cognitive	Understand
	cyber-crime investigations.		

UNIT I – INTRODUCTION

9

History of Information Systems and its Importance, Basics, Changing Nature of Information Systems, Need for Distributed Information Systems: Role of Internet and Web Services. Information System Treats and attacks, Classification of Threats and assessing Damages Security in mobile and Wireless Computing-Security Challenges in Mobile Devices, authentication service Security, Security Implication for Organizations, Laptops security Concepts in Internet and World Wide Web: Brief review of Internet Protocols TCP/IP, IPV4, and IPV6. Functions of various networking components-routers, bridges, switches, hub, gateway and Modulation Techniques.

UNIT II - SYSTEMS VULNERABILITY SCANNING

9

Overview of vulnerability scanning, Open Port / Service Identification, Banner / Version Check, Traffic Probe, Vulnerability Probe, Vulnerability Examples, OpenVAS, Metasploit. Networks Vulnerability Scanning - Netcat, Socat, understanding Port and Services tools - Datapipe, Fpipe, WinRelay, Network Reconnaissance - Nmap, THC-Amap and System tools. Network Sniffers and Injection tools - Tcpdump and Windump, Wireshark, Ettercap, Hping Kismet.

UNIT III - NETWORK DEFENCE TOOLS

9

Firewalls and Packet Filters: Firewall Basics, Packet Filter Vs Firewall, How a Firewall Protects a Network, Packet Characteristic to Filter, Stateless VsStateful Firewalls, Network Address Translation (NAT) and Port Forwarding, the basic of Virtual Private Networks, Linux Firewall, Windows Firewall, Snort: Introduction Detection System, Cryptool.

UNIT IV – TOOLS FOR SCANNING

9

Scanning for web vulnerabilities tools: Metasploit tool, Nikto, W3af, HTTP utilities - Curl, OpenSSL and Stunnel, Application Inspection tools - Zed Attack Proxy, Sqlmap. DVWA, Webgoat, Password Cracking and Brute-Force Tools - John the Ripper, L0htcrack, Pwdump, THC-Hydra.

UNIT V - INTRODUCTION TO CYBER CRIME AND LAW

9

Cyber Crimes, Types of Cybercrime, Hacking, Attack vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems Associated with Computer Crime, Introduction to Incident Response, Digital Forensics, Computer Language, Network Language, Realms of the Cyber world, A Brief History of the Internet, Recognizing and Defining Computer Crime, Contemporary Crimes, Computers as Targets, Contaminants and Destruction of Data, Indian IT ACT 2000. Introduction to Cyber Crime Investigation: Password Cracking, Key loggers and Spyware, Virus and Worms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Attack on wireless Networks.

LECTURE	TUTORIAL	TOTAL
45	0	45

- 1. Nina Godbole, "Information Systems Security: Security Management, Metrics, Frameworks and Best Practices, w/cd", Wiley Publications, 2018
- 2. Thomas J. Mowbray, "Cybersecurity: Managing Systems, Conducting Testing and Investigating Intrusions", Wiley Publications, 2019
- 3. D.S. Yadav, "Foundations of Information Technology", New Age International publishers, 5th Edition, 2018

REFERENCES

- 1. Mike Shema, "Anti-Hacker Tool Kit", McGraw Hill Education, 7th edition, 2020,
- 2. Nina Godbole, SunitBelapure, "Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley publications, 2013, ISBN 10:8126521791, ISBN 13:9788126521791.
- 3. Corey Schou, Daniel Shoemaker, "Information Assurance for the Enterprise: A Roadmap to Information Security (McGraw-Hill Information Assurance & Security)", Tata McGraw Hill, 2013, ISBN-10: 0072255242, ISBN-13: 978-0072255249.
- 4. VivekSood, "Cyber Laws Simplified", McGraw Hill Education (INDIA) Private Limited in 2001, ISBN-10: 0070435065, ISBN-13: 978-0070435063.
- 5. Steven M.Furnell, "Computer Insecurity", Springer Publisher, 2005 Edition.

E-REFERENCES

- 1. https://www.cryptool.org/en/
- 2. https://www.metasploit.com/
- 3. http://sectools.org/tool/hydra/
- 4. http://www.hping.org/
- 5. http://www.winpcap.org/windump/install/
- 6. http://www.tcpdump.org/
- 7. https://www.wireshark.org/
- 8. https://ettercap.github.io/ettercap/
- 9. https://www.concise-courses.com/hacking-tools/top-ten/
- 10. https://www.cirt.net/Nikto2
- 11. http://sqlmap.org/

Mapping of COs with POs:

							PO						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	3	0	2	2	2	0	0	0	3	2
CO2	3	3	3	3	2	1	1	1	2	0	0	0	3	2
CO3	0	3	2	2	0	1	2	2	0	0	0	0	0	0
CO4	2	2	2	2	0	0	0	0	0	0	0	0	0	0
CO5	3	2	3	3	3	0	2	2	2	0	0	0	3	2
Total	11	13	13	13	8	2	7	7	6	0	0	0	9	6

$$1-5 \to 1, 6-10 \to 2, 11-15 \to 3$$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

SEMI			:	VI												
COUI	RSE	CODE	:	XC	CS607											
COUL	RSE 1	NAME	:		MPILER											
PRER	REQU	JISITE	:	FO	RMAL I	LANGU	AGE A	ND AU	JTC)MA	TA T	HEC	RY			
I	\mathbf{I}	P	C			C	P	A				L	T	P	H	
	,		1			0.5	0.25	0.25				0	0	2	2	
Cours	se Ob	jectives														
• To	expl	ore the pr	inciple	s, alg	gorithms	and me	thods to	o desig	n an	d coi	nstruc	ction	of co	mpil	er	
Cours	e Out	tcome: Af	ter the	com	pletion o	f the co	urse, st	udents	will	l be	D	oma	in		Lev	vel
able to	0															
CO1		<i>cribe</i> the			s and	its con	structio	n too	ls a	and	Cog	nitive	е	Une	derst	and
	_	cification														
CO2		<i>cribe</i> and	apply	vario	ous parsi	ng techi	niques f	or pars	ing	the	Cog	nitive	е,	Rer	neml	ber
	strir	ıg.									Psyc	hom	otor	Gui	ided	
														Res	spons	se
CO3	Illu	strate and	constr	ruct i	ntermedi	iate lang	guage.				Cog	nitive	e,	Rer	neml	ber
											Psyc			Gui	ided	
															spons	se.
COA	CO4 Describe the code generation and make use of code generator Cognitive, Rememb															
CO4															oci	
	to generate the target code. Psychomotor Guided															
															spons	
CO5	_	<i>lain</i> the c	ode op	timiz	cation and	d apply	the opt	imizati	on		Cog			Remember Guided		
	tech	niques.									Psyc	hom	otor	Gui	ided	
														Res	spons	se
List o	f Exp	eriments	}													
S.No		List of E														CO'S
UNIT	' I	INTRO					NG									10
					sion into					1						CO1
		-			of Lexic		yzer Us	ing Le	хТо	ol.						
					ken using											
					nfix to P		-	On								
UNIT	' TT	SYNTA			al Analyz	zer 1001	S									10
UNII	11	6.Syntax				C										10 CO2
		7. Remo	-			 .										CO2
		8.Check				ar is LL	(1) G ra	mmar e	r na	ot						
		9. Implei			_		` /									
NIT I	II	INTERN														4
		10.Imple														CO3
		11. Impl			_	-										
UNIT	'IV	CODE (3
		12.Imple				ediate C	Code Ge	neratio	n.							CO4
UNIT	V	CODE C								VME	NTS					3
		13. Impl	ementa	tion	of Interm	nediate (Code O	otimiza	tion							CO5
	,	•						Hou			torial		Prac	ctical		Total
												0		30		30

Mapping	of C	O witl	h PO	's											
		P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1		1	1	1	2	1	1	0	0	2	1	0	2	2	2
CO 2		2	2	1	1	2	1	0	0	1	1	0	1	2	2
CO 3					1	1	1	0	0	1	1	0	1	3	2
CO 4				2	1	2	1	0	0	1	1	0	1	3	2
CO 5				3	2	2	1	0	0	1	1	0	1	2	2
Total		8	11	9	7	8	5	0	0	6	5	0	6	12	10
Scaled Va	lue	2	3	2	2	2	1	0	0	2	1	0	2	3	2
Note:		To	otal	0			1-5			6-10		11-	15		
	Scaled value			0			1			2		3			
	Relation]	Low		M	edium	1	Hig	gh		

COURSE CODE	XCS608	L	T	P	C
COURSE NAME	BIG DATA ANALYTICS LABORATORY	0	0	1	1
		L	T	P	H
C:P:A = 0.5:0.5:0		0	0	2	2

Course Objectives

- Learn the implementation of basics of Python and text pre-processing
- Learn the implementation of classification and clustering algorithms
- Learn the implementation of visualization

COUI	RSE OUTCOMES	DOMAIN	LEVEL
CO1	Demonstrate the basics of python for performing data analysis	Cognitive	Apply
CO2	Demonstrate the use of text preprocessing, regression	Cognitive,	Remember
		Psychomotor	Guided
			Response
CO3	Demonstrate the use of classification algorithms	Cognitive,	Remember
		Psychomotor	Guided
			Response
CO4	Demonstrate the use of clustering algorithms	Cognitive,	Remember
		Psychomotor	Guided
			Response
CO5	Demonstrate the use of visualization	Cognitive,	Remember
		Psychomotor	Guided
			Response

S.	List of Experiments	Course
No.		Outcome
1.	Write a Python program to perform operations on Strings, Lists, Sets and	CO1
	Tuples	
2.	Write a Python script to a) add a key to a dictionary, b) to check if a given	CO1
	key already exists in a dictionary	
3.	Write a program to Implement Text Pre-processing with TF-IDF	CO2
4.	Write a program to Implement Linear and Logistics regression	CO2
5.	Write a program to Implement Decision Tree Classification	CO3
6.	Write a program to Implement Naïve Bayes Classification	CO3
7.	Write a program to Implement Principal Component Analysis	CO4
8.	Write a program to Implement K-Means Clustering	CO4
9.	Introduction to Matplotlib, Seaborn Packages in Python	CO5
10.	Getting and Setting Values in Graphs using Python	CO5

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	2	2	3	0	0	0	1	0	1	0	3	2
CO 2	3	2	2	2	3	0	0	0	1	0	1	0	3	2
CO 3	3	2	2	2	3	0	0	0	1	0	1	0	3	2
CO 4	3	2	2	2	3	0	0	0	1	0	1	0	3	2
CO 5	3	2	2	2	3	0	0	0	1	0	1	0	3	2
Total	15	10	10	10	15	0	0	0	5	0	5	0	15	10
Scaled Value	3	2	2	2	3	0	0	0	1	0	1	0	3	2

	SEMESTER VII																	
SEI	MES	TER	2	:	VI	Ι												
CO	URS	E C	ODE	:	X	CS701												
CO	URS	E N	AMF	C :	W	EB TEC	EB TECHNOLOGY											
PR	PREREQUISITE : FUNDAMENTALS OF PROGRAMMING, OBJECT ORIENTED PROGRAMMING																	
	L	T	P	C			C P A L T P H											
	3	0	0	3			3	0	0			3	0	0	3			
Cot	ırse	Obje	ective	es														
	 To impart the design, development and implementation of static and dynamic web pages. To develop programs for web using scripting languages. To give an overview of server side programming in web 																	
	Course Outcome: After the completion of the course, students will be able to C or P or A Level																	

	e Outcome: After the completion of the course, students will be	Domain	Level
able to)	C or P or A	
CO1	To design interactive web pages using HTML, DHTML and	Cognitive	Understand
	CSS.		
CO2	To understand the role of XML,AJAX, and Angular JS	Cognitive	Apply
CO3	To develop web applications using scripting languages.	Cognitive	Apply
CO4	To apply the server side programming concepts using in	Cognitive	Apply
	designing a web application.		
CO5	To develop dynamic web application using server side	Cognitive	Apply
	programming with JSP.		

COURSE CONTENT

UNIT I	HTML, DHTML, AND CSS	9										
	Introduction, Elements, Attributes, Heading, Paragraph. Formatting, Link, Table,											
	List, Block, Layout, Html Forms and input, Iframe, Colors, Image Maps and											
	attributes of image area.											
	Introduction to CSS, basic syntax and structure of CSS, different types- internal,											
	external and inline CSS,Basic Introduction of DHTML, Difference between HTML											
	and DHTML, Documentary Object Model (DOM).											
UNIT II	XML, AJAX, ANGULAR JS	9										
	Extended Markup Language (XML): Introduction, XML-Tree - Syntax, Elements,											
	Attributes and Values, Validation and parsing, DTD, XML Schemas, Document											
	Object Model, XML Parsers,											
	AJAX: AJAX Framework, Simple Applications.											
	AngularJS – Introduction, Features, Expressions and Data Biding, Directives,											
	Controllers, Filters, Modules, Forms.											
UNIT III	SCRIPTING LANGUAGES	9										
	Java Scripts - Basic Introduction, Statements, comments, variable, operators, data											
	types, condition, switch, loop, break, Java script functions, event handlers,											
	Document Object Model, Form Validation.											
	CGI Scripts - Introduction, Environment Variable, GET and POST Methods.											
	PHP Scripting - Introduction, Syntax, Variables, Output, Data types, String,											
	Constants, Operator, Decision Control statements, switch-case, Loop, PHP											

	function, array, Form Handling, File Handling.									
UNIT IV	SERVERSIDE TECHNOLOGIES					9				
	Java Servlet: Servlet environment and role, Commo life cycle, Servlet Methods-Request, Response, Get at JDBC connectivity. Node JS – Introduction -HTTP module – Building Alpackages.	nd post, (Cookie	es and	Session.					
UNIT V	JAVA SERVER PAGES & JAVA BEANS									
	Java Server Pages: Architecture, JSP Servers, JSP I layout of JSP, JSP Scriptlet Tag; JSP implicit ob Variable declaration, methods in JSP, JSP directives. Javabeans: inserting javabean in JSP, JSP Action Creating ODBC data source name, Introduction to JD	ject (req tags (F	juest a	and re	esponse),					
	45 0 0									

- 1. Frank P.Coyle, "XML, Web Services and the Data Revolution", Addison-Wesley, 2002. 5. Brad Dayley, Brendan Dayley, Caleb Davley "Node.js, MongoDB and Angular Web Development", second edition, Addison Wesely, 2018
- 2. Web Technology: A Developer's Perspectivel, N.P. Gopalan and J. Akilandeswari, PHI Learning, Delhi, 2013. (Topics covered: html, CSS, imagemap, xml)
- 3. Deitel & Deitel, et.al "Internet & World Wide Web How To Program", Pearson Education, Fifth Edition, 2011.
- 4. Marty Hall and Larry Brown "Core Servlets and Java Server Pages, Volume1", Prentice Hall Education, Second Edition, 2006.
- 5. Ken Williamson, "Learning AngularJS: A Guide to AngularJS Development", O'Reilly Medisa Inc., 2015

REFERENCE BOOKS

- 1. "Programming the World Wide Web", Robert. W. Sebesta, Fourth Edition, Pearson Education, 2007.
- 2. "Core Web Programming" Second Edition-Volume I and II, Marty Hall and Larry Brown, PearsonEducation, 2001.
 - 3. Robert W. Sebesta, "Programming the World Wide Web", Eighth edition, Pearson pulications, 2015.

E-REFERENCES

- 3. https://www.coursera.org
- 4. https:\\nptel.ac.in/courses/
- 5. https://www.w3schools.com/html/
- 6. https://www.javatpoint.com/servlet-tutorial.
- 7. https://nodejs.org/en/docs/guides/
- 8. https://www.tutorialspoint.com/

Mapp	Mapping of CO with PO's														
		P01	PO2	P03	P04	P05	90d	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1		1	1	1	1	1	0	0	1	1	1	0	1	1	1
CO2		1	2	1	1	1	0	0	1	1	2	0	1	1	1
CO3		2	2	1	1	1	0	0	1	1	1	0	1	1	1
CO4		2	2	2	1	1	0	0	1	1	1	0	1	2	1
CO5		2	2	1	1	1	0	0	1	1	1	0	1	2	1
Total		8	9	6	5	5	0	0	5	5	6	0	5	7	5
Scaled	l Value	2	2	2	1	1	0	0	1	1	2	0	1	2	1
Note		To	tal	0		1-5	5	6-1	0	11-1	15				
:	Scaled	value		0		1		2		3					
		Relat	ion	No		Low		Medium		High					

SEN	MES	TER		:	V	II												
			ODE	:	_	CS7(02											
			AME	:			HINE LI	EARNI	NG									
PRI	ERE	QUI	SITE	:	Pl	ROB	ABILIT	Y & S'	FATIS	TICS,								
					Pl	ROG	RAMM	ING F	OR PR	OBLE	M SO	LVI	NG					
	L	T	P		C			C	P	A				L	T	P	H	
	3	0	0		3			3	0	0				3	0	0	3	
			ectives															
							amentals											
							sed and u		vised le	arning								
• Students learn about evolutionary learning Course Outcome: After the completion of the course, students will be Domain Level														. 1				
able to Course Outcome: After the completion of the course, students will be CorPorA CorPorA													vei					
CO)escr	ihe the	2006	ntia	als of	learning	and div	mensior	ality re	ductic	n .		gniti		Un	derst	and
CO			scribe the essentials of learning and dimensionality reduction Cognitive Understand Coly Supervised Learning algorithms such as regression, Cognitive Apply												and			
			sian, KN								23310	,	23	<i></i>			r-J	
CO			oly Supervised Learning algorithms such as NN and SVM Cognitive Apply															
			orithms															
CO			ly unsupervised learning like K- mean clustering, SOM and Cognitive Apply															
			uassian Mixture Model															
	CO5 Discuss the application of Genetic Algorithm Cognitive Understand														and			
COURSE CONTENT																		
UN.	IT I		INTRODUCTION 9 Introduction- Basic definitions, types of learning; hypothesis space and inductive bias;															
							the con											
							, the con luction-											
			Analysis		110)	1100		Zineur	215011		1 11141	1,515	, -		Pur	Com	ропе	
UN	IT I		<u>-</u>		ED	LEA	RNING	- I										9
		F	Regressi	on ·	- L	inear	Regress	sion, M	ultivari	ate Reg	ressio	n; I	Decis	sion	Tree	Ind	uctio	n;
				_			s learnin	g; KNN	V; Learr	ing; Ac	laBoo	st al	gori	thm				
UN	IT I		Supervis															9
							ceptron,		-									
			lassifica /ector N			-	ropagatio	n netw	ork; int	oductio	on to c	ieep	neu	ral n	etwo	ork; S	uppo	ort
IIN	IT I		J nsuper				ninα											9
014	111						ning,K-	Mean	Clusteri	ng. Sel	f-Oro	aniz	atio	n M	an	Exne	ctatio	
							thm,Gau			_	_				-	-		
L			ierarchi									_		_		_		
UN	IT V	F	Evolutio	nai	ry L	earn	ing									_	_	9
							Basics -											
		_					netic Op											
	niching, Applications of GA- Map Coloring, The Knapsack Problem, Limitations of												ot					
-		10	GA										L	T	1	P	Tota)
													15	0)	45	
													T	U		,	73	

- 1. Andreas Muller Introduction to Machine Learning with Python: A Guide for Data Scientists, Shroff/O'Reilly, 2016, ISBN-10: 9352134575, ISBN-13: 978-9352134571.
- 2. Stephen Marsland, —Machine Learning An Algorithmic Perspective, Second Edition, Chapman and Hall / CRC Machine Learning and Pattern Recognition Series, 2014.
- 3. Tom M Mitchell Machine Learning, First Edition, McGraw Hill Education, 2013

REFERENCE BOOKS

- 1. Ethem Alpaydin, Introduction to Machine Learning, MIT Press, Prentice Hall of India, Third Edition 2014
- 2. Christopher Bishop. Pattern Recognition and Machine Learning. 2e., Springer, 2006

E-REFERENCES

https://nptel.ac.in/courses/106/106/106106139/

Mar	ping	of	CO	with	PO's
	·	-	~ ~		_ ~ ~

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	3	3	3	2	0	0	0	1	1	1	3	2
CO 2	3	2	3	2	3	2	0	0	0	1	1	1	2	2
CO 3	3	3	3	2	3	2	0	0	0	1	0	1	3	3
CO 4	2	2	3	2	2	2	0	0	0	1	1	1	3	3
CO 5	2	2	2	2	2	3	0	0	0	1	0	0	2	3
Total	13	11	14	11	13	11	0	0	0	5	3	4	13	13
Scaled Value	3	3	3	3	3	3	0	0	0	1	1	1	3	3

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SEI	MES	TER	2	:	VI	I										
CO	URS	SE C	ODE	:	XU	J M008										
CO	URS	SE N.	AMF	E :	EN	VIRON	MENT.	AL ST	UDIES							
PR	ERE	QUI	SITI	E :	-											
	L	T	P	C			C	P	A			L	T	P	Н	
	0	0	0	0			2.5	0	0.5			3	0	0	3	
	Course Outcome: After the completion of the course, students will be able to								oma or P			Lev	vel			
СО	CO1 Describe the significance of natural resources and explain anthropogenic impacts.							explain	C	ognit	ive	Understand				
СО	r		al geo		_	ficance of mical cyc	•			•	C	ognit	ive	Un	derst	and
CO						conseque d <i>recogn</i>					C	ognit	ive	Remember		
СО	Explain the socio-economic, policy dynamics and practice the control measures of global issues for sustainable development						•	C	ognit	ive	Analyze		2)			
СО		_				pact of s toward					C	ognit	ive	Ap	ply	

COURSE CONTENT

UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES AND RESOURCES

Multidisciplinary nature of environmental studies; Scope and importance; Land resources and land use change; Land degradation, soil erosion and desertification. Deforestation: Causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal populations. Water: Use and over---exploitation of surface and ground water, floods, droughts, conflicts over water (international & inter---state). Energy resources: Renewable and non- renewable energy sources, use of alternate energy sources, growing energy needs, case studies

UNIT II | ECOSYSTEMS AND BIODIVERSITY

9

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Biodiversity patterns and global biodiversity hot spots. India as a mega-biodiversity nation; Endangered and endemic species of India Threats to biodiversity: Habitat loss, poaching of wildlife, man---wildlife conflicts, biological invasions; Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT III | ENVIRONMENTAL POLLUTION

9

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies

UNIT IV | SOCIAL ISSUES AND THE ENVIRONMENT

9

Water conservation, rain water harvesting, watershed management – Resettlement and

rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – International agreements: Montreal and Kyoto protocols and Convention on Biological Diversity (CBD). Nature reserves, tribal populations and rights, and human wildlife conflicts in Indian context.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

9

Human population growth: Impacts on environment, human health and welfare. Resettlement and rehabilitation of project affected persons; case studies. Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan. Environmental ethics: Role of Indian and other religions and cultures in environmental conservation. Environmental communication and public awareness, case studies (e.g., CNG vehicles in Delhi).

L	T	P	Total	
45	0	0	45	

TEXT BOOKS

- 1. MahuaBasu,S. Xavier,Fundamentals of Environmental Studies, Cambridge University Press, 2019
- 2. Bharucha Erach, Textbook of Environmental Studies for Undergraduate Courses, Orient Blackswan Pvt Ltd, 2018
- 3. Anubha Kaushik, C.P. Kaushik, Perspectives in Environmental Studies, New Age International Pvt Ltd Publishers, 2018
- 4. Divan Shyam, Environmental Law and Policy in India, OUP India, 2019
- 5. Varun DuttSharma,S.K. Pandey,Vimal Kumar sharma,Environmental Education and Disaster Management, CBS Publishers & Distributors,2019

REFERENCE BOOKS

- 1. M.V. SubbaRao, Natural Resources, Conservation, Management and Health Care, Discovery Publishing Pvt.Ltd,2020
- 2. Masters Gilbert M.Introduction to Environmental Engineering 3rd Edition, Pearson Education India, 3rd edition, 2015.
- 3. P.D. Sharma, Ecology and Environment Thirteenth Edition, Rastogi Publications, 2017
- 4. Dr. Avneesh Gaur, Environmental Engineering and Disaster Management ,Vayu Education Of India,2021

E-REFERENCES

- 1. http://www.e-booksdirectory.com/details.php?ebook=10526
- 2. https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook
- 6. http://www.e-booksdirectory.com/details.php?ebook=8557
- 7. http://www.e-booksdirectory.com/details.php?ebook=6804
- 8. http://bookboon.com/en/atmospheric-pollution-ebook
- 9. http://www.e-booksdirectory.com/details.php?ebook=3749
- 10. http://www.e-booksdirectory.com/details.php?ebook=2604
- 11. http://www.e-booksdirectory.com/details.php?ebook=2116
- 12. http://www.e-booksdirectory.com/details.php?ebook=1026
- 13. http://www.faadooengineers.com/threads/7894-Environmental-Science

Mapping of CO's with GA's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	0	0	0	0	0	0	0	0	0	0	1
CO2	2	0	0	0	0	2	1	0	0	1	0	1
CO3	2	1	3	0	0	3	1	0	2	1	0	1
CO4	1	1	2	0	0	3	2	3	0	0	0	1
CO5	2	1	1	0	0	3	0	0	0	0	0	1
Total	10	3	6	0	0	11	4	3	2	2	0	5
Scaled Value	2	1	2			3	1	1	1	1	1	1

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

COURSE CODE	XCS706	L	T	P	C
COURSE NAME	WEB TECHNOLOGY LABORATORY	0	0	1	1
PREREQUISITES	FUNDAMENTALS OF PROGRAMMING,	L	T	P	H
	OBJECT ORIENTED PROGRAMMING				
C:P:A	0.5:0.5:0	0	0	2	2

LEARNING OBJECTIVES

- To impart the design, development and implementation of Static and Dynamic Web Pages.
- To develop programs for Web using Scripting Languages.
- To give an overview of Server Side Programming in Web

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	To design interactive web pages.	Cognitive	Understand
		Psychomotor	Guided
			Response
CO2	To understand the role of XML, AJAX, and Angular JS and	Cognitive	Understand
	apply them in implementing web applications.	Psychomotor	Guided
			Response
CO3	To develop web applications using scripting languages.	Cognitive	Understand
		Psychomotor	Guided
			Response
CO4	To apply the server side programming concepts in designing a	Cognitive	Understand
	web application.	Psychomotor	Guided
			Response
CO5	To develop dynamic web application with server side	Cognitive	Understand
	programming.	Psychomotor	Guided
			Response

S. No.	List of Experiments	COs
1	i. Create a simple html file to demonstrate the use of different tags.	CO1
	ii. Write an HTML page that contains a selection box with a list of 5 countries.	
	When the user selects a country, its capital should be printed next to the list.	
	Add CSS to customize the properties of the font of the capital.	
2	i. Program using XML Schema.	CO2
	ii. Program using XSLT/XSL and AJAX.	
	iii. Program using Angular js.	
3	i. Web application development using PHP and MySQL.	CO3
	ii. Write an HTML page including javascript that takes a given set of integer	
	numbers and shows them after sorting in descending order.	
	iii. Client side scripts for validating web form controls and creating events using	
	Java Script.	
	iv. Program using JSON and Javascript.	
4	i. Write programs in Java Servlet to do the following:	CO4
	a. Set the URL of another server.	
	b. Download the homepage of the server.	
	c. Display the contents of home page with date, content type, and Expiration	

		date. Last modified and length of the h	ome page.					
	ii.	Web application development using N	odejs.					
5	ii.	JSP program for simple user authenticati	on process (use	r name, password)).	CO5		
	iii. Web application development using JSP with JDBC							
	iv.	Write a Java Servlets program (1) for e	mail registration	n form (2) and do	form			
		validation using JavaScript						
		HOURS	TUTORIAL	PRACTICAL	TOT	AL		
		HOURS	0	30		30		

Mapping	g of (CO wit	h PC)'s											
		P01	P02	P03	P04	P05	90d	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO 1		1	2	3	1	1	0	0	1	1	2	2	1	2	2
CO 2		1	2	2	1	2	0	0	1	1	2	2	1	2	2
CO 3		2	2	2	1	2	0	0	1	1	2	2	1	2	2
CO 4		2	3	3	1	2	0	0	1	1	2	2	1	2	2
CO 5		2	3	2	1	2	0	0	1	1	2	2	1	2	2
Total		8	12	12	5	9	0	0	5	5	10	10	5	10	10
Scaled Value		2	3	3	1	2	0	0	1	1	2	2	1	2	2
Note:		To	tal	0		1-5	5	6-1	0	11-1	15				
		aled lue		0		1		2		3					
		Relati	ion	No		Lov	V	Medi	um	Hig	;h				

COURSE CODE	XCS707	L	T	P	C
COURSE NAME	MACHINE LEARNING LABORATORY	0	0	1	1
		L	T	P	H
C:P:A	0.5:0.5:0	0	0	2	2

Learning Objectives

- Learn the implementation of Supervised Learning methods
- Learn the implementation of Unsupervised Learning methods
- Learn the implementation of Genetic Algorithm

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Demonstrate the skill of data preparation and feature selection methods	Cognitive	Apply
CO2	Demonstrate the use of basic supervised learning	Cognitive	Understand
	methods	Psychomotor	Guided
			Response
CO3	Demonstrate the use of advanced supervised learning	Cognitive	Understand
	methods	Psychomotor	Guided
			Response
CO4	Demonstrate the use of unsupervised learning methods	Cognitive	Understand
		Psychomotor	Guided
			Response
CO5	Demonstrate the use of Genetic Algorithm	Cognitive	Understand
		Psychomotor	Guided
			Response

S.	List of Experiments	Course
No.		Outcome
1.	For a given set of training data examples apply the data preprocessing and	CO1
	apply any one feature selection method.	
2.	Demonstrate Regression and Multivariate Regression using appropriate	CO2
	dataset	
3.	Build a Decision Tree and demonstrate how a new data object is classified.	CO2
4.	Write a program to implement naïve Bayesian classifier and show the	CO2
	performance of the classifier using suitable test set.	
5.	Construct a simple Perceptron Neural Network and demonstrate linear and	CO3
	non-linear classification problem	
6.	Construct a Back Propagation network and verify the performance by using	CO3
	suitable training and test set	
7.	Use the same dataset used for experiment 6 to train SVM classifier and	CO3
	compare the performance with back propagation network.	
8.	Create a self-organizing map neural network for learning a set of images and	CO4
	verify the performance	
9.	Create a Gaussian Mixture Model for Image Segmentation	CO4
10.	Write a Genetic Algorithm program for finding parameters which maximizes	CO5
	the Y value of the equation given:	
	Y = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6	
	The equation has 6 inputs (x1 to x6) and 6 weights (w1 to w6) as shown and	

inputs values are (x1,x2,x3,x4,x5,x6)=(4,-2,7,5,11,1). We are looking to find the parameters (weights) that maximize such equation.

			PO1	P02	P03	P04	POS	P06	PO7	P08	PO9	PO10	P011	P012	PSO1	PSO2
CO) 1		2	3	3	2	3	2	0	0	0	1	1	1	3	2
CO) 2		3	3	3	3	3	2	0	0	0	1	1	1	3	3
CO) 3		3	3	3	3	3	3	0	0	0	1	1	1	3	3
CO) 4		3	3	3	3	3	3	0	0	0	1	1	1	2	3
CO) 5		3	3	3	3	3	3	0	0	0	1	1	1	3	3
To	tal		14	15	15	14	15	13	0	0	0	5	5	5	14	14
Sca	aled Val	lue	3	3	3	3	3	3	0	0	0	1	1	1	3	3
	Note:		ı	Total		0	-	1-5	6	5-10	1	1-15				
		Sca	aled v	alue		0		1		2		3				
			Rel	ation	1	No	I	юw	Me	edium	I	ligh				

COURS	SE CODE	XCS708		L	T	P	С
COURS	SE NAME	PROJECT PHASE – I		0	0	2	2
C:P:A		1:0.5:0.5					
				L	T	P	H
				0	0	2	4
COUR	SE OUTCOM	ES	Domain	1	Le	vel	
CO1	Identify the I interest.	Cognitiv	/e	Ar	alyze	;	
CO2	<i>Interpret</i> and	<i>Infer</i> Literature survey for its worthiness.	Cognitiv	Ap	Apply		
CO3	Analyse and the problem.	identify an appropriate technique for solving	Cognitiv	Aŗ			
CO4	Perform exp	erimentation	Cognitiv	Create			
	/Simulation/I	Programming/Fabrication, <i>Collect</i> , and	Psychon	notor	Guided		
	interpret data	a.	-		Re	spons	se
CO5	Record and l	Report the technical findings as a document.	Cognitiv	/e	Ur	derst	and
CO6	Devote onese	Cognitive Create			eate		
	leader in a te	am to <i>manage</i> projects.	Affective Resp			spon	1
CO7	Responding	of project findings among the technocrats.	Affectiv	ive Respond			1

CO Vs GA Mapping

	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2
CO1	3	3	-	-	-	1	1	1	-	-	-	1	3	2
CO2	2	2	-	1	-	-		-	-	-		0	3	2
CO3	1	1	1	2	2	1	1	1	-	-		0	3	2
CO4	2	2	3	3	3	1	1	1	-	-		0	3	2
CO5	1	1	1	1	1	-	-	-	2	3	2	3	3	2
CO6	-	-	-	2	-	3	1	3	3	3	2	3	3	2
CO7	1	1	-	2	-	3		-	1	3	2	1	3	2
Total	10	10	5	11	6	10	4	6	6	9	6	8	21	14
Scale d	2	2	1	3	2	2	1	2	2	2	2	2	3	3

COURSE CODE	XCS709	L	T	P	С
COURSE NAME	IN-PLANT TRAINING – III	0	0	0	2
C:P:A	1:1:0				
		L	Т	P	H
		0	0	0	0

COUR	SE OUTCOMES	Domain	Level
CO1	Relate classroom theory with workplace practice	Cognitive	Understand
CO2	<i>Comply with</i> Factory discipline, management, and business practices.	Psychomotor	Guided Response
CO3	Demonstrates teamwork and time management.	Psychomotor	Guided Response
CO4	Describe and display hands-on experience on practical skills obtained during the programme.	Psychomotor	Perception
CO5	Summarize the tasks and activities done by technical documents and oral presentations	Psychomotor	Guided Response

CO Vs PO Mapping

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	0	0	0	0	0	0	0	0	0	0	0
CO2	0	0	0	0	0	0	1	3	0	0	1	0
CO3	0	0	0	0	0	0	0	0	3	1	3	1
CO4	0	1	2	1	3	0	0	0	0	0	0	3
CO5	0	0	0	3		0	0	0	0	3	0	1
Total	2	1	2	4	3	0	1	3	3	4	4	5
Scaled	1	1	1	1	1	0	1	1	1	1	1	1

COURSE	CODE	XCS804		L	T	P	С		
COURSE	NAME	PROJECT WORK PHASE – II		0	0	9	9		
C:P:A		6:1.5:1.5							
				L	T	P	Н		
				0	0	18	18		
COURSE	OUTCOME	S	DOMAIN		LE	VEL			
CO1	Identify the domain inte	Engineering Problem relevant to the rest.	Cognitive	Ana	ılyze				
CO2	Interpret an worthiness.	d <i>Infer</i> Literature survey for its	Cognitive	Apply					
CO3	Analyze and solve the pro	l <i>identify</i> an appropriate technique for oblem.	Cognitive	App	oly				
CO4		Programming/Fabrication, <i>Collect</i> , and ta.	Cognitive Psychomotor	App Gui		espor	ıse		
CO5	Record and document.	Report the technical findings as a	Cognitive	Understand					
CO6		elf as a responsible member and leader in a team to <i>manage</i> projects.	Cognitive Affective		eate espond				
CO7	Responding technocrats.	of project findings among the	Affective	Respond					

CO Vs PO Mapping

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	3	-	-	_	1	1	1	-	-	-	1	3	2
CO2	2	2	-	1	-	-		-	-	-			3	2
CO3	1	1	1	2	2	1	1	1	-	-			3	2
CO4	2	2	3	3	3	1	1	1	-	-			3	2
CO5	1	1	1	1	1	-	-	-	2	3	2	3	3	2
CO6	-	-	-	2	-	3	1	3	3	3	2	3	3	2
CO7	1	1	-	2	-	3		-	1	3	2	1	3	2
Total	10	10	5	11	6	10	4	6	6	9	6	8	21	14
Scaled	2	2	1	3	2	2	1	2	2	2	2	2	3	3

ELECTIVES

COU	RSE C	ODE	XCSE51	L	T	P	C
COU	RSE N	AME	GRAPH THEORY	3	0	0	3
				L	T	P	H
C	P	A	3:0:0	3	0	0	3

COURS	SE OUTCOMES	DOMAIN	LEVEL
CO1	Write precise and accurate mathematical definitions of objects in graph theory.	Cognitive	Understand
~~~		G	
CO2	Use mathematical definitions to identify and construct	Cognitive	Apply
	examples and to distinguish examples from non-examples.		
CO3	Validate and critically assess a mathematical proof.	Cognitive	Apply
CO4	Use a combination of theoretical knowledge and independent	Cognitive	Apply
	mathematical thinking in creative investigation of questions.	_	
CO5	Reason from definitions to construct mathematical proofs.	Cognitive	Apply

#### UNIT I INTRODUCTION

9

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits –Connectedness – Components – Euler graphs – Hamiltonian paths and circuits – Trees – Properties of trees – Distance and centers in tree – Rooted and binary trees.

#### UNIT II TREES, CONNECTIVITY & PLANARITY

9

Spanning trees – Fundamental circuits – Spanning trees in a weighted graph – cut sets – Properties of cut set – All cut sets – Fundamental circuits and cut sets – Connectivity and separability – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational and geometric graphs – Planer graphs – Different representation of a planer graph.

# UNIT III MATRICES, COLOURING AND DIRECTED GRAPH

8

Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four color problem – Directed graphs – Types of directed graphs – Digraphs and binary relations – Directed paths and connectedness – Euler graphs.

# UNIT IV PERMUTATIONS & COMBINATIONS

9

Fundamental principles of counting - Permutations and combinations - Binomial theorem - combinations with repetition - Combinatorial numbers - Principle of inclusion and exclusion - Derangements-Arrangements with forbidden positions.

#### UNIT V GENERATING FUNCTIONS

**10** 

Generating functions - Partitions of integers - Exponential generating function – Summation operator - Recurrence relations - First order and second order – Non-homogeneous recurrence relations - Method of generating functions.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
REFERENCES			

- 1. Narsingh Deo, "Graph Theory: With Application to Engineering and Computer Science", Prentice Hall of India, 2003.
- 2. Grimaldi R.P.
  - "Discrete and Combinatorial Mathematics: An Applied Introduction", AddisonWesley, 1994.
- 3. Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Publishers, 1995.
- 4. Mott J.L., Kandel A. and Baker T.P. "Discrete Mathematics for Computer Scientists and Mathematicians", Prentice Hall of India, 1996.
- 5. Liu C.L., "Elements of Discrete Mathematics", McGraw Hill, 1985.
- 6. Rosen K.H., "Discrete Mathematics and Its Applications", McGraw Hill, 2007.

#### **E-References:**

- https://nptel.ac.in/courses/106108054/
- https://nptel.ac.in/courses/111106086/51

# **Mapping of COs with POs:**

						P	O						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	1	1	1	0	1	0	0	0	0	1	2	2
CO 2	1	3	2	1	1	0	0	0	0	0	0	1	2	2
CO 3	1	2	3	1	0	0	0	0	0	0	0	1	2	2
CO 4	1	2	2	3	0	0	0	0	0	0	0	1	2	2
CO 5	0	2	3	3	0	0	0	2	0	0	0	1	2	2
Total	6	11	11	9	2	0	1	2	0	0	0	5	10	10

 $^{1-5 \}to 1, 6-10 \to 2, 11-15 \to 3$ 

^{0 -} No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

SEI	MES	TER	₹	:	V												
			ODE	:		SE52											
			AME	:		AL TIMI	E SYST	EMS									
			ISITE	:		ERATIN											
L	Т	P	С				C	P	A		L	Т	P	Н			
3	0	0	3				3	0	0		3	0	0	3			
Cot	ırse	Obje	ectives						_					_			
•	To l	earn	and unde	rst	and t	he basic	of tasks	, sched	uling, p	rogramm	ing lang	ages an	d datab	ases			
			ze the rea														
									1 .1.	-11-							
			stand and										1				
Cou		Outc	ome: Aft	er	the c	ompletio	n of the	course	, studen	its will be		main P or A	L	evel			
CO		Doser	<i>ribe</i> the	r		time on	erating	cycton	n conc	epts, the			Unde	erstand			
			iated issu				_	system	ii COHC	opis, ili	Cogn	11116	Onde	oi stailu			
CO			rstand th					eduling	g and fe	eatures o	f Cogn	itive	Unde	erstand			
00			ramming languages  uss the concepts of Real Time Databases  Cognitive Apply														
CO			ain the fundamentals of real time communication  Cognitive Apply  Cognitive Understand														
CO				the fundamentals of real time communication Cognitive Understand the evaluation techniques present in Real Time Cognitive Understand													
		Syste			o var		omique	b prese	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Cogn	101 / 0		15tara			
CO	URS	SE C	ONTEN	T													
UN	IT I		REAL TI	M	E SY	STEM A	ND SCE	IEDUL	ING					9			
			Introduct														
			Task Cla Run time							•		_	_				
			algorithn			_			_					_			
			Changes,					_									
UN	IT I		PROGR											9			
			Programı Tuning		ng L Conti				Desire ilitating	_	_		ics, Da npositio				
			Typing, Packages				uctures, ception		U		rchical erloadin			*			
			Multitask				-		ming,Ta	-	schedul	_	Timi				
			Specifica					vironme	ents, Ru	n-time Su	ipport.						
UN.	IT I		REAL T					inition	Dool 4	ma Va C	onomol D	100000 T	)otaka-	9			
			Real time Main Me									-					
			Control 1		-			-						-			
			Predictab	ilit	ty, N					-			-				
TINT	TT T		Time sys			TION								0			
UN.	IT I		COMMI Real-Tim				ion -	Comm	unicatio	ns Med	ia Net	vork T	onolog	ies 9			
			Protocols														
			Detection	ı. F	Fault	Error co	ntainme				-	•	-				
			Integrate	d F	ailur	e handlir	ng.										

UNIT V	EVALUATION TECHNIQUES AND CLOCK SYN	ICHRO	NIZA	TION		9
	Reliability Evaluation Techniques - Obtaining Par Models for Hardware Redundancy, Software Error moderate - Clock, A Non fault-Tolerant Synchronization Algorite Tolerant Synchronization in Hardware, Fault Tolerant Software.	dels. Clo thm, Imp	ock Sy pact of	nchroniza f Faults, I	tion Fault	
		L	T	P	Tota	al
		45	0	0	45	

1. C.M. Krishna, Kang G. Shin, "Real-Time Systems", McGraw-Hill International Editions, 2017

#### REFERENCE BOOKS

- 1. Stuart Bennett, "Real Time Computer Control-An Introduction", Second edition, Pearson, 2009
- 2. Peter D. Lawrence, "Real time Micro Computer System Design An Introduction", McGraw Hill, 1988.
- 3. S.T. Allworth and R.N. Zobel, "Introduction to real time software design", Macmillan, Second Edition, 1987.
- 4. R.J.A Buhur, D.L. Bailey, "An Introduction to Real-Time Systems", Prentice-Hall International, 1999.
- 5. Philip.A.Laplante "Real Time System Design and Analysis" PHI, III Edition, April 2004.

#### **E-REFERENCES**

1. Real Time Systems by Prof. Rajib Mall, Prof. Durga Prasad Mohapatra | IIT Kharagpur, NIT Rourkela https://onlinecourses.nptel.ac.in/noc21_cs98/preview

Mapping	of CO	) with	PO's	S											
	PO1				PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		2	1	1	1	1	0	0	0	1	0	0	0	1	1
CO 2		2	1	1	1	1	0	0	0	0	0	0	0	1	1
CO3		3	2	2	2	1	0	0	0	1	0	1	0	2	1
CO 4					1	1	0	0	0	1	0	0	0	1	1
CO 5	2	1	1	1	1	0	0	0	1	0	0	0	1	1	
Total	11 6		6	6	5	0	0	0	4	0	1	0	6	5	
Scaled Va	lue	3	2	2	2	1	0	0	0	1	0	1	0	2	1
Note:		Т	otal		0		1-5	6	-10	11- 15					
Scal		led va	lue		0		1		2	3					
		Rela	tion	]	No	I	Low		ediu m	Hig h					

SE	MES	TER	2	:	$\mathbf{V}$													
CO	URS	SE C	ODE	:	XC	SE53												
CO	URS	SE N	AMF	C :	SO	FT CON	<b>IPUTI</b>	NG										
PR	ERE	QUI	SITI	E :	NII													
	L	T	P	C			C	P	A			L	T	P	Н			
	3	0	0	3			3	0	0			3	0	0	3			
CO	URS	SE O	BJE	CTIVE	S													
Coi	ırse	Outc	ome:	After ti	he co	mpletion	ts will be	Domain					evel					
able	e to						Co	or P	or A									
CO	1	Illus	trate	the n	uanc	e of so	ft comp	outing	and de	pict the	Cog	gniti	ve	Uı	Understand			
		Gene	etic A	lgorith	m co	ncepts												
CO	2	explo	ain 1	the evo	olutio	n of A	rtificial	Neura	l Netw	ork and	Co	gniti	ve	Uı	nders	tand		
		vario	ous ty	pes of	neura	l networ	ks											
CO	3	Reco	gniz	e the su	ıperv	ised lear	ning me	ethod a	nd unsu	pervised	Co	gniti	ve	Uı	nders	tand		
		learn	ing r	nethods	and	demons	<i>trate</i> it i	in vario	us appl	ications				A	ply			
CO	4	Com	preh	end the	fuzz	y system	s and it	s <del>hybri</del> o	d metho	ds <i>and</i>	Cog	gniti	ve	Uı	nders	tand		
		dem	onstr	<i>ate</i> it in	vari	ous appli	cations							Aı	ply			
CO												gniti	ve	Uı	nders	tand		
UN	IT I	: <b>SO</b> ]	FT C	OMPU	TIN	G AND	GENE	ΓIC AI	GORI	THM						9		

What is soft computing? Differences between soft computing and hard computing, Soft Computing constituents, Methods in soft computing, Applications of Soft Computing.

Introduction to Genetic Algorithms (GA), Representation, Operators in GA, Fitness function, population, building block hypothesis and schema theorem; Genetic algorithms operators- methods of selection, crossover and mutation, simple GA(SGA), other types of GA, generation gap, steady state GA, Applications of GA

#### **UNIT II: NEURAL NETWORKS**

9

Neural Network Concept, biological neural system, Evolution of neural network, McCulloch-Pitts neuron model, activation functions, feedforward networks, feedback networks, learning rules – Hebbian, Delta, Percepron learning and Windrow-Hoff, winner-take-all.

#### UNIT III: SUPERVISED AND UNSUPERVISED LEARNING

9

Perceptron learning, single 1 layer/multilayer perceptron, linear separability, hidden layers, back popagation algorithm, Radial Basis Function network; Unsupervised learning - Kohonen, SOM, Counter-propagation, ART, Reinforcement learning, adaptive resonance architecture, applications of neural networks to pattern recognition systems such as character recognition, face recognition, application of neural networks in image processing.

# **UNIT IV: FUZZY SYSTEMS**

9

Basic definition and terminology, set-theoretic operations, Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Membership Functions, Fuzzy Rules & Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making; Neuro-fuzzy mmodeling- Adaptive Neuro-Fuzzy Inference Systems, Coactive Neuro-Fuzzy Modeling, Classification and Regression Trees, Data Clustering Algorithms, Rulebase Structure Identification and Neuro-Fuzzy Control, Applications of neuro-fuzzy modeling.

# UNIT V SWARM INTELLIGENCE

9

What is swarm intelligence? Various animal behaviour which have been used as examples, ant colony optimization, swarm intelligence in bees, flocks of birds, shoals of fish, ant-based routing, particle swarm optimization

LECTURE	TUTORIAL	TOTAL
---------	----------	-------

45	0	45

- 1. S.N. Shivanandam, Principle of soft computing, Wiley. ISBN13: 9788126527410 (2011)
- 2. Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2003.
- 3. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995.
- 4. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.
- 5. Data Mining: Concepts and Techniques, 4ed, Jiawei Han, 2022, ISBN13: 978-8131267660.

#### **REFERENCES**

- 1. Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall, 1998.
- 2. David E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Addison Wesley, 1997.

#### **E-REFERENCES:**

- 1. Introduction To Soft Computing, By Prof.DebasisSamanta ,IIT Kharagpur, https://onlinecourses.nptel.ac.in/noc20_cs17/preview
- 2. https://wekatutorial.com/

# **Mapping of COs with POs:**

							РО						PS	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	3	0	0	0	1	1	1	0	0	1	1
CO2	2	3	2	3	0	0	0	0	0	0	0	2	1	1
CO3	2	2	3	1	1	2	1	2	2	0	0	0	1	1
CO4	3	2	2	2	0	0	0	0	0	1	0	1	1	1
CO5	1	2	3	3	1	2	1	1	1	0	0	2	1	1
Total	11	12	12	12	2	4	2	4	4	2	0	5	5	5
Scale Value	2	2	3	3	1	1	1	1	1	1	0	1	1	1

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SEMI	ESTE	3	V						
COU	RSE C	ODE	XCSE54	L	T	P	C		
COU	RSE N	AME	HUMAN COMPUTER INTERACTION	3	0	0	3		
C	P	A		L	T	P	H		
3	0	0		3	0	0	3		
PREI	REQU								
Cours	Course Objectives								

- To Learn the foundations of Human Computer Interaction
- To Know the design technologies for individuals and persons with disabilities
- To Understand mobile HCI

•	To learn the guidelines for user interface.									
Course	Outcomes									
		Domain	Level							
CO1	Design effective dialog for HCI.	Cognitive	Under	stand						
CO2	Design effective HCI for individuals and persons with disabilities.	Cognitive	Apply	,						
CO3	Assess the importance of user feedback.	Cognitive	Apply	1						
CO4	Explain the HCI implications for designing multimedia/ ecommerce/ e-learning Web sites.	Cognitive	Under	rstand						
CO5	Develop meaningful user interface.	Cognitive	Apply	7						
COUR	SE CONTENTS			Hours						
UNIT	I FOUNDATIONS OF HCI			9						
- Mem	man: I/O channels – Memory – Reasoning and problem solory – processing and networks; Interaction: Models – framewats – interactivity- Paradigms.									
UNIT	II DESIGN & SOFTWARE PROCESS			9						
prototy in prac	tive Design basics – process – scenarios – navigation – sping. HCI in software process – software life cycle – usabilitice – design rationale. Design rules – principles, standards, ques – Universal Design.	ity engineer	ing – P	rototyping						
UNIT	•			9						
	ve models –Socio-Organizational issues and stake holder relaboration models-Hypertext, Multimedia and WWW.	equirements	–Com	nunication						
UNIT	IV MOBILE HCI			9						
Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.										
UNIT	-			9						
Design	ing Web Interfaces - Drag & Drop, Direct Selection, Conte	extual Tools,	, Overla	ays, Inlays						

**TUTORIAL** 

0

**PRACTICAL** 

0

**TOTAL** 45

**LECTURE** 

45

and Virtual Pages, Process Flow. Case Studies.

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004.
- 2. Brian Fling, "Mobile Design and Development", First Edition , O'Reilly Media Inc., 2009.
- 3. Bill Scott and Theresa Neil, "Designing Web Interfaces", First Edition, O.Reilly, 2009.

#### **REFERENCES**

- 1. Prece, Rogers, Sharps, "Interaction Design", Wiley Dreamtech, 2006.
- 2. Soren Lauesen User Interface Design, , Pearson Education, 2004.

# **E-REFERENCES**

# Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1	0	0	3	0	0	0	0	0	0	0	3	2
CO 2	3	2	1	1	2	0	0	0	0	0	0	0	3	2
CO 3	3	2	1	1	0	0	0	0	0	0	0	0	2	2
CO 4	3	2	0	1	0	0	0	0	0	0	0	0	2	2
CO 5	3	2	1	3	2	0	0	0	0	0	0	0	3	3
Total	14	9	3	6	7	0	0	0	0	0	0	0	13	11
Scaled Value	3	2	1	2	2	0	0	0	0	0	0	0	3	3

$$1-5 \to 1$$
,  $6-10 \to 2$ ,  $11-15 \to 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

CE	SEMESTER : VI																
			ODE	ı	:		CSE61										
			AME		:			ATION	THE	DRY A	ND COL	ING	1				
			SITI		:		ROBAB				12 002						
	L	Т	P	C				С	P	A			L	Т	P	Н	
	3	0	0	3				3.0	0.0	0.0			3	0	0	3	
Cou	ırse	Obje	ective	es									ı				
• To understand the concepts of transmission, processing and knowledge extraction from the													the				
• To understand the concepts of compression and decompression techniques																	
<ul> <li>To understand the concepts of compression and decompression techniques</li> <li>To reduce error rate of data communication</li> </ul>																	
Course Outcome: After the completion of the course, students will <b>Domain</b> Level													evel				
be able to																	
CO		Descr capac		the	bas	sic	notions	of inf	formatio	on and	channel		Cogn	itive	J	Jndei	stand
СО			_	he P	ulse	e c	ode Mod	lulation	System	ıs		(	Cogn	itive	J	Jndei	rstand
CO	3 1	Expla	Explain and Apply the error control coding  Cognitive  Understand											rstand			
CO	4 1	Descr	cribe and Analyze compression and decompression Cognitive Understand											stand			
			echniques														
CO		E <b>xpl</b> a Fechr	<i>iin</i> nique	and s	1	Illı	ıstrate	Multin	nedia	commi	unication		Cogn	itive	J	Jndei	rstand
CO	URS	SE C	ONT	EN	Γ												
UN	IT I	I	NFO	RM	AI	ΓIC	N ENT	ROPY	FUND	AMEN	TALS						9
											urce cod						
				_					-		Memory capacity				- (	chann	iel
UN	IT I						OICE C			<u> </u>	capacity	11100	010111	•			9
											daptive						
										_	elta Mod				-		ta
IIN	IT I						oding of <b>FROL C</b>			at 10W b	it rates –	· v occ	Juers	ana	LPC	·	9
										ding –	Minimur	n dis	tance	e con	sider	ation	
								•		_	y check						
			•							– Conv	olutiona	l code	es.				
UNIT IV COMPRESSION TECHNIQUES												9					
Principles – Text compression – Static Huffman Coding – Dynamic Huffman coding – Arithmetic coding – Image Compression – Graphics Interchange format																	
	- Tagged Image File Format - Digitized documents - Introduction to JPEG																
			tanda														

UNIT V	AUDIO AND VIDEO CODING  9											
	Linear Predictive coding – code excited LPC – Perceptual coding, MPEG audio coders – Dolby audio coders – Video compression – Principles – Introduction to											
	H.261 & MPEG Video standards.											
	L T P Total											
	45 0 0 45											

- 1.R Bose, "Information Theory, Coding and Crptography", TMH 2007
- 2. Simon Haykin, Communication Systems, John Wiley & sons, 4th Edition, 2001.
- 3. Fred Halsall, "Multimedia Communications, **Applications** Networks **Protocols** Standards", Pearson Education, Asia 2002; Chapters: 3,4,5. and

#### REFERENCE BOOKS

- 1. Mark Nelson, "Data Compression Book", BPB Publication 1992.
- 2. Watkinson J, "Compression in Video and Audio", Focal Press, London 2002.

# **E-REFERENCES**

1. NPTEL , Communication Engineering, Prof. Surendra Prasad, Department Electrical Engineering Indian Institute of Technology, Delhi HauzKhas New Delhi -110 016

# **IS Codes**

<b>Mapping of CO with PO</b>	)'s	
------------------------------	-----	--

11 0														
	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	2	1	0	1	1	0	1	0	0	0	1	2
CO 2	3	2	1	1	0	0	0	0	1	0	0	0	2	2
CO 3	3	2	1	1	0	1	1	0	1	0	0	0	2	2
CO 4	3	2	2	0	0	1	1	0	1	0	0	0	2	2
CO 5	3	2	2	1	0	1	1	0	1	0	0	0	2	3
Total	15	10	8	4	0	4	4	0	5	0	0	0	9	11
<b>Scaled Value</b>	3	2	2	1	0	1	1	0	1	0	0	0	2	3

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SE	MES	TER	₹	:	VI											
CO	URSE CODE : XCSE62															
CO	COURSE NAME : DISTRIBUTED SYSTEMS															
PR	PREREQUISITE : -															
	L	T	P	C			C	P	A			L	T	P	H	
	3	0	0	3			3	0	0			3	0	0	3	
CO	COURSE OR IECTIVES															

- Understand classic distributed algorithms for synchronization, consistency, fault-tolerance, etc.
- Understand how modern distributed systems are designed and engineered.
- To learn the principles, architectures, algorithms and programming models used in distributed systems.

CO1	To <b>Describe</b> basics of Distributed Systems and trends in	Cognitive	Understand
	Distributed Systems and Challenges.		
CO2	To <b>Define</b> inter process communication and internet protocols for	Cognitive	Remember
	external data representation and multi cast communication.		
CO3	To <b>Explain</b> peer to peer services and different file system	Cognitive	Understand
CO4	To <b>Discuss</b> the synchronization and replication in distributed	Cognitive	Understand
	system.		
CO5	To <b>Apply</b> the process management and resource management in	Cognitive	Apply
	distributed system.		

#### **INTRODUCTION**

Introduction - Examples of Distributed Systems-Trends in Distributed Systems - Focus on resource sharing - Challenges. Case study: World Wide Web.

#### UNIT II: COMMUNICATION IN DISTRIBUTED SYSTEM

System Model - Inter process Communication - the API for internet protocols - External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI Remote Method Invocation And Objects: Remote Invocation - Introduction - Request-reply protocols - Remote procedure call - Remote method invocation. Case study: Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches -Distributed objects - Case study: Enterprise Java Beans -from objects to components.

# UNIT III: PEER TO PEER SERVICES AND FILE SYSTEM

Peer-to-peer Systems - Introduction - Napster and its legacy - Peer-to-peer - Middleware - Routing overlays. Overlay case studies: Pastry, Tapestry- Distributed File Systems -Introduction - File service architecture - Andrew File system. File System: Features-File model -File accessing models -File sharing semantics Naming: Identifiers, Addresses, Name Resolution - Name Space Implementation - Name Caches - LDAP.

# UNIT IV: SYNCHRONIZATION AND REPLICATION

Introduction - Clocks, events and process states - Synchronizing physical clocks- Logical time and logical clocks - Global states - Coordination and Agreement - Introduction - Distributed mutual exclusion - Elections - Transactions and Concurrency Control- Transactions - Nested transactions -Locks - Optimistic concurrency control - Timestamp ordering - Atomic Commit protocols -Distributed deadlocks - Replication - Case study - Coda.

#### **UNIT V: PROCESS & RESOURCE MANAGEMENT**

Process Management: Process Migration: Features, Mechanism - Threads: Models, Issues, Implementation.

Resource Management: Introduction- Features of Scheduling Algorithms -Task Assignment Approach - Load Balancing Approach - Load Sharing Approach.

LECTURE	TUTORIAL	TOTAL
45	0	45

1. George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012.

#### **REFERENCES**

- 1. Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India, 2007.
- 2. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.
- 3. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 4. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003

# **E REFERENCES**

- 1. <a href="http://nptel.ac.in/courses/106106107/">http://nptel.ac.in/courses/106106107/</a>
- 2. https://www.cs.york.ac.uk/rts/books/.../distributedSystems.pdf

Mapp	Mapping of CO with PO's														
		PO1	PO2	P03	PO4	P05	90d	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1		1	1	1	1	1	0	0	1	1	1	0	1	1	1
CO2		1	2	1	1	1	0	0	1	1	2	0	1	1	1
CO3		2	2	2	2	1	0	0	1	1	1	0	1	1	1
CO4		2	3	2	2	2	0	0	1	1	2	0	1	2	1
CO5		2	3	3	2	2	0	0	1	1	2	0	1	2	1
Total		8	11	9	8	7	0	0	5	5	8	0	5	7	5
Scaled	l Value	2	3	2	2	2	0	0	1	1	2	0	1	2	1
Note	Total		otal	0		1-5	5	6-1	0	11-	15				
:	Scaled value			0		1		2		3					
	Relation			No		Lov	V	Medi	um	Hig	gh				

SEMESTER : VI																
СО	COURSE CODE : XCSE63															
CO	COURSE NAME : DATA MINING															
PREREQUISITE : LINEAR ALGEBRA, CALCULUS, AND PRO											OBA	BIL	ITY	THI	EORY	
	L	T	P	C			C	P	A			L	T	P	H	
	3	0	0	3			3	0	0			3	0	0	3	
CO	COURSE OBJECTIVES															

- To learn data mining concepts understand association rules mining.
- To discuss classification algorithms learn how data is grouped using clustering techniques.
- To develop the abilities of critical analysis to data mining systems and applications.
- To implement practical and theoretical understanding of the technologies for data mining.
- To understand the strengths and limitations of various data mining models

		Domain	Level
CO1	Understand the basics of data mining and data warehousing concepts	Cognitive	Understand
	and data preprocessing tasks		
CO2	Understand and Apply the association rules in large datasets.	Cognitive	Apply
CO3	Understand and Apply the classification techniques in large datasets.	Cognitive	Apply
CO4	Understand and Apply clustering techniques to solve real world problems in business and scientific information using data mining	Cognitive	Understand
CO5	Classify web pages, extracting knowledge from the web and text.	Cognitive	Apply

#### **COURSE CONTENT**

### UNIT I: INTRODUCTION

9

Introduction to Data Mining -Definition, KDD, Challenges, Overview of Data warehousing- Strategic information and the need for Data warehousing, Defining a Data warehouse, Evolution of Data warehousing, Data warehousing and Business, Data Mining Tasks, Data Preprocessing, Data Cleaning, Missing data, Dimensionality Reduction, Feature Subset Selection, Discretization and Binaryzation, Data Transformation; Measures of Similarity and Dissimilarity- Basics.

# **UNIT 2:ASSOCIATION RULES**

9

Problem Definition, Frequent Item Set Generation, The APRIORI Principle, Support and Confidence Measures, Association Rule Generation; APRIOIRI Algorithm, The Partition Algorithms, FP-Growth Algorithms, Compact Representation of Frequent Item Set- Maximal Frequent Item Set, Closed Frequent Item Set.

#### UNIT III: CLASSIFICATION

| 1

Problem Definition, General Approaches to solving a classification problem, Evaluation of Classifiers, Classification techniques, Decision Trees-Decision tree Construction, Methods for Expressing attribute test conditions, Measures for Selecting the Best Split, Algorithm for Decision tree Induction; Naive-Bayes Classifier, Bayesian Belief Networks; K- Nearest neighbor classification-Algorithm and Characteristics.

# **UNIT IV: CLUSTERING**

y

Introduction - Clocks, events and process states - Synchronizing physical clocks- Logical time and logical

clocks - Global states - Coordination and Agreement - Introduction - Distributed mutual exclusion - Elections - Transactions and Concurrency Control- Transactions -Nested transactions - Locks - Optimistic concurrency control - Timestamp ordering - Atomic Commit protocols -Distributed deadlocks - Replication - Case study - Coda.

#### **UNIT V: DATA MINING APPLICATIONS**

9

Mining complex data objects- Web Mining -Web Content Mining, Web Structure Mining, WebUsage Mining, Text Mining –Unstructured text, episode rule discovery for texts, hierarchy of categories, text clustering.

LECTURE	TUTORIAL	TOTAL
45	0	45

#### **TEXT BOOK**

- 1. Jiawei Han, MichelineKamber, Data Mining- Concepts and Techniques, Morgan Kaufmann Publishers, Elsevier, 2 Edition, 2006.
- 2. Data Warehousing Fundamentals for IT Professionals, Second Edition by PaulrajPonniah, Wiley India.
- 3. Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Introduction to Data Mining, Pearson Education, 2006.
- 4. Data Mining and Analysis: Fundamental Concepts and Algorithms Book by Mohammed J.Zaki and Wagner Meira, 2013.

#### **REFERENCES**

- 1. Arun K Pujari, Data Mining Techniques, 3rd Edition, Universities Press.
- 2. T.V Sveresh Kumar, B.Esware Reddy, Jagadish S Kalimani, Data Mining Principles & Applications, Elsevier.
- 3. VikaramPudi, P Radha Krishna, Data Mining, Oxford University Press.

#### **E REFERENCES**

- 1. https://www.kdnuggets.com/data_mining_course/references.html
- 2. https://www.researchgate.net/publication/325216437_Good_references_on_data_mining_and_analytics

Mappi	ng of	CO v	vith P	O's											
		PO1	PO2	P03	PO4	P05	PO6	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO2
CO1		1	1	1	1	1	0	0	1	1	1	0	1	1	1
CO2		1	2	2	1	1	0	0	1	1	2	0	1	1	1
CO3		2	2	2	2	1	0	0	1	1	2	0	1	1	1
CO4		2	3	2	2	2	0	0	1	2	2	0	2	2	1
CO5		2	3	3	2	2	0	0	1	1	2	0	1	1	1
Total		8	11	10	8	7	0	0	5	6	9	0	6	6	5
Scaled		2	3	2	2	2	0	0	1	2	2	0	2	2	1
Value															
Note:		To	tal	0		1-5		6-1	0	11-1	5				
	Sca	led va	lue	0		1		2		3					
		Relat	ion	No		Lov	v	Medi	um	Hig	h				

SE	MES	TER	2		:	VI										
CO	URS	SE C	ODE	Œ	:	XCSI	E <b>64</b>									
CO	URS	SE N	AMI	E	:	CLO	UD CON	<b>IPUTI</b>	NG							
PR	ERE	QUI	SIT	E	:	SECU		)PERA			BASE MANAGE MS, NETWORKI			TEM	[,	
	L	T	P		C			C	P	A		L	T	P	Н	
	3	0	0		3			3.0	0.0	0.0		3	0	0	3	

# **Course Objectives**

- 1. To understand the concepts of cloud computing and its services
- 2. To understand the history of cloud and its architecture.
- 3. To understand various cloud related technologies

The Cloud computing course objectives are to understand the current trend and basics of cloud computing, cloud enabling technologies and cloud security.

Cours able to	e Outcome: After the completion of the course, students will be	Domain	Level
CO1	<b>Describe and understand</b> the concepts of cloud computing and its services	Cognitive	Understand
CO2	<b>Describe</b> , and understand the history and evolution of cloud from the present technologies and virtualization concepts in cloud.	Cognitive	Understand
CO3	<b>Describe</b> and <i>understand</i> the various cloud services and architecture.	Cognitive	Understand
CO4	<b>Explain and Analyze</b> , the various security services and management of resource in cloud.	Cognitive	Analyze
CO5	Understand, Explain, and apply the case studies to apply in various cloud technologies.	Cognitive	Apply

UNIT I INTRODUCTION  Introduction to Cloud Computing – Definition of Cloud – Evolution of Cloud Computin – Underlying Principles of Parallel and Distributed Computing – Cloud Characteristics Elasticity in Cloud – On-demand Provisioning.  UNIT II CLOUD ENABLING TECHNOLOGIES	
<ul> <li>Underlying Principles of Parallel and Distributed Computing – Cloud Characteristics Elasticity in Cloud – On-demand Provisioning.</li> <li>UNIT II CLOUD ENABLING TECHNOLOGIES</li> </ul>	
	9
Service Oriented Architecture – REST and Systems of Systems – Web Services – Publis Subscribe Model – Basics of Virtualization – Types of Virtualization – Implementation Levels of Virtualization – Virtualization Structures – Tools and Mechanisms Virtualization of CPU – Memory – I/O Devices – Virtualization Support and Disaster Recovery.	
UNIT III   CLOUD ARCHITECTURE, SERVICES AND STORAGE	9
Layered Cloud Architecture Design – NIST Cloud Computing Reference Architecture Public, Private and Hybrid Clouds - laaS – PaaS – SaaS – Architectural Desig Challenges – Cloud Storage – Storage-as-a-Service – Advantages of Cloud Storage Cloud Storage Providers – S3.	
UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD	9
Inter Cloud Resource Management – Resource Provisioning and Resource Provisionin	

	Methods – Global Exchange of Cloud Resources – Security Over Challenges – Software-as-a-Service Security – Security Govern Security – IAM – Security Standards.				•	
UNIT V	CLOUD TECHNOLOGIES AND ADVANCEMENTS					9
	Hadoop – MapReduce – Virtual Box Google App Engine – Profor Google App Engine — Open Stack – Federation in the C Federation – Federated Services and Applications – Future of free	Cloud	_			
		L	T	P	Total	
		45	0	0	45	

- 1. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. Rittinghouse, John W., and James F. Ransome, —Cloud Computing: Implementation, Management and Security, CRC Press, 2017.

#### REFERENCE BOOKS

- 1. Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, —Mastering Cloud Computingl, Tata Mcgraw Hill, 2013.
- 2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing A Practical Approach," Tata Mcgraw Hill, 2009.
- 3. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud: Transactional Systems for EC2 and Beyond (Theory in Practice), O'Reilly, 2009.

#### **E-REFERENCES**

- 1. http://cloud-standards.org/wiki/index.php?title=Main_Page
- 2. webpages.iust.ac.ir/hsalimi/.../89.../Cloud%20Common%20standards.pptop ennebula.org,
- 3. www.cloudbus.org/cloudsim/, http://www.eucalyptus.com/

Mapping of	of C	O witl	h PO's												
		PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		1	1	2	2	3	2	2	1	3	1	1	2	2	2
CO 2		2	3	3	3	3	1	2	1	1	1	2	1	2	2
CO 3		2	3	3	3	3	2	3	1	2	1	1	2	1	2
CO 4		2	3	3	3	3	2	3	1	2	1	1	2	2	2
CO 5		2	3	3	3	3	2	3	1	2	1	1	2	2	2
Total		9	13	14	14	15	11	13	5	10	5	6	9	9	10
Scaled Val	lue	2	3	3	3	3	2	3	1	2	1	1	2	2	2
Note:		,	Total	0		1-5		6-1	0	11-15					
	Sca	aled v	alue	0		1		2		3					
		Rel	ation	No		Lov	V	Medi	um	High					

SE	MES	TEF	R		:	VI											
CO	URS	SE C	ODE		:	X	CSE65										
CO	URS	SE N	AMI	$\Xi$	:	M	OBILE	COM	MUNI	CATIO	ON						
PR	PREREQUISITE : NETWORKING																
	L	T	P	C				C	P	A		L	T	P	Н		
	3	0	0	3				3	0	0		3	0	0	3		_
Co	Course Objectives																

- To make the students familier with fundamentals of mobile communication system
- To understand the multiple access techniques and interference education techniques in mobile communication.
- To have an insight into the various propagation models and the speech coders used in mobile communication.

Cours	e Outcome: After the completion of the course, students will be	Domain	Level
able to	9	C or P or A	
CO1	<i>Understand</i> the fundamentals of mobile communication	Cognitive	Understand
CO2	Understand the concepts of MAC and Compare various	Cognitive	Understand
	telecommunication systems.		
CO3	<b>Describe</b> the concepts of various Wireless LAN	Cognitive	Understand
CO4	<i>Compute</i> the different Routing techniques in mobile network.	Cognitive	Apply
CO5	Explain different user interface protocols in mobile	Cognitive	Understand
	communications.		

COURSE	CONTENT	
UNIT I	WIRELESS TRANSMISSION	9
	Introduction to Wireless Networks – Applications – History – Simplified Reference Model – Wireless transmission – Frequencies – Signals – Antennas – Signal propagation – Multiplexing – Modulation – Spread spectrum – Cellular Systems: Frequency Management and Channel Assignment- types of hand-off and their characteristics.	
UNIT II	MAC AND TELECOMMUNICATIONS SYSTEMS	9
	MAC – Motivation – SDMA, FDMA, TDMA, CDMA –Telecommunication Systems – GSM: Architecture-Location tracking and call setup- Mobility management- Handover- Security- GSM SMS –International roaming for GSM- call recording functions-subscriber and service data management – DECT – TETRA – UMTS – IMT-2000.	
UNIT III	WIRELESS LAN	9
	Wireless LAN – Infrared Vs Radio transmission – Infrastructure – Adhoc Network – IEEE 802.11WLAN Standards – Architecture – Services– HIPERLAN – Bluetooth Architecture & protocols.	
UNIT IV	Mobile IP/TCP	9
	Mobile Network Layer – Mobile IP – Dynamic Host Configuration Protocol - Mobile Transport Layer – Traditional TCP – Indirect TCP – Snooping TCP – Mobile TCP – Fast retransmit / Fast recovery – Transmission / Time-out freezing – Selective retransmission – Transaction Oriented TCP.	
UNIT V	WAP/WML	9
	WAP Model- Mobile Location based services -WAP Gateway -WAP protocols -	

WAP user agent profile- caching model-wireless bearers f	for WA	P - W	ML - WI	ML
Scripts - WTA – iMode - SyncML.				

L	T	P	Total
45	0	0	45

- Jochen Schiller, "Mobile Communication", 2nd Edition, Pearson Education, 2008.
- Theodore and S. Rappaport, "Wireless Communications, Principles, Practice", 2nd Ed PHI, 2002.

### **REFERENCE BOOKS**

- William Stallings, "Wireless Communications and Networks", 2nd Edition, Pearson Education, 2004
- 2. C.Siva Ram Murthy and B.S.Manoj, "Adhoc Wireless Networks: Architectures and Protocols", 2nd Edition, Pearson Education, 2008
- Vijay. K. Garg, "Wireless Communication and Networking", Morgan Kaufmann Publishers, 2007.

Mapping	g of C	O with	PO'	S	
	P01	PO2	03	v0 4	0.5

	P01	P02	PO 3	P0 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	3	2	3	2	1	0	0	0	0	0	1	0	0
CO 2	2	3	2	3	2	1	0	0	0	0	0	1	0	0
CO 3	1	3	3	2	1	1	0	0	0	0	0	1	0	0
CO 4	2	2	2	2	2	1	0	0	0	0	0	1	0	0
CO 5	2	3	3	1	1	1	0	0	0	0	0	1	0	0
Total	9	14	12	11	8	5	0	0	0	0	0	5	0	0
Scaled														
Value	2	3	3	3	2	1	0	0	0	0	0	1	0	0

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SEN	MEST	ER		:	VII	П											
CO	URSI	COI	ЭE	:	XC	SE71											
CO	URSE	NAN	ЛE	:	PA	RALLEL AND DISTRIBUTED ALGORITHMS											
PRI	EREC	UISI	TE	:	CO	MPUTER	NETWO	ORKS									
	L	T	P	С			С	P	A			L	T		P	Н	
	3	0	0	3			3	0	0			3	0		0	3	

# **Course Objectives**

- To learn about operational procedures of parallel and distributed algorithms.
- To know about the challenges in parallel and distributed algorithms.
- To learn about the graph model techniques
- To understand parallel and distributed communication environments

	Course Outcome: After the completion of the course, students will <b>Domain</b> Level be able to									
CO1	<b>Define</b> parallel and distributed algorithms.		Cognitive	Understand	i					
CO2	Explain the data structures for parallel compu	ting	Cognitive	Understand	i					
CO3	Explain the paradigms for parallel algorithms		Cognitive	Understand	1					
CO4	<b>Discuss</b> about the various graph models and it	s mechanism	Cognitive	Understand	1					
CO5	Explain about communication in distributed s	ystems.	Cognitive	Remember	•					
COUR	SE CONTENT									
UNIT 1	Introduction				9					
Introduction to computers, Parallel computers, parallel processing concepts, High performance computers. Elements of Parallel Computing: Levels of parallelism, Taxonomy of parallel computers, Models for parallel computation, PRAM model, performance of parallel algorithms.										
UNIT II Data Structures for Parallel Computing										
	Arrays and Lists, Linked Lists, Graphs and Trees – Euler and Hamiltonian Graphs, Trees, Graph Traversal, Connectivity, Planar Graphs, Coloring and Independence, Clique covering, Insertion Graph, Chordal Graphs, centrality in Graphs, Domination theory,									
UNIT I	II Paradigms for Parallel Algorithms				9					
	Binary Tree paradigm, Growing by Dou Conquer, Partitioning. <b>Simple Algorith</b> Matrix Multiplication, Partial sums, Bi problem.	ns: Scalar pr	oduct of two	Vectors,						
UNIT 1	V Algorithms for Graph Models				9					
	Tree Algorithms, Graph Algorithms, NC A	Algorithms for	Chordal grap	hs						
UNIT	COMMUNICATION IN DISTRIBUTE	D SYSTEM			9					
	System Model - Inter process Communication - the API for internet protocols - External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI Remote Method Invocation And Objects: Remote Invocation - Introduction - Request-reply protocols - Remote procedure call - Remote method invocation. Case study: Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches - Distributed objects - Case study:									

Enterprise Java Beans -from objects to components.										
	L	T	P	Total						
	45	0	0	45						

- 1. C. Xavier, S.S. Iyengar, "Introduction to Parallel Algorithms, 2nd Edition, Wiley, 1998.
- 2. Michael J. Quinn, "Parallel Computing Theory and Practice, 2nd Edition, McGraw Hill, 1994
- 3. Parallel Computing: Theory and Practice, by Michael Quinn, 2nd Edition, 2018, ISBN13: 978-0070495463
- 4. Kai Hwang, "Advanced Computer Architecture Parallelism, Scalability, Programmability", McGraw Hill Inc, 2008.
- 5. Wilkinson, "Parallel Programming using networked computer", Pearson Education India, 2006

### **REFERENCE BOOKS**

- 1. S. G. Akl, "The Design and Analysis of parallel algorithms", Englewood Cliffs, NJ, 1989
- 2. S. Tanenbaum, "Modern Operating System", PHI, 1996.
- 3. R. H. Perrott, "Parallel Programming", Addison Wesley, 1987.
- 4. T. G. Lewie and H. Ele-Revini, "Introduction to Parallel computing", PHI, NJ, 1992.
- 5. S. Lakshmivardhan and S.K. Dhall, "Analysis and design of parallel algorithm arithmetic and matrix problems", McGraw Hill, 1990
- 6. J. M. Crichlow, "An introduction to distributed and parallel computing", PHI, 1988
- 7. Pradeep K. Sinha," Distributed Systems"

#### E-REFERENCES

1. Distributed Systems: By Prof. Rajiv Misra | IIT Patna, https://onlinecourses.nptel.ac.in/noc22 cs66/preview

Mapping of CO	Mapping of CO with PO's													
	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	1	1	1	2	0	0	1	0	1	1	1	2	2
CO 2	2	2	1	1	1	0	0	1	1	0	1	1	2	1
CO 3	2	2	1	2	2	0	0	1	1	1	1	1	2	2
CO 4	2	1	1	2	1	0	0	1	1	0	1	1	1	1
CO 5	1	1	1	0	1	0	0	1	1	2	1	1	2	2
Total	8	7	5	6	7	0	0	5	4	4	5	5	9	8
Scaled Value	2	1	1	2	2	0	0	1	1	1	1	1	2	2

Note:	Total	0	1-5	6-10	11-15	
	Scaled value	0	1	2	3	
	Relation	No	Low	Medium	High	

SEM	SEMESTER VII						
COURSE CODE			XCSE72	L	T	P	С
COL	JRSE	NAME	INTERNET OF THINGS	3	0	0	3
С	P	A		L	T	P	C
3	0	0		3	0	0	3

#### PREREQUISITE: NETWORKING

# **Course Objectives**

- To impart knowledge on IoT technologies
- To teach the platforms available for IoT
- To provide knowledge on the IoT applications and knows how its implementation

Cours	se Outcomes	Domain	Level
CO1	Describe the fundamental technologies of IoT	Cognitive	Understand
CO2	Explain the service discovery protocols	Cognitive	Understand
CO3	Discuss the available platforms for IoT Applications and Analytics	Cognitive	Understand
CO4	Describe the applications of IoT	Cognitive	Understand
CO5	Demonstrate the Implementation of IoT applications	Cognitive	Understand

#### **COURSE CONTENTS**

# **UNIT I** Introduction – Sensors, Actuators & Networking

9Hours

Introduction; sensors – sensor types; Actuators – Actuator types; Architecture for IoT using Mobile Devices; Mobile Technologies for IoT Ecosystem -5G Technology, Software Defined Networking, Network Functions Virtualization, Ultra Wide Band Technology, Near Field Communication Technology; Energy Harvesting for Power Consumption

# **UNIT II** Service Discovery Protocols

9Hours

Layered Architecture for IoT; Protocol Architecture of IoT; Routing Protocols – IEEE802.15.4, Low-Power Wireless Personal Area Networks, Bluetooth Low Energy, EPC Global, Z-wave, device or service discovery for IoT, Protocols for IoT Sevice Discovery

#### UNIT III

Platforms for IoT Applications and Analytics

9Hours

The IoT Building Blocks; Machine-to-Machine Application Platforms; The Architecture Building Blocks; Azure IoT Hub; Amazon Web Service IoT Platform; Cisco IoT system; IBM Watson IoT platform; IoT Data Analytics Platform

# UNIT IV IoT UseCases

9Hours

IoT in agriculture, IoT in retail market, Smart lightings, Smart Transportation systems –Electric Vehicles, Smarter Vehicles, Intelligent transport system, Smart Health Care Systems – Clinical care, Remote monitoring

# **UNIT V** IoT using Raspberry Pi

9Hours

Raspberry Pi Setup, networking, hardware basics, controlling hardware, controlling led's, making user interface to make things on and off, controlling motors, controlling GPIO using a Web Interface, Displaying sensor reading on webpage, Sending sensor data to thing speak

L	T	P	Total
45	0	0	45

- 1. The Internet of Things: Enabling Technologies, Platforms, and Use Cases by Pethuru Raj and Anupama C. Raman (CRC Press), 2017
- 2. Raspberry Pi Cookbook, 3rd Edition, by Simon Monk Released October 2019 Publisher(s): O'Reilly Media, Inc. ISBN: 9781492043225

#### REFERENCE BOOKS

- 1. Arshdeep Bahga, Vijay Madisetti, —Internet of Things A hands-on approach, Universities Press, 2015
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things Key applications and Protocols, Wiley, 2012

#### **E-REFERENCES**

- 1. NPTEL Course Introduction to Internet of Things https://onlinecourses.nptel.ac.in/noc20_cs22/course
- 2. Ebooks https://www.iotforall.com/ebooks

## Mapping of CO with PO's

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	2	3	1	3	3	3	0	0	1	1	0	1	1
CO 2	2	2	3	1	3	3	3	0	0	1	1	0	1	1
CO 3	2	2	3	1	3	3	3	0	0	1	2	1	1	1
CO 4	2	2	3	2	2	3	3	1	0	2	1	0	2	1
CO 5	2	2	3	1	3	3	3	0	0	1	1	0	1	1
Total	11	10	15	6	14	15	15	1	0	6	6	1	6	5
Scaled Value	3	2	3	2	3	3	3	1	0	2	2	1	2	1

$$1-5 \to 1$$
,  $6-10 \to 2$ ,  $11-15 \to 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

Sen	neste	er		:	V	'II											
Cou	ırse	Code	e	:	X	CSE	73										
Cot	ırse	Nam	e	:	A	rtific	cial Intel	ligence									
Pre	requ	isite		:	D	ata S	Structure	e, Algor	rithms,	Proba	bility						
	L	T	P		C			С	P	A			L	T	P	H	
	3	0	0		3			3	0	0			3	0	0	3	
Cot	ırse	Obje	ecti	ves													
•	• To introduce problem definition and searching techniques																
•	To impart knowledge representation and planning techniques																
To impart the applications of AI																	
	Course Outcome: After the completion of the course, students Domain Level will be able to											el					
CO	1 I	Resta	<b>Lestate</b> a problem and search for solution using ninformed search  Cognitive  Understand										and				
CO			te informed search techniques Cognitive Understand											nd			
CO	_	<b>Demo</b>					erent k asis on lo	nowled gics	ge rej	presenta	ation		nitive		Und	ersta	nd
CO							ethods					Cog	nitive	•	Und	ersta	nd
CO	5 <b>1</b>	Relat	e A	I in	va	rious	real wor	ld appli	ications			Cog	nitive	2	Und	ersta	nd
CO	URS	SE C	ON	TE	ΝΊ	Γ											
UN	IT I						DLVING										9
		s	ear hai	ch; nin	Pr g; l	oduct Unint	AI, Probition systems of Security Items of the Security Items of t	ems; Co earches	ontrol s : Depth	trategie first s	es- for earch, l	ward a Breadt	and b h firs	ackv	vard		
UN	IT I	I S	SEA	R	CH	ING	TECHN	IQUE									9
	Informed Heuristic Search Techniques, Hill climbing; Branch and Bound technique; Best first search and A* algorithm; AND/OR Graphs; Problem reduction and AO* algorithm; Constraint Satisfaction problems Game Playing Min Max Search procedure; Alpha-Beta cutoff; Additional Refinements.																
UN	IT I	II F	KNO	OW	L	E <b>DG</b>	E REPR	ESENT	TATIO	N							9
Introduction to Knowledge Representation; Semantic Representations, Production Rules, Logics- Propositiona Logic, Inference in First Order Logic, Forward chain Backward Chaining algorithm							ional I	Logic	, Fir	st Oro	der						

UNIT IV	PLANNING AND DECISION MAKING				9					
	Introduction to Planning, Components of a Planning Syllanning System – Goal Stack Planning, Hierarchical Planning using Constraints Posting – Sequential I Complex Decision Making	anning,	Non-L	inear						
UNIT V	APPLICATIONS OF AI				9					
	AI in health care (iWatch), AI in Automobile (AutoPilot and Finance (robo-traders by Aidya), AI in survillence, AI in entertinement, AI in education, AI in gaming, AI in	AI for so	ocial m							
		L	T	P	Total					
	45 0 0									

- 1. Philip C. Jackson, Introduction to Artificial Intelligence: Third Edition, Dover Publications (2019).
- 2. Elaine Rich, Kevin Knight and Shivashankar B Nair: Artificial Intelligence, Third Edition - McGraw Hill (2011).

### REFERENCE BOOKS

- 1. Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson Education 3rd Edition (2014).
- 2. Artificial Intelligence: A New Synthesis, Nils J. Nilsson, Morgan Kaufmann Publishers(2007)

# E-REFERENCES

https://nptel.ac.in/courses/112/103/112103280/

### Mapping of CO with PO's

11 8														
	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	3	3	3	2	1	0	0	1	0	1	3	3
CO 2	3	3	2	2	2	3	1	0	0	1	0	2	3	2
CO 3	2	3	3	3	3	2	1	0	1	1	0	1	3	3
CO 4	2	2	2	2	2	2	0	0	0	1	0	1	3	3
CO 5	3	3	3	3	3	2	1	1	0	1	0	1	3	3
Total	13	13	13	13	13	11	4	1	1	5	0	6	15	14
Scaled Value	3	3	3	3	3	3	1	1	1	1	0	2	3	3

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

COURSE CODE	XCSE74	L	T	P	C
COURSE NAME	DIGITAL IMAGE PROCESSING	3	0	0	3
PREREQUISITES	SIGNALS AND SYSTEMS, CALCULUS AND LINEAR ALGEBRA	L	T	P	C
C:P:A= 3:0:0		3	0	0	3

#### **Course Objectives:**

- To study the image fundamentals and mathematical transforms necessary for image processing.
- To study the image enhancement techniques
- To study image restoration techniques
- To study image segmentation and representation techniques
- To study image compression techniques

COURSE	OUTCOMES	DOMAIN	LEVEL
The studen	nts will be able to		
CO1	<b>Describe</b> the fundamental principles of image processing and perform basic operations on pixels.	Cognitive	Understand
CO2	Apply the knowledge of image enhancement techniques.	Cognitive	Apply
CO3	Apply image restoration techniques in different applications.	Cognitive	Apply
CO4	<b>Examine</b> image segmentation methods for an application.	Cognitive	Apply
CO5	<b>Demonstrate</b> various image compression techniques.	Cognitive	Apply
		•	

#### UNIT I DIGITAL IMAGE FUNDAMENTALS

9

Digital Image – Applications of Digital Image Processing – Fundamental Steps In Digital Image Processing - Components of an Image Processing System –Elements of Visual Perception – Structure of the Human Eye – Luminance – Brightness – Contrast – Mach Band Effect – Color Models – Image Sensing and Acquisition - Image Sampling and Quantization-Some Basic Relationship between Pixels.

#### UNIT II IMAGE ENHANCEMENT

10

Basics of Intensity Transformations and Spatial Filtering-Histogram equalization and specification techniques, Fundamentals of Spatial Filtering – Smoothing Spatial Filters – Sharpening Spatial Filters-Combining Spatial Enhancement Methods.

#### UNIT III IMAGE RESTORATION

10

Image Restoration - degradation model, Unconstrained restoration - Lagrange multiplier and Constrained restoration, Inverse filtering-removal of blur caused by uniform linear motion, Wiener filtering, Geometric transformations-spatial transformations.

#### UNIT IV IMAGE SEGMENTATION AND MORPHOLOGICAL PROCESSING | 10

Pixel based approach – feature threshold – choice of feature - optimum threshold - threshold selection methods – Edge detection, Edge linking -region based segmentation – region growing – region splitting and region merging-Morphological Processing: Erosion and Dilation-Opening and Closing-Some Morphological Algorithms.

#### UNIT V IMAGE COMPRESSION

6

Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, Vector Quantization, Transform coding, JPEG standard, MPEG.

LECTURE	TUTORIAL	TOTAL
45	0	45

- 1. Rafel C. Gonzalez and Richard E. Woods, Digital Image Processing", Pearson Education Limited, 2018.
- 2. Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, ISBN-139789332551916,2019.

#### **REFERENCE BOOKS:**

- 1. William K. Pratt, "Digital Image Processing", Fourth Edition, John Wiley& Sons, ISBN 0-471-22132-5, 2001.
- 2. Sid Ahmed M.A., "Image Processing Theory, Algorithm and Architectures", McGraw-Hill, 2010

#### **E-References:**

- 9. https://see.stanford.edu/Course/EE261
- 10. <a href="http://nptel.ac.in/video.php?COURSEjectId=117105079">http://nptel.ac.in/video.php?COURSEjectId=117105079</a>
- 11. <a href="https://www.youtube.com/watch?v=CVV0TvNK6pk">https://www.youtube.com/watch?v=CVV0TvNK6pk</a>
- 12. https://www.coursera.org
- 13. https://www.cs.nmt.edu/~ip/lectures.html
- 14. <a href="http://www.siue.edu/~sumbaug/439_syl.html">http://www.siue.edu/~sumbaug/439_syl.html</a>

	PO1	PO2	PO	PO1	PO1	PO	PSO	PSO						
			3	4	5	6	7	8	9	0	1	12	1	2
CO 1	2	2	0	0	0	0	0	0	1	1	1	2	1	1
CO 2	2	2	1	1	3	1	2	1	2	3	2	2	3	2
CO 3	3	2	1	2	3	1	2	1	2	3	2	2	3	2
CO 4	3	3	2	2	3	1	2	1	2	3	2	2	3	2
CO 5	2	2	1	1	3	1	1	1	0	3	2	2	3	1
	12	11	5	6	14	4	7	4	7	13	9	10	13	8

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

SE	MES	TER	1	:	V	Ή										
COURSE CODE : XCSE75																
CO	COURSE NAME : MOBILE APPLICATION DEVELOPMENT															
PREREQUISITE : JAVA PROGRAMMING																
	L	T	P		C			C	P	A		L	T	P	H	
	3	0	0		3			3	0	0		3	0	0	3	
Co	urse	Obie	ectives	-												

- To compare the components and structure of a mobile development framework-Android Studio.
- Apply mobile application models/architectures and patterns to the development of a mobile software application.
- To demonstrate advanced Java programming competency by developing a maintainable and efficient cloud based mobile application.

Cours	e Outcome: After the completion of the course, students will be able	Domain	Level
to		C or P or A	
CO1	Describe and understand the mobile operating system and its	Cognitive	Understand
	architecture for basic usage		
CO2	Describe and understand to carry out a design work including	Cognitive	Understand
	developing a prototype that can be evaluated with a specified user		
	group		
CO3	Describe and understand the specific requirements, possibilities	Cognitive	Understand
	and challenges when developing for a mobile context.		
CO4	Understand, Explain and Apply practical skills and knowledge to	Cognitive	Apply
	construct software for a mobile application		
CO5	Describe and understand the ability to reflect over possibilities	Cognitive	Understand
	and demands in collaborative software development		

UNIT I	INTRODUCTION TO MOBILE DEVICES	9
	Mobile devices vs. desktop devices - ARM and Intel Architectures, Power	
	Management, Screen resolution, Touch interfaces, App Store, Google Play,	
	Windows Store, Development environmentsXCode-Android Studio-Visual	
	Studio-Phone GAP. Comparing and Contrasting architectures of all three –	
	Android, iOS and Windows	
UNIT II	INTRODUCTION TO ANDROID	9
	What is Android? - Setting up development environment -Dalvik Virtual	
	Machine .apk file extension Fundamentals- Android Studio - Installation and	
	Configuration - Simulators. Activities, Services, Broadcast Receivers -Content	
	providers	
UNIT III	BASIC BUILDING BLOCKS	9
	UI Components - Views & notifications - Components for communication -Intents &	
	Intent Filters - Android API levels (versions version names). First sample Hello	
	World Application- Android Manifest.xml - uses-permission uses-SDK - Resources	
	& R.java - Assets – Layouts Drawable Resources - Activities and Activity lifecycle.	
UNIT IV	ANDROID ACTIVITIES AND UI DESIGN	9
	Understanding Intent, Activity, Activity Lifecycle and Manifest - Creating	
	Application and new Activities - Expressions and Flow control, Android Manifest -	
	Simple UI -Layouts and Layout properties.	
UNIT V	DATABASE - SQLITE	9

Introduction to SQLite – SQLite Open Helper and creating a database - Opening and
closing a database - Working with cursors Inserts, updates, and deletes

L	T	P	Total
45	0	0	45

#### REFERENCE BOOKS

1. Griffiths, D., & Griffiths, D. Head First Android Development. (2015), O'Reilly Media.

### **E-REFERENCES**

- 1. Annuzzi, J., Darcey, L., & Conder, S. Introduction to Android Application Development: Android Essentials. Pearson Education, 2013.
- 2. Horstmann, C. S., & Cornell, G. Core Java Volume I--Fundamentals. Pearson Education, 2015
- 3. McWherter, J., & Gowell, S. Professional Mobile Application Development. Wiley, 2012.

# **IS Codes**

TA /	•		• 4 1	$\mathbf{D}$	•
N/I 0.1	anina	$\Delta t \cdot I \cdot I$	XX/III	PI 1	/ C1
IVI AI	1111112	of CO	** 1 L I I	1 ()	

	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	0	1	1	2	2	1	1	0	0	1	1	2	2	2
CO 2	0	2	3	2	1	2	1	1	0	1	1	2	2	2
CO 3	0	2	3	3	2	2	1	1	1	1	1	1	2	2
CO 4	1	2	3	3	2	2	1	1	1	1	1	1	2	2
CO 5	1	2	3	3	2	2	1	1	1	1	3	1	2	2
Total	2	9	13	13	9	9	5	4	3	5	7	7	10	10
Scaled Value	1	2	3	3	2	2	1	1	1	1	2	2	2	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

COURS	E CODE	XCSE81		L	T	P	C		
COURS	E NAME	QUEUEING THEORY AND MODELING		3	0	0	3		
		_		L	T	P	Н		
C:P:A		2.5:0.25:0.25		3	0	0	3		
COURS	E OUTCO	MES	DOMAIN LEVEL			L			
CO1	Define dis	nitive	9	Under	stand				
	<i>Find</i> the	expected values and moment generating							
	functions of	of discrete and continuous distributions.							
CO2	Find the joint and Marginal distribution and to the Cognitive Understa								
	correlation and regression. Participate in the class								
	discussion on two dimensional random variable.								
CO3		find stationary process and their properties and	Cognitive			Understand			
	_	arkov and Poisson processes.							
CO4		Markovian queueing models. Reproduce the	Cog	nitive	9	Under	stand		
		5 5 5 5							
CO5	Demonstra	ate the Non – Markovian queue models and	Cog	nitive	9	Under	stand		
	queueing n	etworks.							
UNIT I -	- RANDOM	I VARIABLES				12			
			ating	func	tions	– Bino	omial,		
Poisson,	Geometric,	Uniform, Exponential and Normal distributions.							
UNIT I	I - TWO DI	MENSIONAL RANDOM VARIABLES				12			
Discrete Poisson,	queueing networks.  UNIT I - RANDOM VARIABLES  Discrete and continuous random variables - Moments, Moment Generating functions - Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.								

Joint distributions – Marginal and conditional distributions – covariance – Correlation and linear regression.

# **UNIT III - RANDOM PROCESSES**

**12** 

Classification – Stationary process – Markov process – Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions.

#### UNIT IV - QUEUEING THEORY

12

Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Finite source models.

#### UNIT V - NON-MARKOVIAN QUEUES AND QUEUEING NETWORKS | 12

M/G/1 queue - Pollaczek Khintchine formula - M/D/1 and M/Ek/1 as special cases - Series queues.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	30	30	0	60

#### **TEXT BOOKS**

- 1. Veerarajan .T, Probability, "Statistics and Random Processes", Tata McGraw Hill, 3rd edition, 2008. (Unit I, II, III)
- 2. Kandasamy.P, Thilagavathy.K, Gunavathy.K, "Probability, Statistics and Queueing Theory", S.Chand & Company Ltd, 2004. (Unit IV, V)

#### REFERENCES

- 1. Gupta .S.C and Kapoor .V.K, "Fundamentals of Mathematical Statistics", 11th extensively revised edition, Sultan Chand & Sons, 2007.
- 2. Allen, A.O., "Probability, Statistics and Queueing Theory with Computer Applications", Elsevier, 2nd edition, (2005).
- 3. Taha, H.A., "Operations Research", Pearson Education", Asia, 8th edition, (2007).
- 4. Trivedi, K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", John Wiley and Sons, 2nd edition, (2002).
- 5. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill edition, New Delhi, (2004).

# **E REFERENCES**

# www.nptel.ac.in

1. Advanced Engineering Mathematics Prof. Somesh Kumar, Department of Mathematics, Indian Institute of Technology, Kharagpur.

# **Mapping of COs with POs:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	0	0	1	0	0	0	0	2	0	1	0	0
CO2	3	2	0	0	1	0	0	0	0	2	0	1	0	0
CO3	3	2	0	0	1	0	0	0	0	2	0	1	0	0
CO4	3	2	0	0	1	0	0	0	0	2	0	1	0	0
CO5	3	2	0	0	1	0	0	0	0	2	0	1	0	0
Total	15	10	0	0	5	0	0	0	0	10	0	5	0	0

$$1-5 \to 1, 6-10 \to 2, 11-15 \to 3$$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE			XCSE82	L	T	P	C
COURSE NAME			ADHOC AND SENSOR NETWORKS	3	0	0	3
C	P	A		L	T	P	Н
3	0	0		3	0	0	3
DDEDEGLIGIEE			NEWWODZING				

# PREREQUISITE | NETWORKING

#### **Course Objectives**

To make the students familiar with fundamentals of Adhoc and Sensor Networks and its application.

Cours	se Outcomes	Domain	Level
CO1	Describe the design issues in ad hoc and sensor networks.	Cognitive	Understand
CO ₂	Describe and distinguish the different types of MAC	Cognitive	Remember
	protocols.		
CO3	Describe the different types of adhoc routing protocols.	Cognitive	Understand
CO4	Explain the TCP issues in adhoc networks.	Cognitive	Understand
CO5	Describe the architecture and protocols of wireless sensor	Cognitive	Remember
	networks.		

#### COURSE CONTENTS

UNIT I	INTRODUCTION	9
		Hours

Fundamentals of Wireless Communication Technology - The Electromagnetic Spectrum -Radio propagation Mechanisms – Characteristics of the Wireless Channel -mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) :concepts and architectures. Applications of Ad Hoc and Sensor networks. Design Challenges in Ad hoc and Sensor Networks.

#### UNIT II MAC PROTOCOLS FOR AD HOC WIRELESS NETWORKS Hours

Issues in designing a MAC Protocol- Classification of MAC Protocols- Contention based protocols-Contention based protocols with Reservation Mechanisms- Contention based protocols with Scheduling Mechanisms – Multi channel MAC-IEEE 802.11

#### UNIT III 9 ROUTING PROTOCOLS AND TRANSPORT LAYER IN AD HOC WIRELESS NETWORKS Hours

Issues in designing a routing and Transport Layer protocol for Ad hoc networks- proactive routing, reactive routing (on-demand), hybrid routing- Classification of Transport Layer solutions-TCP over Ad hoc wireless Networks.

#### UNIT IV WIRELESS SENSOR NETWORKS (WSNS) AND MAC Hours **PROTOCOLS**

Single node architecture: hardware and software components of a sensor node – WSN Network architecture: typical network architectures-data relaying and aggregation strategies -MAC layer protocols: self-organizing, Hybrid TDMA/FDMA and CSMA – Mobile TCP – Fast retransmit / Fast recovery - Transmission / Time-out freezing - Selective retransmission -Transaction Oriented TCP.

#### **UNIT V**

# WSN ROUTING, LOCALIZATION & QOS

9 Hours

Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localization-absolute and relative localization, triangulation-QOS in WSN-Energy Efficient Design-Synchronization-Transport Layer issues.

L	T	P Tota			
45	0	0	45		

#### **TEXT BOOKS**

C. Siva Ram Murthy, and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols ", Prentice Hall Professional Technical Reference, 2014.

## **REFERENCE BOOKS**

- 1. Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2006.
- 2. Feng Zhao and Leonides Guibas, "Wireless Sensor Networks", Elsevier Publication 2002.
- 3. Holger Karl and Andreas Willig "Protocols and Architectures for Wireless Sensor Networks", Wiley, 2005
- 4. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, and Applications", John Wiley, 2007.
- 5. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003

#### **E REFERENCES**

- 1. <a href="https://nptel.ac.in/courses/106/105/106105160/">https://nptel.ac.in/courses/106/105/106105160/</a>
- 2. https://lecturenotes.in/subject/396/adhoc-and-sensor-network-asn

# Mapping of CO with PO's

	PO1	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	3	2	3	2	1	1	0	2	1	0	2	3	2
CO 2	2	3	2	3	2	1	0	0	2	1	0	1	3	2
CO 3	2	3	3	2	1	1	0	0	1	1	0	2	3	2
CO 4	3	2	2	2	2	2	0	0	1	1	0	1	3	3
CO 5	2	3	3	1	1	1	0	0	1	2	0	1	3	2
Total	11	14	12	11	8	6	1	0	7	6	0	7	15	11
<b>Scaled Value</b>	3	3	3	3	2	2	1	0	2	2	0	2	3	3

$$1-5 \rightarrow 1$$
,  $6-10 \rightarrow 2$ ,

$$11 - 15 \rightarrow 3$$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE C	ODE	XCSE83		L	T	P	C
COU	RSE N	AME	INFORMATION RETRIEVAL		3	0	0	3
C	P	A			L	T	P	H
3.0	0.0	0.0			3	0	0	3
COL	DODO	TITOON	TEG.	DOM	A T	1	T T T 7 T	7.7

COUR	SE OUTCOMES	DOMAI	LEVEL
		N	
CO1	<b>Define</b> and Explain document and query structure.	Cognitive	Remember
CO2	<i>Explain, Develop</i> and <i>Estimate</i> query matching and text analysis.	Cognitive	Understand
CO3	<b>Explain</b> and <b>Measure</b> information retrieval performances.	Cognitive	Understand
CO4	<i>Explain</i> and <i>Estimate</i> performance improvement measures.	Cognitive	Apply
CO5	Explain web search, crawling and link analysis.	Cognitive	Understand

### UNIT I DOCUMENT AND QUERY STRUCTURE

9

Overview: Abstraction – Information System – Measures. Documents and Query Forms: document – data structures – document Surrogates – vocabulary control – structure of data – data compression – text documents – images and sounds. Query Structures: Matching criteria – Boolean queries – vector queries – extended boolean queries – fuzzy queries – probabilistic queries – natural language queries – information retrieval and database systems.

### UNIT II QUERY MATCHING AND TEXT ANALYSIS

9

Matching Process: Relevance and similarity measures – Boolean based matching – vector based matching – missing terms and term relationship – probabilistic matching – fuzzy matching – proximity matching – effects of weighting – effects of scaling – data fusion. Text Analysis: Indexing – Matrix representation – term extraction and analysis – term association – lexical measures of term significance – document analysis – document similarity – stop lists – stemming.

#### UNIT III PERFORMANCE MEASURES

6

Binary versus N-ary measures – precision and recall – user-oriented measures – average precision and recall – operating curves and single measures – expected search length.

## UNIT IV PERFORMANCE IMPROVEMENT TECHNIQUES

12

Relevance feedback and query expansion - Text classification and Naive Bayes: Text classification problem - Naive Bayes text classification - The Bernoulli model - Properties of Naive Bayes - Feature selection - Vector space classification: Document representations and measures of relatedness in vector spaces - Rocchio classification - k nearest neighbor - Linear versus nonlinear classifiers - Classification with more than two classes - The bias-variance tradeoff - Flat clustering: Clustering in information retrieval - Problem statement - Evaluation of clustering - K-means - Model-based clustering - Hierarchical clustering: Hierarchical agglomerative clustering - Single-link and complete-link clustering - Group-average agglomerative clustering - Centroid clustering - Optimality of HAC - Divisive clustering - Cluster labeling - Implementation notes.

#### UNIT V WEB SEARCH AND LINK ANALYSIS

9

Web search basics: Background and history - Web characteristics - Advertising as the economic model - The search user experience - Index size and estimation - Near-duplicates and shingling - Web crawling and indexes: Overview - Crawling - Distributing indexes - Connectivity servers - Link analysis: The Web as a graph - PageRank - Hubs and Authorities.

LECTURE	TOTAL
45	45

- 1. Robert R. Korfhage, Information storage and retrieval, John Wiley & Sons, Inc., New York, NY, 1997
- 2. C. Manning, P. Raghavan, and H. Schütze, *Introduction to Information Retrieval*, Cambridge University Press, 2008

# REFERENCE BOOKS

- 1. Baeza-Yates and B. Ribeiro-Neto. Modern Information. Retrieval. Addison Wesley, 1999
- 2. Gerard Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw Hill Book Co.,. New York, 1983.
- 3. C. J. van RIJSBERGEN, *The geometry of information retrieval*, Cambridge University Press, 2004

## **Mapping of COs with POs:**

						PC	)						P	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	2	1	1	1	1	0	0	0	1	1	2	2
CO 2	2	2	1	1	1	0	1	0	0	0	1	1	2	2
CO 3	2	2	2	1	1	1	1	0	0	0	1	1	2	2
CO 4	2	3	2	1	1	0	1	0	0	0	1	1	2	3
CO 5	2	2	2	1	1	1	1	1	0	0	1	1	3	2
Total	11	11	9	5	5	3	5	1	0	0	5	5	11	11
Scaled	3	3	2	1	1	1	1	0	0	0	1	1	3	3

#### **Note:**

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

SEN	MES	TER	<u> </u>	:	VI	Π													
			ODE	:		CSE84													
			AME		CR	<b>УРТО</b> С	GRAPH	Y ANI	) NETV	VORK S	SECU	RIT	Y						
PRI	ERE	QUI	SITE	C :	-														
	L	T	P	C			С	P	A			L	T	P	Н				
	3	0	0	3			3	0	0			3	0	0	3				
Cou	ırse	Obje	ective	S	I	•	I	l		l		ı			I				
• '	To u	nder	stand	the o	conce	epts of n	etwork v	ulnera	bilities a	and the v	vays t	o pro	tect	threa	ats				
• '	To u	nders	stand	vari	ous c	ryptogra	phy alg	orithms	3										
							ryptography algorithms ime security issues on web security.												
								•											
		Outc ible t		Afte	er th	e compl	ompletion of the course, students   <b>Domain</b>   C or P or A												
CO				e coi	nmo	n networ	k vulne	rabilitie	es and a	ttacks	 Jnderstand								
CO								vulnerabilities and attacks Cognitive Underst urity of different Cognitive Underst											
			ograp												1				
CO						e threats ese threa		mecha	nism an	d ways	Co	gniti	ve	An	alyze	;			
CO		O pro Outlir		the		uiremen		l med	chanism	s for	Co	gniti	ve	Un	derst	and			
	i	denti	ficati	on a	nd at	thentica	tion.												
CO										nunication Cognitive Unders									
CO			ont ONT			elated to	the sec	curity o	i web se	ervices.									
	IT I		NTR			ION										9			
						s: confi	dentialit	y, inte	grity, a	vailabil	ity, s	ecuri	ty p	olic	ies,				
		S	ecuri	ty n	nech	anisms,	assuran	ce, M	alicious	Softwa									
TINI	rr ti					on Detec	ction, In	trusion	Prevent	tion						0			
UN	IT I						• 1	, 1	· DI		1	r				9			
						Different .ES — RC		_				•							
UN	IT I					<b>IECHA</b>							<u> </u>	<u> </u>		9			
		I	Discre	ete I	Loga	rithms -	- Comp	uting	discrete	logs -	- Dif	fie-H	ellm	an l	key				
		e	xcha	nge -	– El	Gamal P	ublic ke	ey cryp	tosyster	ns – Ha	sh fu	nctio	ns –	Sec	ure				
				– Bi	rthda	ay attack	s - MD	05 – Di	igital si	gnatures	- RS	SA –	ElG	ama	1 -				
			OSA	***															
UN	IT I					ECURI'										9			
						applica									Iail				
<b>T</b> 73. 73						S/MIM		ecurity	– Web	Security	<u>– SSI</u>	L, TL	S, S	ET.					
UN	IT V					URITY		Molici	oue cet	tryogo	¥ 74 ## > ~	0.0	Eine	vv 11	0	9			
			syster Securi			y — Intrı ırds.	iders –	ivianci	ous sor	ıware –	virus	es –	rire	waii	s –				
				<i>y</i>								L	]	Γ	P	Total			

- 1. Network Security (2nd edition) by Kaufman, Perlman, and Speciner. ISBN 0130460192.
- 2. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", 2nd ed, Pearson, 2007.
- 3. William Stallings, "Crpyptography and Network security Principles and Practices", Pearson/PHI, 4th ed, 2006.
- 4. Computer Security: Principles and Practice (2nd Edition), Pearson Press

#### **REFERENCE BOOKS**

- 1. W. Mao, "Modern Cryptography Theory and Practice", Pearson Education, Second Edition, 2007.
- 2. Charles P. Pfleeger, Shari Lawrence Pfleeger Security in computing Third Edition Prentice Hall of India, 2006

### **E-REFERENCES**

1. NPTEL, Cryptography and Network Security, Dr.Debdeep Mukhopadhyay, IIT Kharagpur

# Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	2	3	0	1	2	0	1	0	1	1	1	2
CO 2	3	2	1	3	0	1	2	0	1	0	1	1	2	2
CO 3	3	2	1	3	0	1	2	1	1	0	1	1	2	2
CO 4	3	2	1	2	0	1	2	1	1	0	1	1	2	2
CO 5	3	2	1	2	0	1	2	0	1	0	1	1	2	1
Total	15	10	6	13	0	5	10	2	5	0	5	5	11	11
Scaled Value	3	2	2	3	0	1	2	1	1	0	1	1	3	3

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

a					¥ 7¥													
	neste			:	VI													
		Code		:		CSE												
		Nam		:			t Mana											
Pre	requ	iisite		:	So	ftwa	re Engi	ineering	3	1				•		,	T	
	L	T	P		C			C	P	A				L	T	P	H	
	3	0	0		3			3	0	0				3	0	0	3	
Cou	ırse	Obje	ecti	ves														
	t	echn	iqu	es.			ents, to						oject	Plan	ning	and	Eva	luation
		Outco ble t		e: A	fter	the	completi	ion of th	e cour	se, stuc	der	nts		omai r P o			Lev	vel
СО	C	level	opii	ng s	softw	are								nitiv			lersta	
СО	S		are	pro			obtain odels ar	-		_			Cog	nitiv	e	Und	lersta	and
СО	r	rojec	ct a	ctiv	ities		imate th						Cog	nitiv	e	Und	lersta	and
СО	r		et p	rog	ress	and	ckpoints l trackir les.							nitiv		Und	lersta	and
СО	ŗ		et n			_	extensi		_				Cog	nitiv	e	Und	lersta	and
CO		SE C		TE	NT								<u> </u>			<u>I</u>		
UN	IT I	F	Proj	ject	Eva	ılua	tion and	d Projec	ct Plan	ning								9
		F b	Cate Prin Dene Man	goi cipl fit age	rizati les – eva emen	on - Ma luat it — l	oftware of Soft anageme ion tec Stepwise	ware Prent Cont hnology Projec	rojects trol – I – R t Plann	– Set Project isk ev ing.	tin p	ng obje ortfolie	ectives Mar	s – I nagen	Mana nent	igeme – Co	ent st-	
UN	IT II						le and e											9
		M C F	App Meth of S Full	lica hod oftv fun	ntion   – E ware   oction	dev Extre est n po	ss and Prelopment eme Programation ints – C	nt – Agi grammii – Effor OCOM	ile met ng– Ma t and C O II – a	hods – anaging Cost es a Paran	D g i tin	ynami interact nation	e Syst ive pr techni	em I roces iques	Devel ses – – C	opme - Basi OSM	ent ics	
UN	IT II						ng and											9
		S N (	Sequ Netv CR Man	uene wor M) age	cing k Mo met emen	and adel hod at –	Activity d sched – Forw – Risk – PER' eation of	uling — ard Pass identifi T techn	Netwas & Bacation	ork Pl ckward – Asso Mont	lar d F ess e	nning n Pass tec sment - Carlo	nodel hniqu – Risl simula	s – .es – « Pla	Forn Critic nning	nulati cal pa g –Ri	ng ath sk	

UNIT IV	Project Management and Control					9
	Framework for Management and control – Collection o	of data	ı – Vis	sualizi	ng	
	progress – Cost monitoring – Earned Value Analysis –	Prior	itizing			
	Monitoring – Project tracking – Change control – Softv			uratio	n	
	Management – Managing contracts – Contract Manager	ment.				
UNIT V	Staffing in Software Projects					9
	Managing people – Organizational behavior – Beselection – Motivation – The Oldham – Hackman job Stress – Health and Safety – Ethical and Professional cteams – Decision making – Organizational structure Virtual teams – Communications genres – Com Leadership.	chara concei res –	cterist rns – V - Disp	ic mo Worki bersed	del – ng in and	
			L	T	P	Total
			45	0	0	45

1. Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – Fifth Edition, Tata McGraw Hill, New Delhi, 2012.

### **REFERENCE BOOKS**

- 1. Robert K. Wysocki —Effective Software Project Management Wiley Publication, 2011.
- 2. Walker Royce: —Software Project Management- Addison-Wesley, 1998.
- 3. Gopalaswamy Ramesh, —Managing Global Software Projects McGraw Hill Education (India), Fourteenth Reprint 2013

### **E REFERENCES**

https://nptel.ac.in/courses/110/104/110104073/

Mapping of	of C	O witl	h PO	's											
		PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1		1	1	1	1	1	0	0	1	1	1	0	1	1	1
CO 2		1	2	1	1	1	0	0	1	1	2	0	1	1	1
CO 3		2	2	2	2	1	0	0	1	1	1	0	1	1	1
CO 4		1	2	2	2	2	0	0	1	1	2	0	1	2	1
CO 5		2	2	3	2	2	0	0	1	1	2	0	1	2	1
Total		7	9	9	8	7	0	0	5	5	8	0	5	7	5
Scaled Va	lue	2	3	2	2	2	0	0	1	1	2	0	1	2	1
Note:		To	tal	0		1-5	5	6-1	0	11-1	15				
	Sca val	aled ue		0		1		2		3					
		Relati	ion	No		Lov	V	Medi	um	Hig	;h				

Cou	rse C	ode		:	X	CSO	E1										
Cou	rse N	ame		:	W	eb I	esign I										
Prer	equi	site		:	Ni	l											
	L	T	P	(	C			C	P	A			L	T	P	Н	
	3	0	0		3			3	0	0			3	0	0	3	
Cou	rse C	bject	ives														
•	• T	o def	ine	the	basi	cs o	f web de	sign and l	HTML								
•	• T	o lea	rn th	ne b	asic	con	cepts of	CSS									
•	• T	o ma	ke o	wn	wel	opag	e and ho	w to host	website	2							
Cour	se O	utcom	ne: A	fter	the	com	oletion of	the course	e, studen	ts will be	e able to	De	omain			Le	vel
CO1	I	Defin	e the	e ba	sics	in v	eb desig	gn				Cogn	itive		Und	ersta	nd
CO2	1	/isua	lize	the	bas	ic co	ncept of	HTML				Cogn	itive		Und	ersta	nd
CO3	I	Recog	gniz	e th	e ele	emei	nts of H7	TML				Cogn	itive		App	ly	
CO4	I	ntro	duce	e the	e ba	sic c	oncepts	of CSS				Cogn	itive		App	oly	
CO5	Ι	Devel	op t	he c	conc	ept	of web p	ublishing				Cogn	itive		Ana	lyze	
cot	JRSI	E COI	NTE	NT								•		•			
TINIT	тт	T	) A C	TCS	' IN	T XX/T	B DESI	CN									9
UNI	11	L	AS	ICS	) 111	1 44 1	D DESI	IGN									9
								t-What is	World	Wide V	Web-W	hy crea	te a v	veb s	site-V	Veb	
UNI	T II						ON TO										9
		,	Wha	t is	н	тмі	-HTMI	Docum	ents_Ra	eic etru	cture (	of an I	тмі	do	cum	ent_	
		(		ting	an	НТ		cument-M									l
UNI	T III						F HTM	L									9
		I	ntro	duc	tion	to e	lements	of HTMI	L-Work	ing with	Text-V	Vorking	with	Lists	s, Tal	bles	<del></del>
								ith Hype		•		_					ı
						ontr	•	<i>J</i> I	,	<i>5</i>							ı
UNI	T IV	I	NT	RO	DU	CTI	ON TO	CASCAI	OING S	TYLE	SHEET	TS.					9
		(	Conc	cept	s of	CS	S-Creating	ng Style	Sheet-C	SS Prop	erties-0	CSS Sty	ling (	Bacl	kgrou	ınd,	
				_				ng Fonts		_		_	_		_		ı
		V	Vorl	king	g wi	th L	sts and	tables-Cla	ass Id ar	nd Class	-Box M	Iodel(In	trodu	ction	, Bo	rder	ı
		F	rop	ertie	es,	Pad	ding P	roperties,	Margi	in Prop	erties)-	CSS A	dvance	ed(G	roup	ing,	ı
			Dime	ensi	on,	Dis	olay, Po	sitioning,	Floatin	ıg, Aligi	n, Pseu	do clas	s, Nav	vigat	ion 1	Bar,	ı
		I	mag	ge S	<u>prite</u>	es, A	ttribute	sector)-C	SS Colo	r-Creati	ng page	e Layou	t and	Site	<u>Desi</u> g	gns.	
UNI	TV							WEB PU							_	_	9
				_				aving the		_				ting	web	site	
							<u> </u>					Ĭ	L	7	Г	P	Total
													45	(	0	0	45

- 1. Eric Meyer on CSS: Mastering the Language of Web Design. 2003. Eric Meyer. New Riders Publishing.
- 2. A. Thomas Powell, "The complete reference HTML and CSS (Covers HTML5)" McGraw Hill, Fifth Edition, 2010.
- 3. Kogent Learning Solutions Inc. "HTML5 Black Book: Covers CSS3, JavaScript, XML, XHTML, Ajax, PHP and Jquery Black Book", Dreamtech Press, 2011.
- 4. Kogent Learning Solutions Inc "Web Technologies: HTML, JavaScript, PHP, Java, JSP, ASP.Net, XML and AJAX, Black Book", Dreamtech Press, 2009.

#### REFERENCE BOOKS

- 1. Build Your Own Web Site the Right Way Using HTML & CSS, 2nd Edition by Ian Lloyd.
- 2. The Essential Guide to CSS and HTML Web Design (Essentials) by Craig Grannel.

#### **E-REFERENCES**

1. https://freevideolectures.com/course/3140/internet-technologies

<b>Mapping</b>	of $CO$	with	PO's
MIADDINE	$\mathbf{u}$	WILLI	103

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PS02
CO 1	3	3	3	3	3	0	2	2	1	0	0	2	3	3
CO 2	3	3	3	3	3	0	2	2	1	0	0	2	3	3
CO 3	2	2	2	3	3	0	2	2	1	0	0	1	2	2
CO 4	2	2	2	2	0	0	0	0	0	0	0	0	0	0
CO 5	3	2	3	3	3	0	2	2	2	0	0	0	3	2
Total	13	12	13	14	12	0	8	8	5	0	0	5	11	10
Scaled Value	3	3	3	3	3	0	2	2	1	0	0	1	3	2

	· · · · ·		'		1	1	·	1	
Note:	Total	0	1-5	6-10	11-15				
	Scaled value	0	1	2	3				
	Relation	No	Low	Medium	High				

Cou	urse Code : XCSOE2																
Course Name : Web Design - II																	
Pre	requi	site		:	N	IL											
	L	T	P	•	C			C	P	A			L	T	P	Н	
	3	0	0		3			3	0	0			3	0	0	3	
Cou	Course Objectives																

- To gain the web design knowledge, skills and project-based creativity is needed for entry into web design and development careers.
- To learn to work as freelancers in web design or prepare to become employed at a website design firm

Course able to	Outcome: After the completion of the course, students will be	Domain C or P or A	Level
CO1	<b>Describe</b> the Advanced CSS for Webdesign.	Cognitive	Remember
CO2	Describe and Explain the XML.	Cognitive	Understand
CO3	<b>Describe</b> the Java Script for Web design.	Cognitive	Remember
CO4	Describe and Explain jQuery	Cognitive	Understand
CO5	Explain the Bootstrap and describe Canva	Cognitive	Understand

UNIT I	INTRODUCTION TO ADVANCED CSS	9
	CSS Advanced(Grouping, Dimension, Display, Positioning, Floating, Align,Pseudo	
	class, Navigation Bar, Image Sprites, Attribute sector)- CSS Color- Creating Page	
	Layout and Site designs	
UNIT II	INTRODUCTION TO XML	9
	XML: Introduction, XML and SGML, Design goals of XML, Application of XML:	
	Document Application, Data Application, XML Software: Browsers, Editors, Parsers,	
	Processor, XML tags, Structure of XML documents, XML element tags, Element	
	markup, Attribute markup, HTML document, adding scripts, Data types in XML,	
	XML Namespaces, working with text and font: Working with DTD: Introduction,	
	HTML and DTD, Benefits of the DTD, Structure of DTD, Declarations of variable in	
	DTD: Element name, Occurrence indicators, Connectors.	
UNIT III	INTRODUCTION TO JAVA SCRIPT	9
	Basics, Variables, Operators, Data Types etc, Control Structures - If-Else, while, Do	
	while, For Loops, Logic Building Sessions, Creating Functions	
	Inbuilt Functions - Dates, Strings, Numerics etc, Arrays, Objects, Events, Statements,	
	Regular Expressions, HTML DOM and Alert box	
UNIT IV	INTRODUCTION TO jQUERY	9
	Basics, Effects, DOM Parsing, Form Validations, Events, functions, Creating Images,	

	Dynamic CSS Programming, Hide and show element									
UNIT V	INTRODUCTION TO BOOTSTRAP and CANVA					9				
	Basics, Grid system, Tables, Images, Button, Font Awesome & Glyphic Icons, Pagination, Forms, Menu & Navigation Bar, Bootstrap Modals - (pop ups), Creating Responsive Websites in Bootstrap, Creating Website Images using CANVA									
		L	T	P	To	tal				
	45 0 0 45									

- 1. Steven M. Schafer,"HTML, XHTML, and CSS Bible", Wiley India, fifth Edition, 2010.
- 2. John Duckett "Beginning HTML, XHTML, CSS, and JavaScript", Wiley India

### REFERENCE BOOKS

1. HTML5 Black Box Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP, jQuery) 2Ed. January 2016 by <u>DT Editorial Services</u>

### **E-REFERENCES**

1. https://freevideolectures.com/course/3140/internet-technologies

### Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PS02
CO 1	1	3	3	1	3	0	1	0	2	2	2	2	2	1
CO 2	2	3	3	2	3	0	1	0	3	2	1	1	3	2
CO 3	2	3	3	2	3	0	1	0	3	2	1	1	3	2
CO 4	3	2	2	1	2	0	1	0	3	2	0	1	3	2
CO 5	3	2	2	1	2	0	1	0	3	2	0	1	3	2
Total	11	13	13	7	13	0	5	0	14	10	4	6	14	9
Scaled Value	3	3	3	2	3	0	1	0	3	2	1	2	3	2

TAT 4	
Nota:	
TIULE.	

Total	0	1-5	6-10	11-15		
Scaled value	0	1	2	3		
Relation	No	Low	Medium	High		

Cou	ırse (	Code		:	X	CSO	E3										
Cou	Course Name : Multimedia Design and Development																
Pre	requ	isite		:	N	IL											
	L	T	P		C			С	P	A			L	T	P	H	
	3	0	0		3			3	0	0			3	0	0	3	

# **Course Objectives**

- To impart the basic concepts of elements of multimedia.
- To understand basic concepts about multimedia and its applications
- Effectively incorporate image, audio, animation, and text media into a multimedia

Course be able	e Outcome: After the completion of the course, students will to	Domain	Level
CO1	Describe the multimedia applications.	Cognitive	Remember
CO2	Describe and Explain the Digital Media.	Cognitive	Understand
CO3	Describe the graphics and image.	Cognitive	Remember
CO4	Describe and Explain audio technology	Cognitive	Understand
CO5	Explain the video technology and describe animation	Cognitive	Understand

UNIT I	INTRODUCTION	9
	Multimedia- Elements of Multimedia, Features of Multimedia system, Applications of Multimedia. Multimedia file formats. Multimedia applications in business, education and entertainment.	
UNIT II	DIGITAL MEDIA	9
	Media and Digital Technologies- Digital Environment, New and Old Media, Communication revolution and new media – Networked society – New media and public sphere. Analogue and digital information, Digital Media- characteristics of digital media, Forms of digital media. Emerging Technologies- Virtual reality, augment reality, Mixed reality.	
UNIT III	GRAPHICS AND IMAGE	9
	Color Models, Image file formats and how and where it is used, Morphing, Kinematics, tweening, Motion capture, modeling, special effects, and compositing, Video Conferencing, Web Streaming, Video Streaming, Internet Telephony.	
UNIT IV	SOUND / AUDIO	9
	Perception of sound, hearing sensitivity, frequency range, sound- wavelength, the speed of sound. measuring the sound, musical sounds, noise signal, dynamic range, pitch, harmonics-equalization reverberation time, Sound isolation and room acoustics- treatments- studio layout —room dimensions. The Basic set-up of	

	recording system; The production chain and responsibility phantom power, noise, choosing the right mike; Mixing Output devices; Audio formats and Publishing		-	•	-					
UNIT V VIDEO AND ANIMATION										
	Different types of video camera including Handy Camer Editing, Editing Equipment's and Consoles, Video Sign Lights - Types and Functions. Uses of Tripod- Types. meter. Other Useful Accessories. History of animation Principles of animation, 2D and 3D animation	al, Vid Clapbo	leo Foi ard- U	rmat, V Isage.	Video Light					
	L T P									
			45	0	0	45				

- 1. Paranjoy Guha Thakurta, Dr.M.ManzoorAlam, R Mansukhani, R Mnaqlcolm, Mohd Z Haque "Media in our Globalizing World", Genuine Publications and Media Pvt Ltd; First Edition edition, 2015.
- 2. Rajan Parekh "Principle of Multimedia" Tata McGraw Hill, New delhi, 2006
- 3. Multimedia Systems Design by Prabhat K. Andleigh and Kiran Thakrar-PHI publication ,1996
- 4. Multimedia systems by John F. Koegal Buford-Pearson Education. 2009
- 5. Fundamentals of multimedia by Ze-Nian Li and MS Drew. PHI EEE edition. 2008.

#### REFERENCE BOOKS

1. Jane Kirtley "Media Law Handbook", Bureau of International Information Programs United States Department of State, Published in 2010.

#### **E-REFERENCES**

2. .http://www.humber.ca/program/multimedia-design-and-development

### Mapping of CO with PO's

11 0		,												
	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	3	3	1	3	0	0	0	2	2	2	2	2	1
CO 2	2	3	3	2	3	0	0	0	3	3	1	1	3	2
CO 3	2	3	3	2	3	0	0	0	3	3	1	1	3	2
CO 4	3	2	2	1	2	0	0	0	3	3	1	1	3	2
CO 5	3	2	2	1	2	0	0	0	3	3	1	1	3	2
Total	11	13	13	7	13	0	0	0	14	14	6	6	14	9
Scaled Value	3	3	3	2	3	0	0	0	3	3	1	2	3	2

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

Cor	urse	Code	9	:	X	CSO	E4									
Course Name : Computer Installation and Troubleshooting																
Prerequisite :				:	N	il										
	L	T	P	1	C			C	P	A		L	T	P	Н	
	3	0	0		3			3	0	0		3	0	0	3	
Con	. maa (	hioo	4:													

#### **Course Objectives**

- Describe the functions of components is a computer system
- Perform installation, configuration, and upgrading of various peripheral devices
- Diagnose and troubleshoot problems with microcomputer peripherals.

Course able to	e Outcome: After the completion of the course, students will be	Domain	Level
CO1	<b>Define</b> and <b>describe</b> the mother board and Memories of computer system	Cognitive	Understand
CO2	<b>Define</b> and <b>explain</b> the basics and functionalities of keyboard, mouse and monitor. Identify the I/O ports and understand the functionalities of SMPS.	Cognitive	Understand
CO3	Organize the computer components, Explain the motherboard installation and operating system installation.	Cognitive	Understand
CO4	Analyze the problems in Personal computer, diagnose problem, <i>identify</i> the repair tools and troubleshoot the problems.	Cognitive	Analyze
CO5	Describe the Installation of Peripheral devices to the system, <i>Analyze</i> and troubleshoot the problem.	Cognitive	Analyze

UNIT I	UNDERSTANDING PC HARDWARE AND MEMORY DEVICES	9
	Understanding PC hardware-PC systems, PC configurations, the mother board-	
	functional block diagram, Processors, supports chips, I/O expansion slots.	
	Memory and Memory devices-BIOS, on board memory, floppy disk drive and	
	controller, hard disk drive and controller, CD-ROM disc and drive.	
UNIT II	I/O DEVICES, I/O PORTS AND SMPS	9
	Keyboard-operation, interface and signals, Mouse-operation, connection	
	signals, Monitor-video basics, Creating the screen image, display adapter	
	standards, monitor type and resolution, I/O ports-serial, parallel, USB, Fire	
	wire, game ports, SMPS-principles of operation, signals provided, power	
	supply form factors, power audit.	
UNIT III	PC INSTALLATION	9
	PC installation, installing the motherboard, devices installation, operating	
	system installation.	
UNIT IV	PC TROUBLE SHOOTING	9
	PC trouble shooting approach to troubleshooting, General diagnostic	
	techniques, diagnose trouble shooting and repair tools, and troubleshooting the	

	systems, troubleshooting the system drives.							
UNIT V	T V PERIPHERAL INSTALLATION AND TROUBLE SHOOTING							
	Peripheral installation and troubleshooting-Dot matrix printer jet printer, modem, trouble prevention-environment, power su		printe	r, ink				
		L	T	P	Total			
		45	0	0	45			

1. M.Radakrishnnan, D.Balasubramanian," Computer Installation And Trouble Shooting",ISTE-Learning materials center, April 2001,ISBN 81-88057-00-2.

### REFERENCE BOOKS

- 1. Balasubramanian, "Computer Installation And Servicing" Tata McGraw Hill Education Private Limited,2nd Edition.
- 2. Mark Minasi "The Complete PC Upgrade & Maintenance Guide" John Wiley & Sons; 11th Revised edition.

### **E-REFERENCES**

https://archive.nptel.ac.in/courses/106/106/106106092/

Mapping	of	CO	with	PO	's
---------	----	----	------	----	----

	P01	P02	PO 3	P0 4	PO 5	P0 6	P0 7	P0 8	P0 9	PO 10	PO 11	PO 12	PS01	PS02
CO 1	3	0	2	0	0	0	0	0	1	1	0	1	2	2
CO 2	0	1	2	0	0	0	0	0	0	1	0	1	2	2
CO 3	2	1	1	2	3	1	0	0	0	1	0	0	2	1
CO 4	2	1	2	0	3	0	0	0	0	1	0	1	2	1
CO 5	2	1	0	0	2	0	0	0	1	1	0	2	2	1
Total	9	4	7	2	8	1	0	0	2	5	0	5	10	7
Scaled Value	2	1	2	1	3	3	0	0	1	1	0	1	2	1

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		