DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Periyar Nagar, Vallam Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660

Email: headcse@pmu.edu Web: www.pmu.edu

CURRICULUM & SYLLABUS

FOR

B.TECH COMPUTER SCIENCE AND ENGINEERING

(Based on Outcome Based Education)

Regulation 2018 Revision I

(I - VIII Semester)

TABLE OF CONTENTS

S.No	Contents	Page No.
1	Institute Vision and Mission	3
2	Department Vision and Mission	4
3	Programme Educational Objectives (PEO)	5
4	Programme Outcome (PO)	6
5	Graduate Attributes	7
6	B. Tech. (Computer Science and Engineering) – Curriculum	9
7	B. Tech. (Computer Science and Engineering) – Syllabus	14

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE AND TECHNOLOGY

Our University is committed to the following Vision, Mission and core values, which guide us in carrying out our Civil Engineering Department mission and realizing our vision:

IN	IST	rtr	ГT	רז	ГT	a	NI		71	CI	a	N	T
- 117	ы		w	, ,	ш	v	IN	٠,	/ I	ы	v	I	

To be a University of global dynamism with excellence in knowledge and innovation ensuring social responsibility for creating an egalitarian society.

	INSTITUTION MISSION								
UM1	Offering well balanced programmes with scholarly faculty and state-of-art facilities to impart high level of knowledge.								
UM2	Providing student - centered education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.								
UM3	Involving progressive and meaningful research with concern for sustainable development.								
UM4	Enabling the students to acquire the skills for global competencies.								
UM5	Inculcating Universal values, Self respect, Gender equality, Dignity and Ethics.								

INSTITUTION CORE VALUES

- Student centric vocation
- Academic excellence
- · Social Justice, equity, equality, diversity, empowerment, sustainability
- Skills and use of technology for global competency.
- Continual improvement
- Leadership qualities.
- Societal needs
- Learning, a life long process
- · Team work
- Entrepreneurship for men and women
- Rural development
- Basic, Societal, and applied research on Energy, Environment, and Empowerment.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT VISION

To Produce Intellectuals who can relate theory and practice, familiar with common themes and apply concepts of Computer Science and Engineering for Research and Societal development. DEPARTMENT MISSION DM1 To offer UG, PG, Ph.D. programme with state of art facilities in the field of Computer Science and Engineering

To prepare the students with good ethical attitude and an ability to relate

To promote significant research in cutting edge Information Communication

To prepare the students become globally competent by enhancing their skills to

DM2

DM3

DM4

Table: 1 Mapping of University Mission (UM) and Department Mission (DM)

work in IT Industries and R & D organizations

engineering issues to broader social context

technologies with environmental consciousness

	UM 1	UM 2	UM 3	UM 4	UM 5
DM 1	3	3	1	1	1
DM 2	2	3	2	3	1
DM 3	1	2	1	3	3
DM 4	1	1	3	1	1
	7	9	7	8	6

1-Low 2- Medium 3 - High

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

Based on the mission of the department, the programme educational objectives is formulated as

PEO1	Graduates will attain the expertise of analyzing and specifying the requirements for
	any computing system as well as capable of modeling, designing, implementing and
	verifying a computing system to meet specified requirements using contemporary
	tools
PEO2	Graduates will possess diversified professional skills for successful career.
PEO3	Graduates of the programme will have the competencies for communicating,
	planning, coordinating, organizing, decision making and leading a team
PEO4	Graduates of the programme will have knowledge of professional, interpersonal
	and ethical responsibility and will contribute to society through active research.

Mapping of Program Educational Objectives (PEOs) with Department Mission (DM)

	DM 1	DM 2	DM3	DM 4
PEO 1	3	3	2	3
PEO 2	2	3	1	1
PEO 3	2	3	2	3
PEO 4	2	2	3	1
	9	11	8	8

1- Low 2 - Medium

PROGRAMME OUTCOME (PO)

At the time of graduation, competency of the student is measured through the attainment of programme outcomes. The quantification of programme outcomes attainment is measured through the assessment of established course outcomes for each subject.

	PROGRAM OUTCOMES
PO 1	an ability to apply knowledge of computing and mathematics appropriate to the discipline.
PO 2	an ability to analyze a problem, interpret data, and define the computing system requirements which would be appropriate to the solution.
PO 3	an ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
PO 4	an ability to apply creativity in the design of systems which would help to investigate the complex problem and provide software solution.
PO 5	an ability to use the computing techniques, skills, and modern system tools necessary for practice as a CSE professional
PO 6	an ability to analyze the local and global impact of computing on individuals, organizations, and society
PO 7	an ability to develop and use the software systems within realistic constraints environmental, health and safety, manufacturability, and sustainability considerations
PO 8	an ability in an understanding of professional, ethical, legal, security and social issues and responsibilities
PO 9	an ability to function effectively on teams and individually to accomplish a common goal
PO 10	an ability to communicate effectively with a range of audiences by written and oral
PO 11	ability to plan, organize and follow best practices and standards so that the project is completed as successfully by meeting performance, quality at CMM level, budget and time
PO 12	an ability to engage in Lifelong learning and continuing professional development
	PROGRAM SPECIFIC OUTCOME
PSO1	ability to employ latest computer languages, environments and platforms for solving problems in the areas of emerging communication technologies.
PSO2	ability to use knowledge in data analytics and mining for industrial problems

GRADUATE ATTRIBUTES

- 1. **Knowledge base for Engineering:** Demonstrate competence in mathematics, natural sciences, engineering fundamentals and specialized engineering knowledge appropriate to the programme.
- 2. **Analytical Skills:** Identify, formulate, analyze and solve diverse engineering problems.
- 3. **Design:** Solution for complicated open-ended engineering problems and design the components with appropriate standards to meet specified needs with proper attention to public health, safety, environment and society.
- 4. **Experimental Investigation:** Technical skills to conduct investigation, interpretation of observed data and provide solution for multifaceted problems.
- 5. **Modern Engineering tools usage**: Acquire, select, manipulate relevant techniques, resources and advanced engineering ICT tools to operate simple to complex engineering activities.
- 6. **Impact of engineering on society:** Provide a product / project for use by the public towards their health, welfare, safety and legal issues to serve the society effectively.
- 7. **Environment and Sustainability:** Design eco-friendly and sustainable products in demonstrating the technology development to meet present and future needs.
- 8. **High Ethical Standards:** Practice ethical codes and standards endorsed by professional engineers.
- 9. **Leadership and team work:** Perform as an individual and as a leader in diverse teams and in multi-disciplinary scenarios.
- 10. **Communication Skills:** Professional communication with the society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.
- 11. Project management and Finance: Appropriate in incorporating finance and business practices including project, risk and change management in the practice of engineering by understanding their limitations.
- 12. **Life-long learners:** Update the technical needs in a challenging world in equipping themselves to maintain their competence.

Table : 3 Mapping of Program Educational Objectives (PEOs) with Program Outcomes (POs)

P0 →	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO 2
PEO 1	3	2	2	1	1	2	1	0	1	0	2	1	3	3
PEO 2	1	3	2	3	2	1	1	2	0	2	1	1	3	2
PEO 3	0	1	3	2	3	2	2	1	1	2	1	2	1	1
PEO 4	0	1	2	2	0	1	3	1	1	1	1	1	1	1
	4	7	9	8	6	6	7	4	3	5	5	5	8	7

1 - Low

2 - Medium

3 - High

Table :4 Mapping of Program Outcomes (POs) with Graduate Attributes (GAs)

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA 12
P01	3	2	2	1	1	2	1	1	1	2	2	1
P02	2	2	3	2	1	2	1	1	2	1	1	2
P03	2	2	2	3	3	1	2	1	1	2	1	2
P04	2	2	3	3	1	2	1	1	2	2	1	2
P05	2	1	3	2	3	3	3	2	2	3	1	2
P06	3	2	2	1	1	2	1	1	1	2	2	1
P07	2	2	1	1	2	3	2	3	2	1	2	2
P08	2	1	1	2	1	3	2	2	2	3	1	2
PO 9	2	1	1	2	3	3	2	2	3	3	1	3
P010	2	2	1	1	2	3	2	3	2	1	2	2
P011	2	1	2	3	2	3	1	3	3	2	1	3
P012	2	2	2	3	3	1	2	1	1	2	1	2
PSO1	2	1	2	2	1	3	2	2	2	3	1	2
PSO2	2	2	2	2	3	1	2	1	1	2	1	2

1- Slightly

2 - Supportive

3 - Highly related

CURRICULUM

Regulation 2018 Revision 1

SEMESTER I

Sub. Code	Name of the Course	L	T	P	С	Н
XMA101	Calculus and Linear Algebra	3	1	0	4	4
XCP102	Programming for Problem Solving	3	0	4	5	7
XGS103	English	2	0	2	3	4
XAP104	Applied Chemistry for Engineers	3	1	3	5	7
XWS105	Workshop Practices	1	0	4	3	5
	Total				20	27

SEMESTER II

Sub. Code	Name of the Course	L	T	P	С	Н
XMA201	Calculus, Ordinary Differential Equations	3	1	0	4	4
	And Complex Variable	3	1	U	4	4
XES202	Environmental Science	3	0	0	0	3
XBE203	Electrical And Electronics Engineering	3	1	1	5	6
	Systems		1			O
XAP204	Applied Physics for Engineers	3	1	2	6	7
XEG 205	Engineering Graphics	2	0	1	3	4
	Total				18	24

SEMESTER III

Sub. Code	Name of the Course	L	Т	P	С	Н
XPS301	Probability and Statistics	3	1	0	4	4
XCS302	Analog & Digital Electronic Circuits	3	0	2	5	7
XCS303	Data Structures & Algorithms	3	0	2	5	7
XCS304	Object oriented Programming	2	0	2	4	6
XES306	Entrepreneurship Development	2	0	0	2	2
XCI307	Constitution of India	3	0	0	0	3
	Total				20	29

SEMESTER IV

Sub. Code	Name of the Course	L	T	P	С	Н
XCS401	Discrete Mathematics	3	1	0	4	4
XCS402	Computer Organization & Architecture	3	0	2	5	7
XCS403	Operating Systems	3	0	2	5	7
XCS404	Design & Analysis of Algorithms	3	0	2	5	6
XUM405	Total Quality Management	3	0	0	3	3
	Total				22	28

SEMESTER V

Sub. Code	Name of the Course	L	Т	P	С	Н
XCS501	Signals & Systems	3	0	0	3	3
XCS502	Formal Language & Automata Theory	3	0	0	3	3
XCS503	Database Management Systems	3	0	2	5	7
XCS504	Software Engineering	3	0	2	5	7
XCS505	IT Workshop	1	0	1	2	3
XCSE**	Elective-I	3	0	0	3	3
X**OE*	Open Elective – I	3	0	0	3	3
XCS508	In-Plant Training – II	-	-	-	0	
XCSM01	Programming with Python	1	0	0	0	1
	Total				24	30

SEMESTER VI

Sub. Code	Name of the Course	L	T	P	С	Н
XCS601	Complier Design	3	0	2	5	7
XCS602	Computer Networks	3	0	2	5	7
XCSE**	Elective- II	3	0	0	3	3
XCSE**	Elective- III	3	0	0	3	3
X**0E*	Open Elective –II	3	0	0	3	3
XUM606	Economics for Engineers	3	0	0	3	3
XCSM02	Web designing	1	0	0	0	1
	Total				22	26

SEMESTER VII

Sub. Code	Name of the Course	L	T	P	С	Н
XCSOE3	Open Elective –III	3	0	0	3	3
XCSE**	Elective-IV	3	0	0	3	3
XCSE**	Elective-V	3	0	0	3	3
XUM704	Biology	3	0	0	0	3
XUM705	Disaster Management	3	0	0	0	3
XCS706	Project – I	0	0	12	6	0
XCS707	In plant Training - III	0	0	1	1	0
XCSM03	R Programming	1	0	0	0	1
	Total				16	16

SEMESTER VIII

Sub. Code	Name of the Course	L	T	P	С	Н
XUM801	Cyber Security	3	0	0	3	3
XCSOE4	Open Elective -IV	3	0	0	3	3
XCSOE5	Open Elective -V	3	0	0	3	3
XCS804	Project – II	0	0	12	6	0
Total			15	9		

TOTAL CREDIT: 157

LIST OF PROFESSIONAL ELECTIVES

[PEC-CSE]

The Professional Elective Courses are offered from the following Specialized Threads:

No.	Threads
I.	Theory and Algorithms
II.	Applications
III.	Data Science and Machine Intelligence
IV.	Systems

PROFESSIONAL ELECTIVES GROUP – I V SEMESTER

Sub. Code	Name of the Course	L	T	P	С	Н
XCSE51	Artificial Intelligence	3	0	0	3	3
XCSE52	Graph Theory	3	0	0	3	3
XCSE53	Data Communication	3	0	0	3	3
XCSE54	Information Theory and Coding	3	0	0	3	3

PROFESSIONAL ELECTIVES GROUP – II VI SEMESTER

Sub. Code	Name of the Course	L	T	P	С	Н
XCSE61	Web and Internet Technology	3	0	0	3	3
XCSE62	Queuing Theory and Modelling	3	0	0	3	3
XCSE63	Distributed Systems	3	0	0	3	3
XCSE64	Cryptography and Network Security	3	0	0	3	3

PROFESSIONAL ELECTIVES GROUP – III VI SEMESTER

Sub. Code	Name of the Course	L	Т	P	С	Н
XCSE65	Data Mining	3	0	0	3	3
XCSE66	Optimization Techniques	3	0	0	3	3
XCSE67	Multi Agent Intelligent Systems	3	0	0	3	3
XCSE68	Image processing	3	0	0	3	3
XCSE69	Context Aware Computing	3	0	0	3	3

PROFESSIONAL ELECTIVES GROUP – IV VII SEMESTER

Sub. Code	Name of the Course	L	T	P	С	Н
XCSE71	Information Retrieval	3	0	0	3	3
XCSE72	Cloud Computing	3	0	0	3	3
XCSE73	Fault Tolerant Computing	3	0	0	3	3
XCSE74	Computer Graphics	3	0	0	3	3
XCSE75	Advanced Operating System	3	0	0	3	3
XCSE76	Storage technologies	3	0	0	3	3
XCSE77	Virtualization	3	0	0	3	3

PROFESSIONAL ELECTIVES GROUP - V VII SEMESTER

Sub. Code	Name of the Course	L	T	P	С	Н
XCSE78	Machine Learning	3	0	0	3	3
XCSE79	Adhoc and Sensor Networks	3	0	0	3	3
XCSE7A	Embedded Systems	3	0	0	3	3
XCSE7B	Fog Computing	3	0	0	3	3
XCSE7C	Quantum Computing	3	0	0	3	3
XCSE7D	Parallel and Distributed algorithms	3	0	0	3	3
XCSE7E	Electronic Design Automation	3	0	0	3	3

OPEN ELECTIVES

Sub. Code	Name of the Course	L	T	P	С	Н
XCSOE1	Web Designing	3	0	0	3	3
XCSOE2	Multimedia Design and Development	3	0	0	3	3
XCSOE3	Digital Marketing	3	0	0	3	3
XCSOE4	Project Management	3	0	0	3	3
XCSOE5	Data Management	3	0	0	3	3

SYLLABUS

COU	RSE C	0.5 0.5 EQUISITE: Differentiation and Integration		L	Т	P	С	
COU	RSE N	AME	CALCULUS AND LINEAR ALGEBRA		3	1	0	4
С	P				L	Т	P	Н
3.0	0.5	0.5			3	1	0	4
PRE	REQUISITE: Differentiation and Integration		DOMAIN		LEV	EL		
CO1			<u> </u>	Cognitive)	1	embe	ering
CO2	sec	quence	es and series. Half range Fourier sine and	Cognitive Psychom r		App Rem Guid Resp	ering	
CO3			derivative of composite functions and unctions.Euler's theorem and Jacobian	Cognitive Psychom r		Rem Guid Resp	ering	
CO4	ex _] wi Dii	pansio thout o	the functions of two variables by Taylors n, by finding maxima and minima with and constraints using Lagrangian Method. aal derivatives, Gradient, Curl and ce.	Cognitive Affective)	Remembe Understar Receiving		ering nding
CO5	<u> </u>		Cognitive		Арр	lying		

Unit 1: Matrices	12

Linear Transformation - Eigen values and Eigen vectors - Properties of Eigen values and Eigen vectors - Cayley-Hamilton Theorem - Diagonalisation of Matrices - Real Matrices: Symmetric - Skew-Symmetric and Orthogonal Quadratic form - canonical form - Nature of Quadratic form and Transformation of Quadratic form to Canonical form (Orthogonal only).

Unit 2: Sequences and series

12

Sequences: Definition and examples-Series: Types and convergence- Series of positive terms – Tests of convergence: comparison test, Integral test and D'Alembert's ratio test-. Fourier series: Half range sine and cosine series- Parseval's Theorem.

Unit 3: Multivariable Calculus: Partial Differentiation

12

Limits and continuity –Partial differentiation – Total Derivative – Partial differentiation of Composite Functions: Change of Variables – Differentiation of an Implicit Function - Euler's Theorem- Jacobian.

Unit 4: Multivariable Calculus: Maxima and Minima and Vector Calculus

12

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers – Directional Derivatives - Gradient, Divergence and Curl.

Unit 5: Differential and Integral Calculus

12

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

LECTURE	TUTORIAL	TOTAL
45	15	60

Text Books:

- 1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. **(Unit-2).**
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. **(Unit-5).**

Reference Books:

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", $9^{\rm th}$ Edition, Pearson, Reprint, 2002.
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
- 3. D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.
- 4. Erwin kreyszig, "Advanced Engineering Mathematics", 9^{th} Edition, John Wiley & Sons, 2006.

Cos Versus GA mapping

Table 1: Mapping of Cos with GAs:

							GA					
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	2	0	0	2	0	0	0	0	1	0	2
CO 2	3	1	0	0	0	0	0	0	0	1	0	1
CO 3	3	1	0	0	0	0	0	0	0	1	0	1
CO 4	3	2	0	0	0	0	0	0	0	1	0	1
CO 5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled Value	3	2	0	0	1	0	0	0	0	1	0	2

							PO						PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 2	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 3	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 4	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 5	3	2	1	1	2	1	0	0	0	0	0	1	1	1
Total	15	10	5	5	10	5	0	0	0	0	0	5	5	5
Scaled Value	3	2	1	1	2	1	0	0	0	0	0	1	1	1

 $\hbox{\bf 1-Low relation , 2-Medium relation , 3-High relation}\\$

COU	RSE	CODE	XCP102		L	Т	P	С
COU	RSE	NAME	PROGRAMMING FOR PROBLEM SOLVING		3	0	2	5
С	P	A			L		P	Н
3.2	1.8	0.0			3	0	3	6
cou	RSE (OUTCO	ME			I	L	
				L	evel		Domaii	n
CO1	-	•	ogramming fundamentals and <i>Solve</i> simple using I/O statements	_	iembe erstar ly		Cognitive Psychological Psycho	
CO2	-	•	ntax and <i>write simple programs</i> using ructures and arrays	Remember Understand Apply			Cognitive Psychol	
CO3		<i>plain</i> and	nd <i>write simple programs</i> using functions ers		erstan	ıd	Cognitive Psychological Cognit	
CO4	O4 Explain and write simple programs using structures and unions		Und App Ana	•	ıd	Cognitive Psychol		
CO5	Explain and write simple programs using files and Build simple projects	_	nember erstand		Cognitive Psychol			

COURSE	CONTENT	Hours					
UNIT I	PROGRAMMING FUNDAMENTALS AND INPUT / OUTPUT STATEMENTS						
	Theory Introduction to components of a computer system, Program – Flowchart – Pseudo code – Software – Introduction to C language – Character set – Tokens: Identifiers, Keywords, Constants, and Operators – sample program structure -Header files – Data Types-Variables - Output statements – Input statements. Practical 1. Program to display a simple picture using dots. 2. Program for addition of two numbers 3. Program to swap two numbers 4. Program to solve any mathematical formula.						
UNIT II	CONTROL STRUCTURE AND ARRAYS	9+9					
	Theory Control Structures – Conditional Control statements: Branching, Looping - Unconditional control structures: switch, break, continue, goto statements – Arrays: One Dimensional Array – Declaration – Initialization – Accessing Array Elements – Searching – Sorting – Two Dimensional arrays - Declaration – Initialization – Matrix Operations – Multi Dimensional Arrays - Declaration – Initialization. Storage classes: auto – extern – static. Strings: Basic operations on strings.						

	Practical						
	 Program to find great 	est of 3 number	ers using Branchin	g			
	Statements		1				
	2. Program to display di looping Statement	visible numbe	rs between n1 and	n2 using			
	3. Program to remove d	unlicate eleme	ent in an array				
	4. Program to perform s	-	_				
	5. Performing basic sort						
	Ğ						
UNIT III	FUNCTIONS AND POINTERS	S			9+9		
	Theory						
	Functions: Built in function						
	passing methods - Passing a using arrays and functions						
	operator - Pointer express						
	function - Call by value - Ca						
	Pointers in self-referenti	al structures	s-Notion of lin	ked list(no			
	implementation). Practical						
	1. Program to find factor	rial of a given i	numher using four	function			
	types.	riai oi a giveir	number using rour	Tunction			
	2. Programs using Recui	rsion such as F	inding Factorial, F	'ibonacci			
	series, Ackerman fund	•	k sort or Merge soi	' t			
	3. Programs using Point	ers					
UNIT IV	STRUCTURES AND UNIONS				9+9		
	Theory						
	,						
	Structures and Unions - Givi						
	Structures and Unions - Giving - Functions and structures -	Passing struct	ture to elements t	o functions -			
	Structures and Unions - Giving - Functions and structures - Passing entire function to	Passing struct	ture to elements t	o functions -			
	Structures and Unions - Giving - Functions and structures -	Passing struct	ture to elements t	o functions -			
	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union	Passing struct functions - An	ture to elements to crays of structure	functions - - Structure			
	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and variables	Passing struct functions - And display stude	ture to elements to crays of structure nt mark sheet Stru	functions Structure			
	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and or	Passing struct functions - And display stude display studen	ture to elements to crays of structure nt mark sheet Stru	functions Structure			
	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and of Structures with array	Passing struct functions - An display stude display studen s	ture to elements to crays of structure nt mark sheet Structure	functions Structure actures with using			
	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and or	Passing struct functions - An display stude display studen s	ture to elements to crays of structure nt mark sheet Structure	functions Structure actures with using			
UNIT V	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and of Structures with array 3. Program to create linit	Passing struct functions - An display stude display studen s	ture to elements to crays of structure nt mark sheet Structure	functions Structure actures with using	9+9		
UNIT V	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and wariables 3. Program to create linit	Passing struct functions - An display stude display studen s ked list using S	ture to elements to crays of structure nt mark sheet Structure at marks of a class of Structures with po	o functions Structure uctures with using inters	9+9		
UNIT V	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and wariables 3. Program to create linits FILES Theory File management in C - File	Passing struct functions - And the display stude display studens ked list using Studen for the operation of the state of the operation of the following studens are stated as the operation of the operation of the stated are stated as the operation of the operation of the stated are stated as the operation of the	ture to elements to crays of structure of structure of mark sheet Structures of a class of the control of the c	o functions Structure uctures with using inters	9+9		
UNIT V	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and wariables 3. Program to create lining - FILES Theory File management in C - File opening a file - Closing a file	Passing struct functions - An display stude display studen s ked list using S le operation f - The getw an	ture to elements to crays of structure of structure of the mark sheet Structures with poor of the control of th	o functions Structure uctures with using inters	9+9		
UNIT V	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and wariables 3. Program to create linits FILES Theory File management in C - File	Passing struct functions - An display stude display studen s ked list using S le operation f - The getw an	ture to elements to crays of structure of structure of the mark sheet Structures with poor of the control of th	o functions Structure uctures with using inters	9+9		
UNIT V	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and wariables 3. Program to create lining - FILES Theory File management in C - File opening a file - Closing a file & fscanf functions - fseek functions - file - Passing - File file - Fi	Passing struct functions - An display studen display studen s ked list using S le operation f - The getw an	ture to elements to crays of structure on the mark sheet Structures with poor functions in C - I ad putw functions and Structures.	o functions Structure uctures with using inters Defining and - The fprintf	9+9		
UNIT V	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and wariables 3. Program to create lining - FILES Theory File management in C - File opening a file - Closing a file & fscanf functions - fseek functions - fseek functical	Passing struct functions - And the display students and the display students are selected as the display students are contents of one contents of cont	ture to elements to crays of structure on the mark sheet Structures of a class of the class of t	o functions Structure uctures with using inters Defining and - The fprintf	9+9		
UNITV	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and wariables 3. Program to create lining - Structures with array 3. Program to create lining - Closing a file was a f	Passing struct functions - And the display students of the display students where the display students of the display structure of the display students of the d	ture to elements to crays of structure of structure of structure of a class of a class of a class of a class of the control of	o functions Structure uctures with using inters Defining and - The fprintf e.	9+9		
UNIT V	Structures and Unions - Giving - Functions and structures - Passing entire function to within a structure and Union Practical 1. Program to read and wariables 2. Program to read and wariables 3. Program to create lining - Structures with array 3. Program to create lining - Closing a file was a f	Passing struct functions - And the display students and the display students are selected as the display students are contents of one contents of cont	ture to elements to crays of structure on the mark sheet Structures of a class of the class of t	o functions Structure uctures with using inters Defining and - The fprintf	9+9		

TEXT BOOKS / REFERENCE BOOKS

- 1. Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010
- 2. Yeshwant Kanethker, "Let us C", BPB Publications, 2008
- 3. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005
- 4. Behrouz A. Forouzan and Richard. F. Gilberg, "A Structured Programming Approach Using C", II Edition, Brooks–Cole Thomson Learning Publications, 2001
- 5. Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition, Pearson Education India, 2003
- 6. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017.

Table 1: COs Versus POs Mapping

							PO						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	0	0	3	0	0	0	0	0	2	3	2	0
CO2	3	2	0	0	2	0	0	0	0	0	2	3	2	0
CO3	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO4	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO5	2	2	1	0	2	0	0	1	0	2	2	2	2	0
Total	12	10	3	4	11	0	0	1	0	2	10	12	10	0
Scaled Value	3	2	1	1	3	0	0	1	0	1	2	3	2	0

$$1-5 \rightarrow 1$$
, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

1 - Low Relation, 2- Medium Relation, 3- High Relation

COUR			XGS103		L	Т	Р	SS	С
COUR	SE NA	ME	ENGLISH		2	0	1	0	3
PRE-I	REQUI	SITES (IF ANY)		L	Т	P	SS	Н
С	P	A			2	0	2	0	4
2.0	6.0	4.0							
Cours	e Out	comes:		Domair	1		Leve	1	
CO1	Abili	<i>ty</i> to red	call the meaning for proper usage	Cognitiv	re		Rem	embe	r
CO2	Appl	y the ted	chniques in sentence patterns	Cognitiv	⁄е		Appl	У	
CO3	Iden	<i>tify</i> the	common errors in sentences	Cognitiv	re		Rem	embe	r
CO4	Cons	<i>truct</i> th	e Nature and Style of sensible Writing	Cognitiv	⁄е		Crea	te	
CO5	Prac	<i>ticing</i> tl	ne writing skills	Psychor	not	UI ;	Guid Resp	ed onse	
CO6		<i>ping</i> the	ne techniques in learning sounds and	Psychor	not		Adap		
UNIT	I - Vo	cabular	y Building						9
2.1 Se 2.2 Us 2.3 Im 2.4 Cr 2.5 Or	ntence e of pl porta eating ganizi	e Structu hrases a nce of pr coherer ng princ	nd clauses in sentences roper punctuation nce ciples of paragraphs in documents						9
			vriting precisely						
			ng Common Errors in Writing						9
3.2 No	oun-pr splace ticles eposited	ed modif ions	greement						
UNIT	IV - N	ature ai	nd Style of sensible Writing						9
	efining assifyi ovidin	ng ng examp	oles or evidence ction and conclusion					I	

UNIT V - Writing Practices

9

- 5.1 Comprehension
- 5.2 Précis Writing
- 5.3 Essay Writing

Unit VI - Oral Communication

(This unit involves interactive practice sessions in Language Lab)

- Listening Comprehension
- 2 Pronunciation, Intonation, Stress and Rhythm
- Common Everyday Situations: Conversations and Dialogues
- Communication at Workplace
- 2 Interviews

Suggested Readings:

- (i) Practical English Usage. Michael Swan. OUP. 1995
- (ii) Remedial English Grammar. F.T. Wood. Macmillan. 2007
- (iii) On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006
- (v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011
- (vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press.

Table 1: Mapping of Cos with POs:

							PO						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled Value	2	0	0	0	0	0	2	0	1	0	0	0	0	0
	1	0	0	0	0	0	1	0	1	0	0	0	0	0

1-5=1, 6-10=2, 11-15=3

1- Low Relation, 2 - Medium Relation, 3- High Relation

COUF	RSE CO	DE	XAC104		L	Т	P	С
COUF	RSE NA	ME	APPLIED CHEMISTRY FOR ENGINEER	S	3	1	1	5
С	P	Α			L	Т	P	Н
3.5	1.0	0.5			3	1	2	6
PRER	REQUIS	SITES	Nil					
COUF	RSE OU	TCOM	ES	Domain	Lev	el		
CO1	energ electi	gy, elec co nega	periodic properties such as ionization etron affinity, oxidation states and attivity. Describe the various water meters like hardness and alkalinity.	Cognitive Psychomo tor		nemb ceptio		
CO2	1	-	ulk properties and processes using mic and kinetic considerations	Cognitive Psychomo tor	Und Set	ersta	nd	
CO3	terms	<i>iin and</i> s of molecul	Cognitive Psychomo tor Affective	Apply Mechanism Receive				
CO4	electi differ	romagn ent m	ture and Distinguish the ranges of the etic spectrum used for exciting tolecular energy levels in various c techniques	Cognitive Psychomo tor Affective	Remember Analyze Perception Respond			
CO5	1	ochemi	Illustrate and Discuss the stry and chemical reactions that are ynthesis of molecules.	Cognitive Psychomo tor	Remember Apply Mechanism			
UNIT	'-I I	PERIOD	DIC PROPERTIES AND WATER CHEMIS	ΓRY			8+3	3+6
atom: energ Chen	s in tl gies, e nistry-	ne peri lectron Water (narge, penetration of orbitals, variations odic table, electronic configurations, a affinity, electronegativity, polarizability parameters-Definition and explaid Method-Introduction to alkalinity.	tomic and ity and oxic	onic latior	sizes 1 sta	, ion tes.	ization Wate
UNIT	'-II l	USE OF	FREE ENERGY IN CHEMICAL EQUILIBE	RIA			12+	3+6
energ oxida and (gies. Fr Ition re Contro	ee ener eduction l metho	nctions: energy, entropy and free energy gy and emf. Cell potentials, the Nernst e n and solubility equilibria. Corrosion-Ty ods. Use of free energy considerations ges of electroless plating, electroless plat	quation and a pes, factors a in metallur	appli affect gy t	cation ing co nroug	ns. Ac orros gh Ell	id bas ion rat lingha

10+3+6

ATOMIC AND MOLECULAR STRUCTURE

Circuit Board (PCB).

UNIT-III

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H₃, H₂F and HCN and trajectories on these surfaces.

UNIT-IV SPECTROSCOPIC TECHNIQUES AND APPLICATIONS

7+3+6

Principles of spectroscopy and selection rules. Electronic spectroscopy-chromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

UNIT-V STEREOCHEMISTRY AND ORGANIC REACTIONS

8+3+6

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule-Aspirin and paracetamol.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
Hours	45	15	30	90

TEXT BOOKS

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rd edition), New Delhi, Shoban Lal Nagin Chand & Co., 1993
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- 3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., 1976.
- 6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.
- 8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCE BOOKS

- 1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishal publishing Co., Edition 2004
- 2. Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000

E Resources - MOOCs:

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. http://ocw.mit.edu/courses/chemistry/

Laboratory Part 30 hrs	
Experiments:	
1. Determination of chloride ion present in the water sample by Argentometric	CO1
method.	CO1
2. Determination of total, temporary and permanent hardness of water sample by	
EDTA method.	
3. Determination of cell constant and conductance of solutions.	CO2
4. Potentiometry - determination of redox potentials and emfs.	CO2
5. Determination of surface tension and viscosity.	CO3
6. Adsorption of acetic acid by charcoal.	CO3
7. Determination of the rate constant of a reaction.	CO4
8. Estimation of iron by colorimetric method.	CO4
9. Synthesis of a polymer/drug.	CO5
10. Saponification/acid value of an oil.	CO5

REFERENCE BOOKS

- 1. Mendham, Denney R.C., Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.

E Resources - MOOCs:

1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques

2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011

3.http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
HOURS	45	15	30	90

Table 1: Mapping of CO's with PO's:

	PO													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	0	0	0	0	0	2	3	3	0	0	0	0	0		
CO2	2	0	0	0	0	0	1	2	2	0	0	0	0	0		
CO3	3	0	0	0	0	0	2	3	3	0	0	0	0	0		
CO4	3	0	0	0	0	0	3	3	3	0	0	0	0	0		
CO5	3	0	0	0	0	0	2	2	3	0	0	0	0	0		

$$1-5\rightarrow 1$$
, $6-10\rightarrow 2$, $11-15\rightarrow 3$

1- Low Relation, 2-Medium Relation, 3-High Relation

COU	RSE CO	ODE	XWP105		L	Т	P	С				
COUI	RSE N	AME	WORKSHOP PRACTICES		1	0	2 P					
C	P	A			L	Т	P	Н				
1.0	3.0	0.0			2	0	4	6				
PREI	REQUI	SITE:			<u> </u>			<u> </u>				
COUI	RSE O	UTCOM	ES:	Domain		Le	evel					
CO1	1		e the machining methods and <i>Practice</i>	Cognitive	1	ders		ling				
	mac	chining o	operation.	Psychomotor		ided spon						
CO2		ining	metal casting process, moulding	Cognitive	Re	men	iberi	ng				
		thodsand lications	8	Psychomotor	Pe	rcep	tion					
CO3			carpentry and fitting operation and rpentry and fitting operations.	Cognitive Psychomotor		plyii ided	_					
	Pru	ciice cal	rpentry and fitting operations.	PSycholilotor		spon						
CO4		nmarize ding ope	e metal joining operation and <i>Practice</i>	Cognitive Psychomotor	Understanding Guided							
	wei	unig ope	auon.	rsycholliotol	response							
CO5			ne, electrical and electronics basics and ropriate connections.	Cognitive Psychomotor	Understanding Origination							
				1 Sycholliotor	OI.	igiiia						
	-	ONTENT										
EXP. NO			TITLE		C() RE	LAT	IO				
1	INT	RODUCT	TION TO MACHINING PROCESS			C	01					
2	PLA	IN TURI	NING USING LATHE OPERATION			C	01					
3	INT	RODUCT	TION TO CNC			С	01					
4	DEN	10NSTR	ATION OF PLAIN TURNING USING CNC			C	01					
5	STU	DY OF M	IETAL CASTING OPERATION			C	02	***************************************				
6	DEN	10NSTR	ATION OF MOULDING PROCESS			C	02					
7	STU	DY OF S	MITHY OPERATION			C	02					
8	STU	DY OF C	ARPENTRY TOOLS			C	03					
9	HAL	F LAP JO	DINT – CARPENTRY			C	03					
10	,							CO3				
11	STU	DY OF F	ITTING TOOLS		CO3							
12	SQU	ARE FIT	TING		CO3							
13	TRL	ANGULA	R FITTING		CO3							

14	STUDY OF WELDING TOOLS	CO4
15	SQUARE BUTT JOINT - WELDING	CO4
16	TEE JOINT – WELDING	CO4
17	INTRODUCTION TO HOUSE WIRING	CO5
18	ONE LAMP CONTROLLED BY ONE SWITCH	CO5
19	TWO LAMPS CONTROLLED BY SINGLE SWITCH	CO5
20	STAIRCASE WIRING	CO5

TEXT BOOKS

- 1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay
- 2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCES

- 1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.
- 2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd., New Delhi
- 3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.
- 4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. http://nptel.ac.in/courses/112107145/

Mapping of CO's with PO'S:

	PO													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	1	2	2	1	0	0	1	1	0	1	2	0	0	
CO2	2	1	2	2	1	0	0	1	1	0	1	2	0	0	
CO3	2	1	2	2	1	0	0	1	1	0	1	2	0	0	
CO4	2	1	2	2	1	0	0	1	1	0	1	2	0	0	
CO5	2	1	2	2	1	0	0	1	1	0	1	2	0	0	

$$1-5\rightarrow 1$$

$$6-10\rightarrow 2$$

$$1-5 \rightarrow 1$$
, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

1 - Low Relation, 2- Medium Relation, 3- High Relation

SEMESTER II

cou	IRSE C	ODE	XMA201	L	Т	P	С
COU	IRSE N	AME	CALCULUS, ORDINARY DIFFERENTIAL EQUATIONS AND COMPLEX VARIABLE	3	1	0	4
С	P	A		L	Т	P	Н
3.0	0.5	0.5		3	1	0	4

PREREQUISITE: Mathematics I (Calculus and Linear Algebra)

COUR	SE OUTCOMES:	Domain	Level
CO1	Find double and triple integrals and to find line, surface and volume of an integral by Applying Greens, Gauss divergence and Stokes theorem.	Cognitive	Applying Remembering
CO2	Solve first order differential equations of different types which are solvable for p, y, x and Clairaut's type.	Cognitive	Applying
CO3	Solve Second order ordinary differential equations with variable coefficients using various methods.	Cognitive	Applying
CO4	Use CR equations to verify analytic functions and to find harmonic functions and harmonic conjugate. Conformal mapping of translation and rotation. Mobius transformation.	Cognitive Psychom otor	Remembering Applying Guided Response
CO5	Apply Cauchy residue theorem to evaluate contour integrals involving sine and cosine function and to state Cauchy integral formula, Liouvilles theorem. Taylor's series, zeros of analytic functions, singularities, Laurent's series.	Cognitive Affective	Applying Receiving

Unit -I MULTIVARIABLE CALCULUS (INTEGRATION)

12

Multiple Integration: Double integrals (Cartesian) - change of order of integration in double integrals - Change of variables (Cartesian to polar) - Triple integrals (Cartesian), Scalar line integrals - vector line integrals - scalar surface integrals - vector surface integrals - Theorems of Green, Gauss and Stokes.

Unit -II FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

12

Exact - linear and Bernoulli's equations - Euler's equations - Equations not of first degree: equations solvable for p - equations solvable for y- equations solvable for x and Clairaut's type.

Unit - III ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDERS

12

Second order linear differential equations with variable coefficients- method of variation of parameters - Cauchy-Euler equation- Power series solutions- Legendre polynomials- Bessel functions of the first kind and their properties.

Unit -IV COMPLEX VARIABLE - DIFFERENTIATION

12

Differentiation-Cauchy-Riemann equations- analytic functions-harmonic functions-finding harmonic conjugate- elementary analytic functions (exponential, trigonometric, logarithm) and their properties- Conformal mappings- Mobius transformations and their properties.

Unit - V COMPLEX VARIABLE - INTEGRATION

12

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions- singularities- Laurent's series - Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

LECTURE	TUTORIAL	TOTAL
45	15	60

Text Book:

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

Reference Books:

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint. 2002.
- 2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 3. W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9th Edn. Wiley India, 2009.
- 4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.
- 5.E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
- 6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.
- 7. J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill. 2004.
- 8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

Cos Versus GA mapping

Table 1: Mapping of Cos with GAs:

						GA						
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	2	0	0	2	0	0	0	0	1	0	2
CO 2	3	1	0	0	0	0	0	0	0	1	0	1
CO 3	3	1	0	0	0	0	0	0	0	1	0	1
CO 4	3	2	0	0	0	0	0	0	0	1	0	1
CO 5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled Value	3	2	0	0	1	0	0	0	0	1	0	3

							PO						PS0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 2	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 3	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 4	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 5	3	2	1	1	2	1	0	0	0	0	0	1	1	1
Total	15	10	5	5	10	5	0	0	0	0	0	5	5	5
Scaled Value	3	2	1	1	2	1	0	0	0	0	0	1	1	1

 $1-6 \longrightarrow 1, 6-10 \longrightarrow 2, 11-15 \longrightarrow 3$

1-Low relation , 2-Medium relation , 3-High relation

COU	RSE CO	ODE	XUM202		L	Т	P	С
COU	RSE NA	AME	ENVIRONMENTAL SCIENCE		3	0	0	0
С	P	Α		DOMAIN L T P H 3 0 0 3 DOMAIN LEVEL Doubt				
2.5	0.0	0.5			3	0	0	3
COU	RSE O	UTCOM	ES	DOMAIN	LF	VEL	ı	
CO1			he significance of natural resources and thropogenic impacts.	Cognitive				_
CO2	and	l natura	the significance of ecosystem, biodiversity l geo bio chemical cycles for maintaining balance.	Cognitive	Ur	ıder	stan	ding
CO3	of		ne facts, consequences, preventive measures pollutions and recognize the disaster on.		1			ing
CO4	pro	<i>ictice</i> t	he socio-economic, policy dynamics and he control measures of global issues for e development.	Cognitive				ding
CO5	var	ious w	the impact of population and the concept of relfare programs, and <i>apply</i> the modern towards environmental protection.	Cognitive				ding
UNIT	Γ - Ι ΙΝ	TRODU	JCTION TO ENVIRONMENTAL STUDIES ANI	ENERGY	i		1	2

Definition, scope and importance – Need for public awareness – Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, flood, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT - II ECOSYSTEMS AND BIODIVERSITY

7

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT - III ENVIRONMENTAL POLLUTION

10

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT -IV SOCIAL ISSUES AND THE ENVIRONMENT

10

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT -V HUMAN POPULATION AND THE ENVIRONMENT

6

Population growth, variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education - HIV / AIDS – Women and Child welfare programme – Role of Information Technology in Environment and human health – Case studies.

LECTURE	TIITORIAI.	TOTAL
LLCTONL	TOTOMINE	IOIII
45	0	45

TEXT BOOKS

- 1. Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co, USA, 2000.
- 2. Townsend C., Harper J and Michael Begon, Essentials of Ecology, Blackwell Science, UK, 2003
- 3. Trivedi R.K and P.K.Goel, Introduction to Air pollution, Techno Science Publications, India, 2003.
- 4. Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.
- 5. Introduction to International disaster management, Butterworth Heinemann, 2006.
- **6.** Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson Education Pvt., Ltd., Second Edition, New Delhi, 2004.

REFERENCE BOOKS

- 1. Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol. I and II, Enviro Media, India, 2009.
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publ., House, Mumbai, 2001.
- 3. S.K.Dhameja, Environmental Engineering and Management, S.K.Kataria and Sons, New Delhi, 2012.
- 4. Sahni, Disaster Risk Reduction in South Asia, PHI Learning, New Delhi, 2003.
- 5. Sundar, Disaster Management, Sarup & Sons, New Delhi, 2007.
- 6. G.K.Ghosh, Disaster Management, A.P.H.Publishers, New Delhi, 2006.

E RESOURCES

- 1. http://www.e-booksdirectory.com/details.php?ebook=10526
- 2. https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook
- 6. http://www.e-booksdirectory.com/details.php?ebook=8557
- 7. http://www.e-booksdirectory.com/details.php?ebook=6804
- 8. http://bookboon.com/en/atmospheric-pollution-ebook
- 9. http://www.e-booksdirectory.com/details.php?ebook=3749
- 10. http://www.e-booksdirectory.com/details.php?ebook=2604
- 11. http://www.e-booksdirectory.com/details.php?ebook=2116
- 12. http://www.e-booksdirectory.com/details.php?ebook=1026
- 13. http://www.faadooengineers.com/threads/7894-Environmental-Science

Table:1 Mapping of CO's with B.Tech GA's:

							GA					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	0	0	0	0	0	0	0	0	0	0	1
CO2	2	0	0	0	0	2	1	0	0	1	0	1
CO3	2	1	3	0	0	3	1	0	2	1	0	1
CO4	1	1	2	0	0	3	2	3	0	0	0	1
CO5	2	1	1	0	0	3	0	0	0	0	0	1
Total	10	3	6	0	0	11	4	3	2	2	0	5
Scaled value	2	1	2	0	0	3	1	1	1	1	0	1

Table 2: Mapping of CO's with PO's:

		PSO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO2	2	0	0	0	0	0	1	2	2	0	0	0	0	0
CO3	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO4	3	0	0	0	0	0	3	3	3	0	0	0	0	0
CO5	3	0	0	0	0	0	2	2	3	0	0	0	0	0

 $1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

COU	RSE CO	DE	XBE203	L	T	P	C
COU	RSE NA	AME	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS	3	1	1	5
C	P	A		L	Т	P	Н
3.0	1.0	0.0		3	1	2	6

PREREQUISITES: PHYSICS

COUR	SE OUTCOMES	Domain	Level
CO1	Define and Relate the fundamentals of electrical parameters and build and explain AC, DC circuits by Using measuring devices	Cognitive Psychomotor	Remember Understand Mechanism set
CO2	Define and Explain the operation of DC and AC machines.	Cognitive	Remember Understand
CO3	Recall and Illustrate various semiconductor devices and their applications and displays the input output characteristics of basic semiconductor devices.	Cognitive Psychomotor	Remember Understand Mechanism
CO4	Relate and Explain the number systems and logic gates. Construc t the different digital circuit.	Cognitive Psychomotor	Remember Understand Origination
CO5	Label and Outline the different types of microprocessors and their applications.	Cognitive	Remember Understand

UNIT I- FUNDAMENTALS OF DC AND AC CIRCUITS, MEASUREMENTS

9+6+12

Fundamentals of DC- Ohm's Law - Kirchoff's Laws - Sources - Voltage and Current relations - Star/Delta Transformation - Fundamentals of AC - Average Value, RMS Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoidal quantities - Simple Series, Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).

UNIT II - ELECTRICAL MACHINES

9 + 3 + 0

Construction, Principle of Operation, Basic Equations, Types and Application of DC Generators, DC motors - Basics of Single Phase Induction Motor and Three Phase Induction Motor- Construction, Principle of Operation of Single Phase Transformer, Three phase transformers, Auto transformer.

UNIT III - SEMICONDUCTOR DEVICES

9 + 0 + 8

Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications.

UNIT IV - DIGITAL ELECTRONICS

9 + 3 + 10

Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subtractors, multiplexer, demultiplexer, encoder, decoder, Flip-flops, Up/Down counters, Shift Registers.

UNIT V - MICROPROCESSORS

Architecture, 8085, 8086 - Interfacing Basics: Data transfer concepts – Simple Programming concepts

LIST OF EXPERIMENTS:

- **1.** Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.
- **2.** Study of Active and Passive elements Resistors, Inductors and Capacitors, Bread Board.
- **3.** Verification of AC Voltage, Current and Power in Series and Parallel connection.
- **4.** Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.
- **5.** Fluorescent lamp connection with choke.
- **6.** Staircase Wiring.
- **7.** Forward and Reverse bias characteristics of PN junction diode.
- **8.** Forward and Reverse bias characteristics of zener diode.
- **9.** Input and Output Characteristics of NPN transistor.
- **10.** Construction and verification of simple Logic Gates.
- **11.** Construction and verification of adders.
- **12.** Construction and verification of subtractor.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	15	30	90

TEXT BOOKS

- 1. Metha V.K., 2008. Principles of Electronics. Chand and Company.
- 2. Malvino, A. P., 2006. Electronics Principles. 7th ed. New Delhi: Tata McGraw-Hill.
- 3. Rajakamal, 2007. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 1999. Digital Design. Prentice Hall of India.
- 5. Ramesh, S. Gaonkar, 2000. Microprocessor Architecture, Programming and its Applications with the 8085. 4th ed. India: Penram International Publications.

REFERENCE BOOKS:

- 1. Corton, H., 2004. Electrical Technology. CBS Publishers & Distributors.
- 2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
- 3. Jacob Millman and Christos, C. Halkias, 1967. Electronics Devices. New Delhi: McGraw-Hill.
- 4. Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems. Tokyo: McGraw-Hill, Kogakusha Ltd.
- 5. Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

E-REFERENCES:

- 1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.
- 2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.
- 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.
- 4. Dr.LUmanand , http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore.

Table: 1 Mapping of COs with POs:

	PO													PSO PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	3	3	1	1	1	1	0	0	1	1	1	0	0	0	
CO 2	3	3	1	1	1	1	0	0	1	1	1	0	0	0	
CO 3	2	2	2	1	2	2	1	1	1	1	1	0	0	0	
CO 4	2	2	1	1	1	1	1	1	1	1	1	0	0	0	
CO 5	2	2	1	1	1	1	1	1	1	1	1	0	0	0	
Total	12	12	6	5	6	6	3	3	5	5	5	0	0	0	
Scaled value	3	3	2	1	2	2	1	1	1	1	1	0	0	0	

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

 $\mathbf{0}$ – No relation, $\mathbf{1}$ – Low relation, $\mathbf{2}$ – Medium relation, $\mathbf{3}$ – High relation

COU	IRSE C	ODE	XAP204	L	Т	Р	С
COU	RSE N	AME	APPLIED PHYSICS FOR ENGINEERS	3	1	2	6
С	Р	A		L	Т	P	Н
2.8	0.8	0.4		3	1	3	7

Cour	se Outcomes	Domain	Level
CO1	Identify the basics of mechanics, explain the principles of elasticity and determine its significance in engineering systems and technological advances.	Cognitive Psychomoto r	Remember Understand Mechanism
CO2	<i>Illustrate</i> the laws of electrostatics, magneto-statics and electromagnetic induction; <i>use</i> and <i>locate</i> basic applications of electromagnetic induction to technology.	Cognitive Psychomoto r Affective	Remember Analyze Mechanism Respond
CO3	Understand the fundamental phenomena in optics by measurement and describe the working principle and application of various lasers and fibre optics.	Cognitive Psychomoto r Affective	Understand Apply Mechanism Receive
CO4	Analyse energy bands in solids, discuss and use physics principles of latest technology using semiconductor devices.	Cognitive Psychomoto r Affective	Understand Analyze Mechanism Receive
CO5	Develop Knowledge on particle duality and solve Schrodinger equation for simple potential.	Cognitive:	Understand Apply

UNIT - I MECHANICS OF SOLIDS

9+3+9

Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum - torque - law of conservation of energy and momentum - Friction.

Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus - Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Bending of beams - Experimental determination of Young's modulus: Uniform bending and non-uniform bending.

UNIT-II ELECTROMAGNETIC THEORY

9+3+3

Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarisation, Dielectric constant, internal field - Clausius Mossotti Equation - Laws of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - expression for plane, circularly and elliptically polarized light - quarter and half wave plates - production and detection of plane, circularly and elliptically polarized light.

UNIT -III OPTICS, LASERS AND FIBRE OPTICS

9+3+12

Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.

LASER: Introduction - Population inversion - Pumping - Laser action - Nd-YAG laser - CO_2 laser - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system (Block diagram).

UNIT -IV SEMICONDUCTOR PHYSICS

9+3+6

Semiconductors: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes - doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect. **Diodes and Transistors**: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations - Advantages of common emitter configuration - working of NPN transistor as an amplifier in common emitter configuration.

UNIT -V QUANTUM PHYSICS

9+3+0

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave – particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

TEXT BOOKS

- 1. Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.
- 2. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi, 2010.

REFERENCE BOOKS

- 1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.
- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- 3. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.
- 4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E RESOURCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

LABORATORY

- 1. Torsional Pendulum determination of moment of inertia and rigidity modulus of the given material of the wire.
- 2. Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 3. Non-Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 4. Meter Bridge Determination of specific resistance of the material of the wire.
- 5. Spectrometer Determination of dispersive power of the give prism.
- 6. Spectrometer Determination of wavelength of various colours in Hg source using grating.
- 7. Air wedge Determination of thickness of a given thin wire.
- 8. Laser Determination of wavelength of given laser source and size of the given micro particle using Laser grating.

- 9. Post office Box Determination of band gap of a given semiconductor.
- 10 PN Junction Diode Determination of V-I characteristics of the given diode.

REFERENCE BOOKS

- Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency
 (P) Ltd, 2008.
- 2. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.
- 3. Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

	LECTURE	TUTORIAL	PRACTICA	TOTAL HOURS
			L	
Hour	45	15	30	90
S				

Table 1: Mapping of CO's with PO:

	PO												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	0	0	0	1	0	0	1	0	0
CO2	3	0	1	0	1	0	0	0	0	0	0	1	0	0
CO3	3	2	2	2	1	0	0	0	1	0	0	1	0	0
CO4	3	2	2	2	1	0	0	0	1	0	0	1	0	0
CO5	3	0	2	0	0	0	0	0	0	0	0	1	0	0
Total	15	6	9	6	4	0	0	0	3	0	0	5	0	0
Scaled Value	3	2	2	2	1	0	0	0	1	0	0	1	0	0

$$1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$$

COURS							P	С	
	SE NAMI		ENGINEERING GRAPHICS			2	0	1	3
<u>C</u>	P	A				L	T	P	H
1.75	1.0 EQUISIT	0.25				2	0	2	4
	SE OUTC			Domain		T 2	evel		
COOK.	Apply	the	national and international	Cognitive	Apply				
COI			onstruct and practice various	Psychomotor	esno	nse			
	curves	ius, ci	distruct and practice various	Affective	Guided res Responds			обро	to
	curves				Phen				
CO2	Interpr	et, con	struct and practice orthographic	Cognitive	Unde			ıg	
projections of points, straight lines a		ctions of points, straight lines and planes. Psychomotor Mechanis							
				Affective	Resp				to
CO3	Consta	ı.a+ Cl∗	otah and Dragtiga projection of	Cognitivo	Phen			omi	مامير
COS	1		etch and Practice projection of ous positions and true shape of	Cognitive Psychomotor	Apply Over	_		-	plex onse
	section		1	Affective	Resp			Japo	to
	Section	eu son	us.		Phen				••
CO4	Interpr	et, S	Sketch and Practice the	Cognitive	Unde	rsta	ndii	ıg	***************************************
	develo	pment	of lateral surfaces of simple and	Psychomotor	Comp				vert
	truncated solids, intersection of solids.						onse Respond		nds
CO5	Consta	not olto	tah and practice icometric and	Cognitivo	to Phenomena				
COS					Ω_{2}	vert			
	solids.	cuve v	riews of simple and truncated	Affective Response Re					
	solius.				to Ph			_	
			FION, FREE HAND SKETCHING OF PLANE CURVE	F ENGG				6	5+6
			s in engineering applications – us	e of drafting ins	trume	nts -	- BI	3	
•			ventions as per SP 46-2003.						
			on of engineering objects – repres						
-			ional media – need for multiple vi	-	ig visu	aliza	atio	1	
	_		ld sketching of three dimensional used in engineering practice –	,	constr	uctio	n .	_	
			, parabola and hyperbola by eccer						
		_	truction – drawing of tangents to	_	-			-	
UNIT -	-II PRO	JECTIO	N OF POINTS, LINES AND PLANE	E SURFACES				6	5+6
Genera	al princip	oles of o	orthographic projection – first ang	gle projection –	layout	of v	iew	S	
		_	s, straight lines located in the firs	-					
	_		and their inclinations to the pl						
	_	olygon	al surfaces and circular lamina i	inclined to both	the p	olane	es o	f	
project									
UNIT-	III PRO	JECTIO	N OF SOLIDS AND SECTIONS OF	SOLIDS				6	5+6
Projec	tion of s	imple s	solids like prism, pyramid, cylind	ler and cone w	hen th	e ax	is i	5	
			of projection – change of position						
	_		solids in simple vertical position						
		_	and perpendicular to the other					1	
positio	on with c	utting p	planes parallel to one reference pla	ane – true snape	s or se	ctlol	1S.		

UNIT - IV DEVELOPMENT OF SURFAC	ES AND INTERSECTI	ON OF	6+6
SOLIDS			
Need for development of surfaces – d truncated solids – prisms, pyramids, o surfaces of the above solids with squar axes – intersection of solids and curves & cylinder, cone & cylinder with normal	cylinders and cones re and circular cutou s of intersection –pris	- development of lateral ts perpendicular to their m with cylinder, cylinder	
UNIT - V ISOMETRIC AND PERSPECTI	VE PROJECTIONS		6+6
Principles of isometric projection – iso solids, truncated prisms, pyramids, cyl projections – projection of prisms, pyram point methods.	linders and cones -	principles of perspective	
THEORY 30	PRACTICAL 30	TOTAL HRS 60	
TEXT BOOKS			

- 1. Bhatt, N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.
- 2. Natarajan,K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006.
- 3. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013

REFERENCES

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition 2001.
- 2. Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008.
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E RESOURCES

- 1. http://periyarnet/Econtent
- 2. http://nptel.ac.in/courses/112103019/

Table 1: Mapping of CO's with PO'S:

	PO										P	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	3	2	3	1	1	2	3	3	3	_
CO2	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO3	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO4	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO5	3	3	3	1	3	1	3	1	1	1	2	3	3	-
Total	15	15	15	6	15	6	15	5	5	6	11	3	3	-
Scaled	3	3	3	2	3	2	3	1	1	2	3	3	3	_

 $1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$

SEMESTER III

COU	OURSE CODE XMA301		L	Т	P	С	
COUI	RSE NA	ME	PROBABILITY AND STATISTICS	3	3 1 0		
С	P	A		L	Т	P	Н
4.0	0.0	0.0		3	1	0	4
PREI	REQUIS	SITE: C	CALCULUS AND LINEAR ALGEBRA			<u> </u>	<u> </u>

COUR	SE OUTCOMES:	Ŧ	
Cours	se outcomes:	Domain	Level
CO1	Explain conditional probability, independent events, find expected values and Moments of Discrete random variables with properties.	Cognitive	Understanding Remembering
CO2	Find distribution function, Marginal density function, conditional density function, define density function of conditional distribution functions normal, exponential and gamma distributions.	Cognitive	Remembering
CO3	Find measures of central tendency and to determine tatistical parameters of Binomial, Poisson and Normal and to find correlation, regression and Rank Correlation coefficient of two variables.	Cognitive	Remembering
CO4	Explain large sample test for single proportion, difference of proportion, single mean, difference of means and difference of standard deviations with simple problems.	Cognitive	Understanding
CO5	Explain small sample test for single mean, difference of mean and correlation coefficients, variance test, chisquare test with simple Problems.	Cognitive	Understanding

UNIT I: BASIC PROBABILITY	10
Probability spaces, conditional probability, independence; Discrete random lindependent random variables, the multinomial distribution, Poisson approximate binomial distribution, infinite sequences of Bernoulli trials, sums of independence; Expectation of Discrete Random Variables, Moments, Variance of a sum Inequality.	nation to the dent random
UNIT II: CONTINUOUS PROBABILITY DISTRIBUTIONS	10
Continuous random varibales and their properties, distribution functions and den exponential and gamma densities.	sities, normal,
UNIT III: BIVARIATE DISTRIBUTIONS	10
Bivariate distributions and their properties, distribution of sums and quotient densities, Bayes' rule.	ts, conditional
UNIT IV: BASIC STATISTICS	10

Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, normal and Poisson - evaluation of statistical parameters for these three distributions, Correlation and regression - Rank correlation.

UNIT V: APPLIED STATISTICS

10

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

UNIT VI: SMALL SAMPLES

10

Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes.

LECTURE	TUTORIAL	TOTAL
45	15	60

Textbooks/References

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 (Reprint).
- 3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.
- 5. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- 7. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

Cos Versus GA mapping

Table 1: Mapping of Cos with GAs:

							GA					
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	2	0	0	2	0	0	0	0	1	0	2
CO 2	3	1	0	0	0	0	0	0	0	1	0	1
CO 3	3	1	0	0	0	0	0	0	0	1	0	1
CO 4	3	2	0	0	0	0	0	0	0	1	0	1
CO 5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled Value	3	2	0	0	1	0	0	0	0	1	0	3

						PO						P:	so
1	2	3	4	5	6	7	8	9	10	11	12	1	2

CO 1	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 2	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 3	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 4	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 5	3	2	1	1	2	1	0	0	0	0	0	1	1	1
Total	15	10	5	5	10	5	0	0	0	0	0	5	5	5
Scaled Value	3	2	1	1	2	1	0	0	0	0	0	1	1	1

 $1-5\rightarrow 1$, $6-10\rightarrow 2$, $11-15\rightarrow 3$

COUI	RSE CO	ODE	XCS302		L	T	P	С
coui	RSE N	AME	ANALOG AND DIGITAL ELECTRONIC CIT	RCUITS	3	0	2	5
С	P	A			L	T	P	Н
3.0	1.0	1.0			3	0	4	7
Cour	se ou	tcome		DOMAIN	LE	VEL	<u> </u>	
CO1			and <i>describe</i> the basics of devices and ne applications	Cognitive Psychomotor			tandi	ing
CO2		-amp concept to analyze and design the ons circuits	Cognitive Psychomotor		mem	tandi berii	_	
CO3			Boolean algebra to <i>design</i> the digital ilies	Cognitive Psychomotor	Understand Mechanism			ng
CO4	logic families Describe and design the Combinational digital circuits			Cognitive Psychomotor Affective	tor Remember Set Respond			_
CO5	Dis	scuss a	nd design the Sequential digital circuits	Cognitive Psychomotor Affective	Re Se	mem	tandi berii d	_

COURSE	CONTENT	Hours
UNIT I	SEMICONDUCTOR DEVICES AND CIRCUITS	9 + 12
	Basics and characteristics – p-n junction diode, Zener diode, BJT and MOSFET –applications, rectifier, clipper, clamper and amplifier circuits. Differential amplifier and Direct coupled Multistage amplifier. List of Experiments: 1. Design and implementation of rectifiers, clipper and Clamper Circuits 2. Design and implementation of amplifier circuits.	
UNIT II	LINEAR AND NON LINEAR APPLICATIONS OF OP-AMP	9 + 12
	Introduction to op-amp-Linear applications; Inverting and non-inverting amplifier, differential amplifier, Integrator, active filter, voltage regulator, We in bridge and Phase shift oscillators Nonlinear applications; Comparator, Zero crossing Detector, wave and triangular wave generators. List of Experiments 3. Design and implementation of Op-amp linear applications. 4. Design and implementation of Op-amp non-linear applications	
UNIT III	FUNDAMENTALS OF DIGITAL SYSTEMS AND LOGIC FAMILIES	9 + 12
	Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive –OR operations, Boolean algebra, examples of IC gates. Number Systems – binary, signed binary, octal and hexadecimal number-arithmetic calculation-digital logic families; TTL, Schottky TTL and CMOS logic. A/D and D/A converter. List of Experiments: 5. Verification of Boolean theorems using digital logic gates.	

UNIT IV	COMBINATIONAL DIGITAL CI	RCUITS		9 + 12					
	Standard representation for Multiplexer, Demultiplexer, Add code converters. List of Experiments: 6. Design and implementation gates for code converters. 7. Design and implementation gates. 8. Design and implementation of gates.	ers, Subtractors, Dig of combinational of of binary adder / sul	circuits using basic						
TINITE X7	SEQUENTIAL DIGITAL CIRCUITS, MEMORIES AND PLD								
UNIT V	i i								
	Sequential digital circuits; Flipflops-SR, J-K, T and D flip flops-Shift Register types and applications-Counters types and applications. Memory organization and operation, expanding memory size, classification and characteristics of memories, read only memory, random access memory, addressable memory, PLD (Programmable Logic Device). Memory and List of Experiments: 9. Design and implementation of Shift registers. 10. Design and implementation of counters.								
	LECTU	IRE PRACTICAL	TOTAL						
	i i		IOIAL						

- 1. R.L.Boylestad, L. Nashelsky, Electronic devices, and circuit theory, Prentice Hall, 2002
- 2. A.S.Sedra and K.C.Smith,"Microelectronic Circuits",New York, Oxford University Press, 7th edition
- 3. R.P.Jain,"Modern Digital Electronics", McGraw Hill Education, 2009
- 4. M.M. Mano,"Digital logic and Computer design", Pearson Education India, 2016.
- 5. A.Kumar 'Fundamentals of Digital circuits", Prentice hall India, 2016.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

							PO						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	1	1	1	1	1	1	0	0	0	0	2	0
CO2	1	1	1	1	1	1	1	1	0	0	0	0	2	0
CO3	3	3	3	2	3	3	3	1	0	0	0	0	3	1
CO4	3	3	3	2	3	3	3	1	0	0	0	0	3	1
CO5	3	3	3	2	3	3	3	1	0	0	0	0	3	1

$$1$$
 – 5 \rightarrow 1, 6 – 10 \rightarrow 2, 11 – 15 \rightarrow 3

COU	RSE C	ODE	XCS303		L	Т	P	С
COU	RSE N	IAME	DATA STRUCTURE AND ALGORITHMS		3	0	2	5
С	P	Α			L	Т	P	Н
4.0	1.0	0.0			3	0	4	7
Cour	rse ou	itcome	,	Domain		Le	evel	
CO1	Un	derstar	nd and apply linear data structures	Cognitiv Psychon		A _] Gı	nders oply uided espon	
CO2	Un	derstar	nd and apply nonlinear data structures	Cognitiv Psychon		Aj Gi	nders oply uided espon	
CO3	Un	derstar	nd and apply sorting techniques	Cognitiv Psychon		Aj Gi	nders oply uided espon	
CO4	Un	derstar	nd and apply graph algorithms	Cognitiv Psychon		Aj Gi	nderst oply uided espon	
CO5	Des	sign dif	ferent algorithm techniques.	Cognitiv	e		nders oply	tand

COURSE	CONTENT	Hours
UNIT I	LINEAR DATA STRUCTURE	9 + 18
	Theory	
	ADT – List ADT – Stack ADT – Queue ADT.	
	Practical	
	1. Singly Linked List	
	2. Doubly linked List	
	3. Circular Linked List	
	4. Stack Using Array implementation	
	5. Queue Using Array Implementation	
	6. Program for Balancing symbol	
	7. Program for Postfix expression evaluation	
UNIT II	NON LINEAR DATA STRUCTURE	9 + 14
	Theory	
	Trees – Binary Trees – Binary Search Trees – AVL Trees – Splay Trees –	
	Tree Traversal – B Trees- B+ Tree	
	Practical	
	8. Binary Search Tree	

UNIT III	SORTING				12 + 14				
	Theory Insertion sort – Shell sort – External Sorting Practical 9. Insertion Sort 10. Heap Sort 11. Merge Sort 12. Quick Sort	-	– Merge sort – Ç	Quick sort – Bucket					
UNIT IV	GRAPH ALGORITHMS				12 + 14				
	Theory Topological sort – Shortest path algorithms – Network Flow problems – Minimum Spanning Tree – Applications of Depth First search – NP completeness. Practical 13. Dijkstra's Algorithm								
UNIT V	ALGORITHM DESIGN	TECHNIQUES			12				
	Theory Greedy Algorithms – Divide and Conquer – Dynamic Programming - Randomized Algorithms – Backtracking algorithms								
	LECTURE	TUTORIAL	PRACTICAL	TOTAL					
	45	0	60	105					

- Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education, Reprint 2011.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms", Second Edition, Mcgraw Hill, 2002
- 3. Reema Thareja, "Data Structures Using C", Oxford University Press, 2011
- 4. Algorithms, Data Structures, and Problem Solving with C++", Illustrated Edition by Mark Allen Weiss, Addison-Wesley Publishing Company
- 5. "How to Solve it by Computer", 2nd Impression by R. G. Dromey, Pearson Education

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO													PSO PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	1	1	1	1	0	0	0	1	0	1	1	3	2		
CO2	3	2	1	1	1	0	0	0	1	0	1	1	3	2		
CO3	3	1	1	1	1	0	0	0	1	0	1	1	3	2		
CO4	3	2	1	2	1	0	0	0	1	0	1	1	3	2		
CO5	3	1	1	2	0	0	0	0	0	0	1	2	3	2		

$$1 - 5 \rightarrow 1$$
, $6 - 10 \rightarrow 2$, $11 - 15 \rightarrow 3$

¹⁻ Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE XCS304 L									
COU	RSE N	AME	OBJECT ORIENTED PROGRAMMING		2	0	2	4	
С	P	A			L	Т	P	Н	
3.0	0.5	0.5			2	0	4	6	
COU	RSE O	UTCOM	E	Domain		Leve	el		
CO1			tand the basic concepts of OOP and classes in C++.	Cognitive Psychomotor Affective	Understand r Guided Response Set				
CO2	To den	devel nonstra	op a solution to problems and ting the usage of file handling in C++.	Cognitive, Psychomotor Affective		Appl Crea Guid Resp Set	te led	e	
CO3	To des	Cognitive Psychomotor Affective		Und Guid Resp Set	led				
CO4	1		ne ability to program with Multithreading ion handling in java.	Cognitive Psychomotor Affective		Understand Apply Guided Response Set			
CO5	var	ious	strate the ability to develop a solution to I/O manipulation operations and y to database.	Cognitive Psychomotor Affective		Understand Apply Guided Response Set			
COU	RSE CO	ONTEN	Γ		<u>i</u>		Ηοι	ırs	
UNI	T- I Pl	ROGRA	MMING IN C++				6+	12	
oper funct List (1. De funct 2.Im)	erete sations a tions a of Exp esign C tions.	state sp Constr nd polyn erimen ++ class	Classes and objects, Abstract data types, pace-concrete invariant-abstraction functors and destructors, operator overlosmorphism. ts: les with static members, methods with defaulter number class with necessary operators integer to complex, double to complex, co	nction. Implem ading – inher nult arguments, overloading an	ent itan frie	ing ce, ce, end			
UNIT	Γ-II F	ILE HA	NDLING IN C++				6+	12	
unfo	rmatte es file j	d cons	console streams – console stream clole I/O operations, manipulators - File stand manipulations file I/O – Exception har	treams - class					

Give assign	plement Matrix class with dynamic memory allocation and necessary methods. proper constructor, destructor, copy constructor, and overloading of nment operator. erload the new and delete operators to provide custom dynamic allocation of ory.						
UNIT	'- III JAVA INTRODUCTION & DESIGN PATTERNS	6 + 12					
contr	n patterns. Introduction and classification. The iterator pattern Model-view- coller pattern. Introduction to java, data types, variables and arrays, operators, col statements, classes, objects, methods, Memory management.						
List o	of Experiments:						
5. Sin	nple Java applications - For understanding reference to an instance of a class (object),						
	methods						
	Handling Strings in JavaConstructor in Java						
	- Constructor in java						
UNIT	- IV JAVA INTRODUCTION & PROGRAMMING	6 + 12					
6. Sin 7. Int	of Experiments: In ple Package creation. In perfect of Experiments: In perfect of						
	Files - streams - byte streams, character streams, text input/output, binary	6 + 12					
	input/output, random access file operations, File management using File						
class.							
	Connecting to a database using JDBC						
Connecting to a database using JDBC							
	List of Experiments: 9. Program to implement streaming models						
	List of Experiments: 9. Program to implement streaming models 10. Program to implement JDBC Connectivity						
	List of Experiments: 9. Program to implement streaming models						
	List of Experiments: 9. Program to implement streaming models 10. Program to implement JDBC Connectivity						

- 1. K.R.Venugopal, Rajkumar Buyya, T.Ravishankar, "Mastering C++", TMH, 2003
- 2. Bjarne Stroustrup, "The C++ programming language", Addison Wesley, 2000
- 3. Herbet Schidt and Dale Srien, "Java Fundamentals A comprehensive Introduction", TMH.
- 4. Herbert Schildt, "The Complete Reference (Fully updated for jdk7)", Oracle press 8th Edition, 2012
- 5. Barbara Liskov, Program Development in Java, Addison-Wesley, 2001
- 6. Java for Programmers, P.J. Deitel and H.M. Deitel, Pearson education
- 7. Java: How to Program P.J. Deitel and H.M. Deitel, PHI.
- 8. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.
- 9. Thinking in Java, Bruce Eckel, Pearson Education
- 10. Ira Pohl, "Object oriented programming using C++", Pearson Education Asia, 2003
- 11. John R. Hubbard, "Programming with C++", Schaums outline series, TMH, 2003
- 12. E.Balagurusamy "Object Oriented Programming with C++", TMH 2/e
- 13. Cay S.Horstmann and Gary Cornel, "Core Java Programming Volume I", 9th Edition, 2012.
- 14. Programming in Java, Bruce Eckel, Pearson Education
- 15. Programming in Java, S. Malhotra and S. Choudhary, Oxford Univ. Press.
- 16. Deitel & Deitel, "Java How to Program", Prentice Hall, 9th Edition, 2012

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

						P	0						PS0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	3	2	2	2	1	0	0	2	1	1
CO2	3	3	3	3	3	2	2	2	1	0	0	2	1	1
CO3	2	2	2	3	3	3	2	2	1	0	0	1	2	1
CO4	2	2	2	2	0	0	0	0	0	0	0	0	2	1
CO5	3	2	3	3	3	0	2	2	2	0	0	0	1	1

$$1-5\rightarrow 1$$
,

$$6-10\rightarrow 2$$

$$11 - 15 \rightarrow 3$$

COUF	COURSE CODE XES306						С
COUF	RSE NA	ME	ENTREPRENEURSHIP DEVELOPMENT	2	0	0	2
С	P	A		L	Т	P	Н
1.2	0.0	0.8		2	0	0	2

COURS	SE OUTCOME	Domain	Level
CO1	Recognise and describe the personal traits of an entrepreneur.	Cognitive Affective	Understand Receiving
CO2	Determine the new venture ideas and analyze the feasibility report.	Cognitive	Understand Analyze
CO3	Develop the business plan and analyze the plan as an individual or in team.	Cognitive Affective	Receiving Analyze
CO4	Describe various parameters to be taken into consideration for launching and managing small business.	Cognitive	Understand
CO5	Describe Technological management and Intellectual Property Rights	Cognitive	Understand

UNIT I ENTREPRENEURIAL TRAITS AND FUNCTIONS

6

Definition of Entrepreneurship; competencies and traits of an entrepreneur; factors affecting Entrepreneurship Development; Role of Family and Society; Achievement Motivation; Entrepreneurship as a career and national development.

UNIT -II NEW PRODUCT DEVELOPMENT AND VENTURE CREATION

6

Ideation to Concept development; Sources and Criteria for Selection of Product; market assessment; Feasibility Report; Project Profile; processes involved in starting a new venture; legal formalities; Ownership; Case Study.

UNIT -III ENTREPRENEURIAL FINANCE

6

Financial forecasting for a new venture; Finance mobilization; Business plan preparation; Sources of Financing, Angel Investors and Venture Capital; Government support in startup promotion.

UNIT -IV LAUNCHING OF SMALL BUSINESS AND ITS MANGEMENT

6

Operations Planning - Market and Channel Selection - Growth Strategies - Product Launching - Incubation, Monitoring and Evaluation of Business - Preventing Sickness and Rehabilitation of Business Units.

UNIT-V TECHNOLOGY MANAGEMENT, IPR PORTFOLIO FOR NEW 6 PRODUCT VENTURE

Technology management; Impact of technology on society and business; Role of Government in supporting Technology Development and IPR protection; Entrepreneurship Development Training and Other Support Services.

	LECTURE	TUTORIAL	TOTAL
	30	0	30
ľ			

TEXT BOOKS

- Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.
- S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi.

REFERENCE BOOKS

- Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis,
 - Biztrantra ,2nd Edition.
- Prasanna Chandra, 2009, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill.
- P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.
- Arya Kumar,2012, Entrepreneurship: Creating and Leading an Entrepreneurial Organisation, Pearson Education India.
- Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage Learning India.
- Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad. Available from: http://www.ediindia.org/doc/EDP-TEDP.pdf

WEB SITES AND WEB RESOURCES:

- Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

TABLE: 1 MAPPING COURSE OUTCOME WITH GRADUATE ATTRIBUTES:

Course Outcomes			GA									
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	0	0	0	0	0	0	0	0	3	3	3	1
CO2	0	0	1	2	3	2	1	1	1	2	3	0
CO3	0	0	0	0	0	1	0	2	3	3	0	2
CO4	0	0	0	0	0	1	1	2	3	0	3	3
CO5	0	0	0	0	0	1	1	3	0	0	0	3
Total	0	0	1	2	3	5	3	8	10	8	9	9
Scaled Value			1	1	1	2	1	2	3	2	2	2

 $^{1 - 5 \}rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$

COUF	OURSE CODE XCI307						P	C	
COUF	RSE NA		3	0	0	3			
С	P	A			L	L T		Н	
2.0	0.0	1.0			3	0	0	3	
COUF	RSE OU	JTCOM	E	Domain	Level				
CO1	Und	lerstan	d the Constitutional History	Cognitive	Understanding				
CO2	Und	lerstan	d the Powers and Functions	Cognitive	Understanding				

SE GOT COME	Domain	DCVCI
Understand the Constitutional History	Cognitive	Understanding
Understand the Powers and Functions	Cognitive	Understanding
Understand the Legislature	Affective	Remembering
Understand the Judiciary	Affective	Remembering
Understand the Centre State relations	Cognitive	Understanding
	 Understand the Constitutional History Understand the Powers and Functions Understand the Legislature Understand the Judiciary 	Understandthe Constitutional HistoryCognitiveUnderstandCognitiveUnderstandAffectiveUnderstandAffectiveUnderstandAffective

UNIT I 8

Constitutional History- The Constitutional Rights- Preamble- Fundamental Rights-Fundamental Duties- Directive principles of State Policy.

UNIT II 9

The Union Executive- The President of India (powers and functions)- Vice-President of India-The Council of Ministers-Prime Minister- Powers and Functions.

UNIT III 10

Union Legislature- Structure and Functions of Lok Sabha- Structure and Functions of Rajya Sabha- Legislative Procedure in India- Important Committes of Lok Sabha- Speaker of the Lok Sabha.

UNIT IV 9

The Union Judiciary- Powers of the Supreme Court- Original Jurisdiction- Appelete jurisdictions- Advisory Jurisdiction- Judicial review.

UNIT V 9

Centre State relations- Political Parties- Role of governor, powers and functions of Chief Minister-Legislative Assembly- State Judiciary- Powers and Functions of the High Courts.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

REFERENCES

- 1. W.H.Morris Shores-Government and politics of India, NewDelhi, B.1. Publishers, 1974.
- 2. M.V.Pylee- Constitutional Government in India, Bombay, Asia Publishing House, 1977.
- 3. R.Thanker- The Government and politics of India, London: Macmillon, 1995.
- 4. A.C.Kapur- Select Constitutions S, Chand & Co., New Delhi, 1995
- 5. V.D.Mahajan- Select Modern Governments, S, Chand & Co, New Delhi, 1995.
- 6. B.C.Rout- Democractic Constitution of India.
- 7. Gopal K.Puri- Constitution of India, India 2005.

Table 1: Mapping of COs with POs

		PO										PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO 2	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO 3	2	0	0	1	0	0	0	0	1	0	0	0	0	0
CO 4	2	0	0	1	0	0	0	1	1	0	0	0	0	0
CO 5	2	2	0	1	0	0	0	1	1	0	0	0	0	0
Total	10	2	0	5	0	0	0	2	3	0	0	0	0	0
Scaled Value	2	1	0	1	0	0	0	1	1	0	0	0	0	0

 $1\text{-}5 \rightarrow 1, 6\text{-}10 \rightarrow 2, 11\text{-}15 \rightarrow 3$

COUR	OURSE CODE XPS401				Т	P	С
COUR	SE NA	ME	DISCRETE MATHEMATICS	3	1	0	4
С	Р	A		L	Т	P	Н
4	0	0		3	1	0	4

PREREQUISITE: CALCULUS AND LINEAR ALGEBRA

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Define and Explain Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets.	Cognitive	Remembering Understanding
CO2	Define and Explain Basic counting techniques- inclusion and exclusion, pigeon-hole principle, permutation and combination.	Cognitive	Remembering Understanding
CO3	Define and Explain The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers.	Cognitive	Remembering Understanding
CO4	Define and Explain Algebraic Structures with one Binary Operation and two Binary Operations.	Cognitive	Remembering Understanding
CO5	Define and Explain Graphs and their properties.	Cognitive	Remembering Understanding

UNIT I: SETS, RELATION AND FUNCTION

12

Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument and The Power Set theorem, Schroeder-Bernstein theorem.

Principles of Mathematical Induction:

The Well-Ordering Principle, Recursive definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.

UNIT II:

Basic counting techniques- inclusion and exclusion, pigeon-hole principle, permutation and combination.

UNIT III: PROPOSITIONAL LOGIC

12

Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency.

UNIT IV: ALGEBRAIC STRUCTURES AND MORPHISM

12

Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form.

UNIT V: Graphs and Trees

12

Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example, rooted trees, trees and sorting, weighted trees and prefix codes, Bi-connected component and Articulation Points, Shortest distances.

LECTURE	TUTORIAL	TOTAL
45	15	60

SUGGESTED BOOKS:

- 1. Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill
- 2. Susanna S. Epp, Discrete Mathematics with Applications, $4^{\rm th}$ edition, Wadsworth Publishing Co. Inc.
- 3. C L Liu and D P Mohapatra, Elements of Discrete Mathematics A Computer Oriented Approach, 3rd Edition by, Tata McGraw Hill.

SUGGESTED REFERENCE BOOKS:

- 1. J.P. Tremblay and R. Manohar, Discrete Mathematical Structure and It's Application to Computer Science", TMG Edition, Tata Mcgraw-Hill
- 2. Norman L. Biggs, Discrete Mathematics, 2nd Edition, Oxford University Press. Schaum's Outlines Series, Seymour Lipschutz, Marc Lipson,
- 3. Discrete Mathematics, Tata McGraw Hill

Cos Versus GA mapping

Table 1: Mapping of Cos with GAs:

							GA					
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	2	0	0	2	0	0	0	0	1	0	2
CO 2	3	1	0	0	2	0	0	0	0	1	0	2
CO 3	3	1	0	0	1	0	0	0	0	1	0	2
CO 4	3	2	0	0	1	0	0	0	0	1	0	2
CO 5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	8	0	0	7	0	0	0	0	5	0	10
Scaled Value	3	2	0	0	2	0	0	0	0	1	0	2

							PO						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2

CO 1	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 2	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 3	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 4	3	2	1	1	2	1	0	0	0	0	0	1	1	1
CO 5	3	2	1	1	2	1	0	0	0	0	0	1	1	1
Total	15	10	5	5	10	5	0	0	0	0	0	5	5	5
Scaled Value	3	2	1	1	2	1	0	0	0	0	0	1	1	1

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE (CODE	XCS402		L	Т	P	С
COU	RSE I	NAME	COMPUTER ARCHITECTURE AND ORGANIZATION		3	0	2	5
С	P	A			L	Т	P	H
4.0	1.0	0.0			3	0	4	5
COI	URSE	OUTCO	ME	DOMAIN		LEVE	LL	
CO 1	1		be functional unit of computer and nize various Addressing modes.	Cognitive Psychomo	tor	Reme Under Guide Respo	stand d	
CO2	2	Descri	be and Analyze of arithmetic unit.	Cognitive Psychomo	tor	Reme Analy Guide Respo	ze d	
CO	3	Descri l unit.	be and Recognize the basic processing	Cognitive Psychomo	tor	Reme Under Guide Respo	stand d	
CO ²	4	Explaii	and <i>Illustrate</i> the memory System.	Cognitive Psychomo	tor	Reme Analy Guide Respo	mber, ze d	
CO	5	Explaii	n and Analyze the I/O Organization.	Cognitive Psychomo	tor	Reme Analy Guide Respo	mber, ze d	

COURSE CO	ONTENT	Hours
UNIT I BA	SIC STRUCTURE OF COMPUTERS	9+9
	Functional units - Basic operational concepts - Bus structures - Software performance – Memory locations and addresses – Memory operations – Instruction and instruction sequencing – Addressing modes – Assembly language – Basic I/O operations – Stacks and queues- Measuring, Reporting and Summarizing Performance – Quantitative principles of computer design Practical: 1. String Manipulations, Sorting And Searching- Ascending & Descending Largest & Smallest.	
UNIT II AR	RITHMETIC UNIT	9+6
	Addition and subtraction of signed numbers – Design of fast adders – Multiplication of positive numbers - Signed operand multiplication and fast multiplication – Integer division – Floating point numbers and operations.	
	Practical: 3.16 Bit Arithmetic Operation a. Addition b. Subtraction c. Multiplication d. Division 4. Logical Operations.	

HINIT III	BASIC PROCESSING UNIT	9
	Fundamental concepts – Execution of a complete instruction – Multiple	
	bus organization – Hardwired control – Micro programmed control. Pipelining – Basic concepts – Data hazards – Instruction hazards – Influence on Instruction sets – Data path and control consideration – Superscalar operation.	
UNIT IV	MEMORY SYSTEM	9+9
	Basic concepts – Semiconductor RAMs - ROMs – Speed - size and cost – Cache memories - Performance consideration – Virtual memory-Memory Management requirements – Secondary storage. Practical: Simulate the mapping techniques of Cache memory 5. Direct Mapped cache 6. Associative Mapped cache 7. Set Associative Mapped cache.	
UNIT V	I/O ORGANIZATION	9+6
	Accessing I/O devices – Interrupts – Direct Memory Access – Buses – Interface circuits – Standard I/O Interfaces (PCI, SCSI, USB). Practical:	
	8. Traffic light control 9. Stepper motor control 10.Key board and Display	
	9. Stepper motor control	

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, 6th Edition "Computer Organization", McGraw- Hill, 2012.
- 2. John L. Hennessey and David A. Patterson," Computer Architecture: A Quantitative Approach", 5th Edition, Morgan Kaufmann, 2011
- 3. William Stallings, "Computer Organization and Architecture Designing for Performance", 9th Edition, Pearson Education, 2010
- 4. John P. Hayes, "Computer Architecture and Organization", 3rd Edition, McGraw Hill, 1998

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

							PC)					PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3	2	2	1	1	0	0	0	2	2	3	1
CO2	3	2	3	1	2	1	2	0	0	0	1	1	3	1
CO3	3	2	2	2	2	1	1	0	0	0	3	1	3	1
CO4	3	2	2	1	2	1	1	0	0	0	1	1	3	1
CO5	3	2	3	2	1	1	1	0	0	0	2	1	3	1
Total	15	10	13	8	9	5	6	0	0	0	9	6	15	5

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE C	ODE	XCS403		L	T	P	С
COU	RSE N	AME	OPERATING SYSTEMS		3	0	2	5
С	P	A			L	T	P	Н
4.0	1.0	0.0			3	0	4	5
COU	RSE O	UTCON	мE	Do	main	Lev	el	
CO1	Und syst		d the fundamental concepts of Operating	Cognitive Psychome			nemb dersta	U
CO2	man	_	d and implement the process nt, CPU scheduling algorithms, threads me scheduling.	Cognitive Psychome		Und App	dersta oly	nd
CO3	pro		d and implement recognize the intercommunication, synchronization and	Cognitiv Psychome		Und App	dersta oly	nd
CO4		lerstan nageme	d and implement the memory nt techniques.	Cognitiv Psychomo		Uno App	dersta oly	nd
CO5	1		d the concepts of storage management, gement and file management.	Cognitiv Psychome		Uno	dersta	nd

COURSE CON	TENT	Hours
UNIT I OPER	RATING SYSTEMS OVERVIEW	9+6
Sy: Str Sy W	troduction: Concept of Operating Systems, Generations of Operating Stems, Types of Operating Systems, OS Services, System Calls, ructure of an OS - Layered, Monolithic, Microkernel Operating Stems, Concept of Virtual Machine. Case study on UNIX and INDOWS Operating System. Tactical 1. Basic Commands in Linux 2. Write programs using the process related system calls of UNIX operating system like fork, exec, exit, wait, getuid, geteuid, close, kill etc 3. Write C programs to simulate UNIX commands like ls, grep, etc	
UNIT II PRO	CESS MANAGEMENT	9+6
Prosw Th Co Pr	rocesses: Definition, Process Relationship, Different states of a rocess, Process State transitions, Process Control Block (PCB), Context witching read: Definition, Various states, Benefits of threads, Types of threads, oncept of multithreads rocess Scheduling: Foundation and Scheduling objectives, Types of hedulers, Scheduling criteria: CPU utilization, Throughput,	

Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR Multiprocessor Scheduling: Real Time scheduling: RM and EDF.	•
Practical 4. Write programs using the I/O system calls of UNIX operating system (open, read, write, etc) 5. Implement the various scheduling algorithms like FCFS and SJF scheduling, Priority and Round robin scheduling.	
UNIT III INTER-PROCESS COMMUNICATION	9+6
Inter-process Communication: Critical Section, Race Conditions Mutual Exclusion, Hardware Solution, Strict Alternation Peterson' Solution, The Producer\Consumer Problem, Semaphores Event Counters, Monitors, Message Passing, Classical IPC Problems Reader's & Writer Problem, Dinning Philosopher Problem etc. Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, and Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. Practical 6. Simulate Inter Process Communication 7. Implement the semaphores like Producer – Consumer problem 8. Implementation of Banker's Algorithm	3
UNIT IV MEMORY MANAGEMENT	9+6
 Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation – Fixed and variable partition–Internal and External fragmentation and Compaction; Paging: Principle of Operation – Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging. Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not 	l
Optimal, First in First Out (FIFO), Second Chance (SC), Not Recently used (NRU) and Least Recently used (LRU). Practical 9. Implementation of Memory Management Scheme- Paging a. Implementation of Best Fit algorithm b. Implementation of First Fit Algorithm c. Implement the contiguous file allocation technique d. Implementation of FIFO Page Replacement Algorithm e. Implementation of LRU Page Replacement Algorithm	
Recently used (NRU) and Least Recently used (LRU). Practical 9. Implementation of Memory Management Scheme- Paging a. Implementation of Best Fit algorithm b. Implementation of First Fit Algorithm c. Implement the contiguous file allocation technique d. Implementation of FIFO Page Replacement Algorithm	9+6

	45	30	75
	LECTURE	PRACTICAL	TOTAL
Practical 11. Simulate Storage	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J	•
methods (contiguous, Free-space managementation (linear	ent (bit vector, li		
SCAN, Disk reliability, I File Management: Cor operation, Directory str	ncept of File, Acces ructure, File Syste	ss methods, Fil	e types, File

а

TEXT BOOKS / REFERENCE BOOKS

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9thEdition, John Wiley and Sons Inc., 2012.
- 2. William Stallings, "Operating Systems Internals and Design Principles", 7thEdition, Prentice Hall, 2011
- 3. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education, 1996.
- 4. Gary J. Nutt, "Operating Systems: A Modern Perspective", 2nd Edition, Addison-Wesley, 2000
- 5. Maurice Bach ,"Design of the Unix Operating Systems", 8th Edition, Prentice-Hall of India,2012
- 6. Daniel P. Bovet, Marco Cesati, "Understanding the Linux Kernel", 3rd Edition, , O'Reilly and Associates, 2005

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

		PROGRAM OUTCOMES													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	1	3	0	0	0	0	0	1	0	0	1	3	1	
CO2	3	3	3	1	0	0	0	0	0	0	1	2	3	1	
CO3	2	3	3	1	1	0	0	0	1	0	1	2	3	1	
CO4	3	2	0	1	1	1	1	0	1	0	0	2	3	1	
CO5	3	2	0	1	1	1	1	0	1	0	0	2	3	1	

$$1-5\rightarrow 1$$

$$6-10\rightarrow 2$$

$$11 - 15 \rightarrow 3$$

COUR	RSE CO	DE	XCS404		L	Т	P	С
COUR	RSE NA	ME	DESIGN AND ANALYSIS OF ALGORITHM	IS	3	0	2	5
С	P	A			L	Т	P	Н
4.0	1.0	0.0		3	0	4	5	
Cours	se Out	come		Domain		Level		
CO1	of a	lgorith	d classify the characteristics and analysis m and propose the correct algorithmic solve any problem.	Cognitive		Under	stan	ding
CO2			orithms for any problem based on the d sorting and searching problems.	Cognitive Psychomoto	r (Apply Guide Respo	d	
CO3	Ana com	r (Analyze Guided Response					
CO4	prol		limitations of algorithm and Identify any belonging to the class of P, NP-Complete	Cognitive Psychomoto	r (Under Guide Respo	d	d
CO5	prol	olem	pproximation algorithm for any NP	Cognitive Psychomoto	r (Analy: Guide Respo	d nse	
COUR UNIT	······································	NTENT	SING ALGORITHMS				Hou 9	ırs
		Asymptoase b space trelation theore The R Recurre - The	ole of Algorithms in Computing - Gro ences - The Substitution Method - The Rec Master Method - Probabilistic Analys hms - Amortized Analysis - Aggregate A	t, average and Algorithm, To something the through received and with of Fundarrence Tree is and Rand	d we ime curr Mas	orst- and ence eters' ns – thod		
UNIT	II	DIVID	E AND CONQUER & GREEDY DESIGN STR	ATEGIES			9+	9
		Prograthe de Algorit Sorting Expect Algorit Shorte	mental Algorithmic Strategies: Brute-Formming, Branch and-Bound and Backtracki sign of algorithms - Topological sorting thm – Quick Sort, Merge Sort – Quick Sort Rg in Linear Time - Lower Bounds for Streed Linear Time - Selection in Worst case Ithms - Elements of Greedy Strategy - Huffst Path Algorithm – Heuristics - characteristic - characteristics -	ng methodolo - Analysis of andomized V orting - Sele Linear Time - Tman Code, D	ogie Sor ersi ctio Gr Oijks	rting ion – ion in eedy stra's		

	List of Experiments:	
	1. Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.	
	2. Using OpenMP, implement a parallelized Merge Sort algorithm to	
	sort a given set of elements and determine the time required to sort	
	the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time	
	taken versus n. The elements can be read from a file or can be	
	generated using the random number generator.	
	3. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.	
UNIT III	DYNAMIC PROGRAMMING AND OTHER DESIGN STRATEGIES	9+9
	Dynamic Programming – Matrix Chain Multiplication - Elements of Dynamic programming –Longest Common Sequences – Warshall's and Floyds Algorithm – Transitive Closure – Minimum Spanning Tree - All Pairs Shortest Path Algorithm – Analysis – Backtracking – Graph Coloring Problem – Branch and Bound Strategy - Knapsack Problem - Kruskal's algorithm – Prims algorithm. List of Experiments: 4. Compute the transitive closure of a given directed graph using Warshall's algorithm. 5. Obtain the Topological ordering of vertices in a given digraph. 6. Implement 0/1 Knapsack problem using Dynamic Programming. 7. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. 8. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm. Parallelize this algorithm, implement it using OpenMP and determine the speed-up achieved. 9. Implement N Queen's problem using Back Tracking. 10. Implement the spanning tree algorithm using Prims Algorithm	
UNIT IV	FLOW NETWORKS AND STRING MATCHING	8+6
	Flow Networks – Network Flow Algorithm - Ford Fulkerson Method - String Matching - Naive String Matching Algorithm – Knuth Morris Pratt Algorithm - Analysis. List of Experiments: 11. Implement the Ford-Fulkerson Algorithm for Maximum Flow Problem. 12. Implement the Knuth Morris Pratt Algorithm	
UNIT V	NP PROBLEMS	9+6
	NP-Completeness – Polynomial Time Verification – Theory of Reducibility – Circuit Satisfiability – NP - Completeness Proofs – NP Complete Problems: Vertex Cover, Hamiltonian Cycle and Traveling Salesman Problems - Cook's theorem – Approximation Algorithms – Approximation Algorithms to Vertex - Cover and Traveling Salesman Problems - Randomized algorithms - Class of problems beyond NP – P	

45		30	75
LECTURE	TUTORIAL	PRACTICAL	TOTAL
SPACE. List of Experiments: 13.Implement travelling sprogramming approach. 14.Implement the Hamilton approach.	-	_	-

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliford Stein, Introduction to Algorithms, Third Edition, Prentice Hall, 2010.
- 2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Fundamentals of Computer Algorithms Second Edition, Universities Press, 2008.
- 3. Kenneth A. Berman and Jerome L. Paul, Algorithms, Cengage Learning India, 2010.
- 4. Alfred V Aho, John E Hopcroft and Jeffrey D Ullman, The Design and Analysis of Computer Algorithms, First Edition, Pearson Education, 2006
- 5. Ding-Zhu Du, Ker-I Ko,Xiaodong Hu, Design and Analysis of Approximation Algorithms, Springer Optimization and Its Applications, First Edition, 2011.
- 6. I.Zámecnikova, J.Hromkovic, Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms (Texts in Theoretical Computer Science. An EATCS Series), 2005.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PROGRAM OUTCOMES													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	2	1	0	0	0	0	1	0	0	1	1	1
CO2	2	3	2	1	1	0	0	0	0	0	1	1	2	2
CO 3	2	3	2	1	1	0	0	0	1	0	1	1	2	3
CO4	3	2	2	1	1	1	1	0	1	0	0	0	2	3
CO5	2	2	2	1	1	1	1	0	1	0	0	1	1	2

 $1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$

COUF	RSE C	ODE	XUM405		L	Т	P	С
COUF	RSE N	AME	TOTAL QUALITY MANAGEMENT		3	0	0	3
С	P	Α			L	Т	P	Н
3.0	0. 0	0.0			3	0	0	3
Cour	se ou	tcome	2					<u></u>
				Domain		Le	vel	
CO1			Explain the basic concepts of total quality and its limitations.	Cognitive	Rem Und		erin andii	_
CO2	Em	ployee	and <i>Explain</i> the Customer satisfaction, e involvement, supplier selection and the performance by TQM principle.	Cognitive	Anal Eval	•	_	
CO3	<i>Ехр</i> Тос		nd <i>Apply</i> the Statistical Process Control	Cognitive	Und App		andii 3	1g,
CO4	1	ect and	d <i>Explain</i> the different TQM tools and their ce.	Cognitive	1		erin andii	O.
CO5	-	<i>olain</i> t tems	the importance aspects of different quality	Cognitive	Und	ersta	andii	ng

COURSE CONTENT	Hours				
UNIT I INTRODUCTION					
Definition of quality – Dimensions of quality – Quality planning – Quality costs – Analysis techniques for quality costs – Basic concepts of Tota Quality Management – Historical review –Principles of TQM – Leadership – Concepts – Role of senior management – Quality Council –Quality statements – Strategic planning – Deming philosophy – Barriers to TQM implementation) 7				
UNIT II TQM PRINCIPLES					
Customer satisfaction – Customer perception of quality – Customer complaints – Service quality –Customer retention – Employed involvement – Motivation, empowerment, teams, recognition and reward – Performance appraisal – Benefits – Continuous process improvement – Juran trilogy – PDSA cycle – 5S – Kaizen – Supplier partnership – Partnering – Sourcing – Supplier selection – Supplier rating – Relationship development – Performance measures – Basic concepts – Strategy – Performance measure.	- -				
UNIT III STATISTICAL PROCESS CONTROL (SPC)	9				
The seven tools of quality – Statistical fundamentals – Measures o central tendency and dispersion – Population and sample – Normal curve – Control charts for variables and attributes – Process capability - Concept of six sigma – New seven management tools.)				

IINIT	IV TQM TOOLS	9
01411	14 141110010	
	Benchmarking – Reasons to benchmark – Benchmarking process – Quality Function Deployment (QFD) – House of quality – QFD process – Benefits – Taguchi quality loss function – Total Productive Maintenance (TPM) – Concept – Improvement needs – FMEA – Stages of FMEA.	
JNIT	V QUALITY SYSTEMS	9
	Need for ISO 9000 and other quality systems – ISO 9000:2000 quality system – Elements –Implementation of quality system – Documentation	
	- Quality auditing - TS 16949 - ISO 14000 -Concept, requirements and benefits.	
	- Quality auditing - TS 16949 - ISO 14000 -Concept, requirements and	

TEXT BOOKS

1.Dale H. Besterfiled, et. Al. "Total Quality Management", New Delhi, Pearson Education, Inc.. 2007.

2.James R. Evans and William M. Lidsay, "The Management and Control of Quality", 5th Edition, South- Western, 2002.

REFERENCES

- 1. Feigenbaum, A.V., "Total Quality Management", McGraw Hill, 1991.
- 2. Oakland, J.S., "Total Quality Management", Butterworth Heineman, 1989.
- 3. Narayana V. and Sreenivasan, N.S., "Quality Management Concepts and Tasks", New Age International, 1996.
- 4. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers, 1991.

E- REFERENCES

http://nptel.ac.in/faq/110101010/Prof.IndrajitMukherjee,IIT,Bombay and Prof.Tapan P.Bagchi, IIT, Kharagpur.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO													50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	0	0	0	0	0	2	1	3	2	1	2	1	1	0
CO2	0	0	0	0	0	2	1	3	2	1	2	1	1	0
CO3	0	0	0	0	0	2	1	3	2	1	2	1	1	0
CO4	0	0	0	0	0	2	1	3	2	1	2	1	1	0
CO5	0	0	0	0	0	2	1	3	2	1	2	1	1	0
Total	0	0	0	0	0	10	5	15	10	5	10	5	5	0
Scaled	0	0	0	0	0	2	1	3	2	1	3	1	1	0

 $1-5\rightarrow 1$,

 $6 - 10 \rightarrow 2$,

 $11 - 15 \rightarrow 3$

COURSI	P	С						
COURSI	ENAME	SIGNALS AND SYSTEMS		3	0	0	3	
C:P:A		3:0:0		L	Т	P	Н	
				3	0	0	3	
<u> </u>	QUISITES					T		
COURSI	E OUTCOMES			Dom	aın	L	evel	
CO1	Remembering Understandin g							
CO2	Remembering , Analyzing							
CO3		lve the continuous time LTI syste Fourier and Laplace Transform.	em (Cogni	tive	Reme , Appl	mbering ying	
CO4		l <i>analyze</i> the properties of discrete tinurier and Z Transform.	ne (Cogni	tive	Reme , Apply Analy	•	
CO5	_	nd <i>determine</i> the performance of Discre n in Fourier and Z Transform.	ete (Cogni	nitive Understandir g Applying, Evaluating			
UNIT I	- CLASSIFICATIO	ON OF SIGNALS AND SYSTEMS	i				9	
Pulse,In signals,	npulse, Sinusoida Deterministic& cation of system	ls (CT signals) - Discrete time signal l, Exponential, Classification of CT and D Random signals, Energy & Power signals ns – Static & Dynamic, Linear & No usal, Stable & Unstable.	T sign	nals - Γsyst	Perio	odic & A	Aperiodic systems	
UNIT II	- ANALYSIS OF (CONTINUOUS TIME SIGNAL					9	
		s-spectrum of Continuous Time (CT) Analysis - Properties.	signa	als- F	'ourie	er and	Laplace	
UNIT II	I - LINEAR TIMI	E INVARIANT- CONTINUOUS TIME SYST	EMS				9	
	-	ock diagram representation-impulse re sforms in Analysis of CT systems.	spon	se, co	onvol	ution i	ntegrals-	
UNIT IV	- ANALYSIS OF	DISCRETE TIME SIGNALS					9	
	nd Sampling of Ca ies, Z-transform	Γ signals- Aliasing, Reconstruction of CT s $\&$ properties.	ignal	from	DT si	ignals D	TFT and	
UNIT V - LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS								

Difference Equations-Block diagram representation-Impulse response - Convolution sum-Discrete Fourier and Z Transform Analysis of Recursive & Non-Recursive systems.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	45	0	0	45

TEXT BOOKS

- 1. P.Ramakrishna Rao, "Signals and Systems", Tata McGraw Hill Publications, 2008.
- 2. B.P.Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford University Press, 2009.

REFERENCES

- 1. R.EZeimer, W.H.Tranter. and .R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson Education, 2009.
- 1. John Alan Stuller, "An Introduction to Signals and Systems", Thomson Learning, 2007.
- 2. M.J.Roberts, "Signals & Systems Analysis using Transform Methods & MATLAB", Tata McGraw Hill, 2007.
- 3. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson Education, Indian Reprint, 2007.

E-REFERENCES

- 1. http://nptel.ac.in/courses/117104074 (Prof.K.S.Venktesh, "NPTEL, Signals and Systems", IIT-Kanpur)
- 2. http://tutorialspoint.com/signals_and_systems/index.htm
- 3. http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/

COU	RSE CO	DDE	XCS502		L	Т	P	С
COU	RSE NA	7	2	1	0	3		
C:P:A	A = 3:0	:0						
С	P	A			L	Т	P	Н
3.0	0.0	0.0			2	2	0	4
COU	RSE O	UTCOME	'S	DOM	AIN	I	LEVE	L
CO1			Fundamental of the basic kinds of finite d their capabilities	Cognit	tive	Kno	owled	dge
CO2	Desc	ribe regi	ılar and context-free languages	Cognit	gnitive Kr		Knowled	
CO3	Desc	ribe tra	nsform regular expressions to grammars	Cognit and Affect		Kno Cre	owled ate	dge,
CO4	Expl	ain Cons	tructions of Turing Machines	Cognitive Kno				dge,

UNIT I FINITE AUTOMATA

computability.

CO5

9

Knowledge,

Create

Cognitive

Affective

and

Introduction- Basic Mathematical Notation and techniques- Finite State systems – Basic Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with €-moves – Regular Languages- Regular Expression – Equivalence of NFA and DFA – Equivalence of NDFA's with and without €-moves – Equivalence of finite Automaton and regular expressions – Minimization of DFA- - Pumping Lemma for Regular sets – Problems based on Pumping Lemma.

Describe the key results in algorithmic complexity,

UNIT II GRAMMARS

9

Grammar Introduction - Types of Grammar - Context Free Grammars and Languages - Derivations and Languages - Ambiguity - Relationship between derivation and derivation trees - Simplification of CFG - Elimination of Useless symbols - Unit productions - Null productions - Greiback Normal form - Chomsky normal form - Problems related to CNF and GNF.

UNIT III PUSHDOWN AUTOMATA

9

Pushdown Automata- Definitions – Moves – Instantaneous descriptions –Deterministic pushdown automata – Equivalence of Pushdown automata and CFL - pumping lemma for CFL – problems based on pumping Lemma.

UNIT IV TURING MACHINE

(

Turing Machines- Introduction – Formal definition of Turing machines –Instantaneous descriptions- Turing Machine as Acceptors – Turing Machine as Transducers Computable Languages and functions – Turing Machine constructions – Modifications of Turing Machines.

UNIT V COMPUTATIONAL COMPLEXITY

9

Undecidability- Basic definitions- Decidable and undecidable problems - Properties of Recursive and Recursively enumerable languages - Introduction to Computational Complexity: Definitions-Time and Space complexity of TMs -complexity classes - introduction to NP-Hardness and NP-Completeness.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS

1. Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008.

REFERENCES

- 1. John.C.Martin, "Introduction to Languages and the Theory of Computation" McGraw-Hill Education, 01-May-2010.
- 2. Michael Sipser, "Introduction to the Theory of Computation" Cengage Learning, 2012.

E-REFERENCES

Theory of Computation by Prof. Somenath Biswas, Computer Science and Engineering, IIT Kanpur

Mapping of COs with POs:

							PO						PS	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	3	0	0	0	1	1	1	0	0	0	0
CO2	2	3	2	3	0	0	0	0	0	1	0	2	2	1
CO3	2	2	3	1	1	2	1	2	2	0	0	0	0	2
CO4	3	2	2	2	0	0	0	0	0	1	0	1	0	2
CO5	1	1	3	3	1	2	1	1	1	0	0	2	2	2
Total	10	10	12	12	2	4	2	4	4	3	0	5	4	11

Courses	PO	PO1	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	2	1	2
Original	10	10	12	12	2	4	2	4	4	3	0	5	4	11
Scaled to	2	2	3	3	1	1	1	1	1	1	0	1	1	3
0,1,2,3														
Scale														

COUI	RSE CO	DE	XCS503	L	Т	P	С
COUI	RSE NA	ME	DATABASE MANAGEMENT SYSTEMS	3	0	2	5
С	P	A		L	Т	P	Н
2.8	0.8	0.0		3	0	3	5

Learning Objectives:

This course aims at

- facilitating the student to understand the various concepts and functionalities of Database Management Systems, the method and model to store data.
- How to manipulate through query languages, the effective designing of relational database .

• How the system manages the concurrent usage of data in multi user environment.

COURSI	E OUTCOMES	DOMAIN	LEVEL		
CO1	Construct queries with relational database system with the basics of SQL	Cognitive Psychomotor	Remember, Create Guided Respo	onse	
CO2	Relate and Apply the design principles for logical design of databases, including ER model and normalization approach	Cognitive Psychomotor	Understand,		
CO3	Define and Explain the basic database storage structures and access techniques: file and page organizations, indexing methods including B-tree, B+ tree and hashing.	Cognitive	Remember, Understand		
CO4	Define and Explain the basic issues of transaction processing and concurrency control.	Cognitive	Remember, Understand		
CO5	Work successfully in a team by design and development of database application systems.	Cognitive Psychomotor	Understand, Apply Guided Respo	onse	
UNIT I	INTRODUCTION			9+3	
•••••					

Introduction to File and Database systems- Database system structure – Data Models – Types of Data models – ER model – Relational Model – Keys – Relational Algebra and Calculus.

List of Experiments:

1. Database design using E-R model and Normalization

UNIT II RELATIONAL MODEL

9+21

SQL – Data definition- Queries in SQL- Updates- Views – Integrity and Security – Relational Database design – Functional dependencies and Normalization for Relational Databases – Decomposition - Desirable Properties of Decomposition - Boyce-Codd Normal Form.

List of Experiments:

- 2. Data Definition Language (DDL) commands in RDBMS
- 3. Data Manipulation Language (DML) and Data Control Language (DCL)
- 4. High level language extensions with cursors
- 5. High level language extension with Triggers
- 6. Views
- 7. Procedures and Functions
- 8. Embedded SQL

UNIT III DATA STORAGE AND QUERY PROCESSING

9

Overview of Physical Storage Media – Magnetic Disks – RAID – Tertiary storage – File Organization –Organization of Records in Files – Indexing and Hashing –Ordered Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing – Query Processing.

UNIT IV TRANSACTION MANAGEMENT

C

Transaction Processing – Introduction- Need for Concurrency control- Desirable properties of Transaction- Schedule and Recoverability- Serializability and Schedules – Concurrency Control – Types of Locks- Two Phases locking- Deadlock- Time stamp based concurrency control – Recovery Techniques – Immediate Update- Deferred Update - Shadow Paging.

UNIT V ADVANCED DATABASES

9+6

Distributed databases - Homogenous and Heterogeneous - Distributed data Storage Object Oriented Databases - Need for Complex Data types - OO data Model- Nested relations - Complex Types - Inheritance Reference Types - XML - Structure of XML Data - XML Document Schema - Querying and Transformation - Data Mining and Data Warehousing -Web database-Spatial database - Temporal database - Multimedia database.

List of Experiments:

- **9.** Develop the following applications
 - a. Design and implementation of payroll processing system
 - b. Design and implementation of Banking system
 - c. Design and implementation of Library Information System
 - d. Design and implementation of Student Information System

LECTURE	PRACTICAL	TOTAL
45	30	75

TEXT BOOKS

1. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Sixth Edition, Tata Mc Graw Hill, 2011.

REFERENCES

1. Ramez Elmasri and Shamkant B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education, 2008.

E-RESOURCES

- 1. http://spoken-tutorial.org
- 2. http://vlab.co.in/

Mapping of COs with POs:

		PO												50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	0	2	1	0	0	0	0	0	0	0	0	3	1
CO2	3	2	1	1	0	0	0	0	0	0	0	0	3	1
CO3	3	0	0	0	0	0	0	0	0	0	0	0	3	1
CO4	3	0	0	0	0	0	0	0	0	0	0	0	3	1
CO5	0	3	3	3	2	0	0	0	2	1	0	0	3	3

		PO											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Original	12	5	6	5	2	0	0	0	2	1	0	0	15	7
Scaled to														
0,1,2,3	3	1	2	1	1	0	0	0	1	1	0	0	3	2
scale														

cou	RSE C	ODE	XCS504	L	T	P	С
COU	RSE N	AME	SOFTWARE ENGINEERING	3	0	4	5
С	P	A		L	Т	P	Н

Objective:

Objective of software engineering course are understand the software life cycle models and software development process and elicit, analyze and specify software requirements, design, develop correct and robust software products, testing and adaptation of software maintenance and emerging trends in software engineering.

COUR	SE OUTCOM	ES	DOMAIN	LEVEL
CO1	of softwa	understand and compare various methods are development activities and software ent process models.	Cognitive Psychomotor	Describe, Understand, Apply
CO2	the know	Ability to develop, classify and analyze dedge of human-computer interaction and structure for various application.	Cognitive Psychomotor Affect	Describe Create, Analyze
CO3		apply, Analyze, evaluate and test the software testing and metrics.	Cognitive Psychomotor Affect	Describe Create, Apply
CO4	basics of	apply, Analyze, evaluate and test the software maintenance and software project ent concepts	Cognitive Psychomotor Affect	Describe Create, evaluate Apply
CO5	advanced	nd and , <i>Explain, develop</i> and <i>utilize</i> the software engineering concepts and engineering development tools	Cognitive Psychomotor Affect	Describe Create, Apply

Introduction – Hardware Vs. Software - A Generic view of Process – SDLC - Process life cycle models (Water Fall, Incremental, Evolutionary, Specialized, Agile) – Agile development - System Engineering. Requirements Engineering - Requirement gathering techniques - Requirements Engineering tasks – Process - Requirement Analysis - Eliciting Requirements - Building the analysis Model - Data Modeling Concepts - Object Oriented Analysis.

List of Experiments:

- 1. Feasibility study for any two application
- 2. Project Planning for the above application
- 3. Software requirement analysis for any two application
- 4. Write SRS for any two application
- 5. Create traceability matrix for any two applications

UNIT -II DESIGN CONCEPTS AND PRINCIPLES

9 + 6

Design Engineering – Design Process and Design Concepts and Model-Architectural design - software architecture – data design – architectural design – transform and transaction mapping- Modeling the Component Level Design –Introduction-Designing Class-based Components- User interface analysis and design - Coupling and Cohesion- Design elements of interface, component level and deployment level.

List of Experiments:

- 6. Draw use-case, class for any two applications.
- 7. Draw sequence and collaboration diagram for any two applications.

- 8. Draw activity and state chart for any two applications.
- 9. Component, package and deployment diagram for any two applications.

UNIT-III TESTING

9 + 12

Testing Strategies - A strategic approach to software testing - Strategic Issues - Test strategy for Conventional software, Object oriented software - SQA - Validation Testing - System testing and debugging - Testing fundamentals - Black Box testing - White Box testing - Basis Path testing - control structure testing - Test case - Performance testing - Object oriented testing.

List of Experiments:

- 10. Generate and Implementation of skeleton code for any two application
- 11. Writing test cases for any two application
- 12. Testing process for any two application
- 13. Check verification & Validation for any two applications.

UNIT-IV

SOFTWARE PROJECT MANAGEMENT

9

Project Management life cycle – Need of application maintenance – Management spectrum - Testing Rationale Management – Configuration Management – Project Management – project process product measures and metrics – Estimation of software projects – Decomposition techniques and empirical estimation models - Risk analysis and mitigation plans - Procurement management.

UNIT V

ADVANCED TOPICS IN SOFTWARE ENGINEERING

9

Formal Methods – Basic Concepts – Mathematical preliminaries-Applying Mathematical notations for formal specification – Formal specification languages-Clean room software Engineering-Clean room Approach-Functional specification-Component-Based Development-Reengineering-Software Reengineering-Reverse Engineering- Forward Engineering-Introduction to CASE tools and testing tools – Software process improvement –Automation testing tools.

LECTURE	PRACTICAL	TOTAL	
45	30	75	

TEXT BOOKS

1. Roger S.Pressman, Software engineering- A practitioner's Approach, McGraw- Hill International Edition, 8th edition, 2015.

REFERENCES

- 1. Ian Sommerville, Software engineering, Pearson education Asia, 10th edition, 2016.
- 2. Pankaj Jalote- An Integrated Approach to Software Engineering, 3rd edition 2011.
- 3. C.Ravindranath Pandian, "Software metrics A guide to planning, analysis and application", AUERBACH publication, Newyork 2011.
- 4. Ali Behforooz, Frederick J Hudson, "Software Engineering Fundamentals", second edition, Oxford University Press, Noida, 2009.

E REFERENCES

- 1. NPTEL Course Prof. N. L. Sarda, IIT Bombay
- 2. http://vlab.co.in/
- 3. http://staruml.io/
- 4. http://argouml.tigris.org/
- 5. http://www.seleniumhq.org
- 6. IBM Rational Rose Enterprise Edition 8.1

Mapping of COs with POs:

		PO											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	1	2	1	0	0	1	0	0	0	0	0	2	2	1
CO 2	2	3	3	2	2	1	3	0	0	0	0	1	3	2
CO 3	3	3	3	1	1	3	0	1	2	0	3	3	3	3
CO 4	3	3	3	1	1	3	0	1	2	0	3	3	3	3
CO 5	1	3	0	0	3	0	1	0	0	1	0	1	3	1
	10	14	10	4	7	8	4	2	4	1	6	10	14	10

		PO											PSO PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Original value	10	14	10	4	7	8	4	2	4	1	6	10	14	10
Scaled to 0,1,2,3 scale	2	3	2	1	2	2	1	1	1	1	2	2	3	2

COURSE CODE	XCS505	L	Т	P	C
COURSE NAME	IT WORKSHOP(SCILAB/MATLAB)	1	0	4	3
PREREQUISITES	Working knowledge of some basic application software (Excel). Basic knowledge of computer programming and an understanding of matrix and linear algebra are highly beneficial.	L	Т	P	Н
C:P:A	0.25:2.0:0.75	1	0	4	5

Learning Objectives

- Understanding the MATLAB environment
- Being able to do simple calculations using MATLAB
- Being able to carry out simple numerical computations and analyses using MATLAB

COURS	E OUTCOMES	DOMAIN	LEVEL
CO1	Understand the main features of the MATLAB development environment	Cognitive, Psychomotor Affective	Understand Guided Response Responding
CO2	Use the MATLAB GUI effectively	Cognitive Psychomotor	Understand Guided Response Responding
CO3	Design simple algorithms to solve problems	Cognitive Psychomotor Affective	Apply Guided Response Responding
CO4	Write simple programs in MATLAB to solve scientific and mathematical problems	Cognitive Psychomotor Affective	Apply Guided Response Responding
CO5	graphical representations and tips for designing and implementing MATLAB code	Cognitive Psychomotor Affective	Apply Guided Response Responding

THEORY

MATLAB basics, The MATLAB environment, Basic computer programming Variables and constants, operators and simple calculations ,Formulas and functions, MATLAB toolboxes

15

Matrix and linear algebra review , Vectors and matrices in MATLAB, Matrix operations and functions in MATLAB

Reading and writing data, file handling ,Personalized functions ,Toolbox structure ,MATLAB graphic functions

EXPERIMENTS 30

- 1. Study of Introduction to MATLAB
- 2. Study of basic matrix operations
- 3. To solve linear equation
- 4. Solution of Linear equations for Underdetermined and over determined cases.
- 5. Determination of Eigen values and Eigen vectors of a Square matrix.
- 6. Solution of Difference Equations.
- 7. Solution of Difference Equations using Euler Method.
- 8. Solution of differential equation using 4th order Runge- Kutta method.
- 9. Determination of roots of a polynomial.
- 10. Determination of polynomial using method of Least Square Curve Fitting.
- 11. Determination of polynomial fit, analyzing residuals, exponential fit and error bounds from the given data.

	LECTURE	TUTORIAL	TOTAL
HOURS	45	0	45
REFERENCES			

- 1. Amos Gilat 'MATLAB, An Introduction With Applications', 3rd edition, Wiely publishers, 2008
- 2. Stephen J. Chapman' MATLAB Programming for Engineers' $5^{\rm th}$ edition, Cengauge learninb, 2016
- 3. Holly Moore 'MATLAB for Engineers', 5th edition, Pearson, 2012

Table 1: Mapping of COs with POs:

]	P O						PS0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1				1	3							1		
CO2	2	2		1	3							1		
CO3		2	1	2	2							1		
CO4					2									
CO5				2	2									
Total	2	4	1	6	12							3		
Scale d value	1	1	1	2	3							1		

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

SUBCODE	XCSM01	L	Т	P	С
SUB NAME	Programming with Python	0.5	0	0.5	1
PREREQUISITE S	-	L	Т	P	Н
C:P:A		1	0	1	2

COURSE	COUTCOMES	Domain	Level
CO1	Describe the evolution of python program and the	Cognitive	Remember
	handle installation process with different OS.		
CO2	Understand the data types and operators with	Cognitive	Remember
	dictionaries.	_	,Understand
UNIT I	INSTALLATION		6

Downloading and installation: overview of python – installing python on windows –installing python on Linux – feature – History and philosophy of python – interactive mode – structure with identification.

UNIT II DATA TYPE AND STATEMENT

6

Identification- Data Types and Variables - Operators -input and raw input via the keyboard - Conditional Statements -While Loops -For Loops -Formatted output -Output with Print -Sequential Data Types - Dictionaries -Sets and Frozen Sets -Shallow and Deep Copy.

UNIT III FUNCTION AND REGULAR EXPRESSION

6

Functions - Recursion and Recursive Functions - Tests, DocTests, UnitTests - Memoization and Decorators - Passing Arguments- Namespaces - Global vs. Local Variables- File Management - Modular Programming and Modules - Introduction in Regular Expressions - Regular Expressions, Advanced - Lambda Operator, Filter, Reduce and Map - List Comprehension- Generators

UNIT IV OBJECT ORIENTED PROGRAMMING

6

Exception Handling - Object Oriented Programming - Inheritance Example - Slots - Classes and Class Creation -Road to Metaclasses - Metaclasses - files input and output - inheritance, polymorphism, operator overloading - Multithreading.

UNIT V APPLICATION OF PYTHON PROGRAMMING

6

Graphical user interfaces; event-driven programming paradigm; tkinter module, creating simple GUI; buttons, labels, entry fields, dialogs; widget attributes - sizes, fonts, colors layouts, nested frames-, Networks, and Client/Server Programming; introduction to HTML, interacting with remote HTML server, running html-based queries, downloading pages; CGI programming, programming a simple CGI form

•	LECTUR	TUTORIA	PRACTICA	TOTAL
	E	${f L}$	${f L}$	
	15	0	15	30

TEXT BOOKS

1. Fundamentals of Python: First Programs Author: Kenneth Lambert Publisher: Course Technology, Cengage Learning, 2012 ISBN-13: 978-1-111-82270-5

E-REFERENCES

- 1. https://wiki.python.org/moin/BeginnersGuide/Overview
- 2. https://docs.python.org/2/license.html
- 3. http://www.python-course.eu/blocks.php
- 4. http://www.tutorialspoint.com/python

COURSE CODE	XCS601	L	T	P	С
COURSE NAME	COMPILER DESIGN	3	0	1	4
C:P:A	2.8:0.8:0.4				
		T.	Т	P	Н
		3	0	2	5

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Describe the compilers and its construction tools and specification of tokens.	Cognitive	Remember
CO2	Describe and apply various parsing techniques for parsing the string.	Cognitive, Psychomotor	Understand Guided Response
CO3	<i>Illustrate</i> and <i>construct</i> intermediate language.	Cognitive, Psychomotor	Understand Guided Response
CO4	Describe the code generation and make use of code generator to generate target code.	Cognitive, Psychomotor	Understand Guided Response
CO5	Explain code optimization and apply the optimization technique	Cognitive, Psychomotor	Understand Guided Response

UNIT I INTRODUCTION TO COMPILING

9 + 12

Compilers – analysis of the source program – phases of a compiler – cousins of the compiler – grouping of phases – compiler construction tools – lexical analysis – role of lexical analyzer – input buffering – specification of tokens- Lex- Simple Program using Lex.

List of Programs

- 1. Construction of NFA
- 2. Construction of Minimized DFA
- 3. Implementation of Lexical Analyzer Using LexTool.
- 4. Generation of Tokens for Given Lexeme.
- 5. Conversion of Infix to Postfix Expression
- 6. Implementation of Symbol Table

UNIT II SYNTAX ANALYSIS

9 +8

Role of the parser –Writing Grammars –Context-Free Grammars – Top Down parsing – Recursive Descent Parsing – Predictive Parsing – Bottom-up parsing – Shift Reduce Parsing – Operator Precedent Parsing – LR Parsers – SLR Parser – Canonical LR Parser – LALR Parser-YACC –Simple Program using YACC.

List of Programs

- 7. Syntax Analysis using YACC.
- 8. Implementation of Shift Reduce Parsing Algorithm.
- 9. Construction of LR Parsing Table.
- 10. Construction of Operator Precedence Parse Table.

UNIT III INTERMEDIATE CODE GENERATION

9 + 5

Intermediate languages – Declarations – Assignment Statements – Boolean Expressions – Case Statements – Back patching – Procedure calls.

List of Programs

- 11.Implementation of Quadruples
- 12. Implementation of Triples.
- 13. Implementation of Intermediate Code Generation.

UNIT IV CODE GENERATION

9 + 2

Issues in the design of code generator – The target machine – Runtime Storage management – Basic Blocks and Flow Graphs – Next-use Information – A simple Code generator – DAG representation of Basic Blocks – Peephole Optimization.

List of Programs

14. Implementation of Code Generation

UNIT V CODE OPTIMIZATION AND RUN TIME ENVIRONMENTS

9 + 3

Introduction – Principal Sources of Optimization – Optimization of basic Blocks – Introduction to Global Data Flow Analysis – Runtime Environments – Source Language issues – Storage Organization – Storage Allocation strategies – Access to non-local names – Parameter Passing.

List of Programs

15.Implementation of Code Optimization Techniques

LECTURE	PRACTICAL	TOTAL
45	30	75

TEXT BOOKS

1. Alfred V.Aho, Jeffrey D.Ullman, Ravi Sethi, "Compilers- Principles, Techniques, and Tools(Second Edition)", Pearson Education India, 2008.

REFERENCES

- 1. Allen I. Holub "Compiler Design in C", Prentice Hall of India, 2003.
- 2. C. N. Fischer and R. J. LeBlanc, "Crafting a compiler with C", Benjamin Cummings, 2003.
- 3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, Tata McGraw-Hill, 2003.
- 4. Henk Alblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI, 2001.
- 5. Kenneth C. Louden, "Compiler Construction: Principles and Practice", Thompson Learning, 2003.

E REFERENCES

- 1. http://nptel.ac.in/downloads/106108113/
- 2. http://www.svecw.edu.in/Docs%5CCSECDLNotes2013.pdf
- 3. https://www.wiziq.com/tests/compiler-design
- 4. http://spoken-tutorial.org/
- **5.** http://vlab.co.in/

Mapping of COs with POs:

		PO										PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	3	2	3	2	1	0	0	2	1	0	2	3	2
CO 2	2	3	2	3	2	1	0	0	2	1	0	1	3	2
CO 3	1	3	3	2	1	1	0	0	1	1	0	2	3	2
CO 4	2	2	2	2	2	1	0	0	1	1	0	1	3	2
CO 5	2	3	3	1	1	1	0	0	1	1	0	1	3	2
Total	9	14	12	11	8	5	0	0	7	5	0	7	15	10

COUF	RSE CO	DE	XCS602	L	Т	P	С
COUF	RSE NA	ME	COMPUTER NETWORKS	3	0	1	4
С	P	A					
2.8	0.8	0.4		L	Т	P	Н
				3	0	2	5

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Understanding the networks components and Analyzing the various network components.	Cognitive	Understand,
CO2	Describe and Recognize the network error detection and correction methods.	Cognitive	Remember, Apply,
CO3	Identify and interpret the network switching and addressing methods and develop the various routing simulations.	Cognitive Psychomotor	Remember, Understand, Guided response
CO4	Analyse a transport layer functions and setup connection oriented protocol.	Cognitive Psychomotor	Analyze, Create Perception
CO5	Describe the Application layer functions and network security and Build simple NS2 simulations	Cognitive Psychomotor Affective	Understand Guided Response Receive

UNIT I DATA COMMUNICATIONS

9

Components- Direction of Data flow-networks- Components and Categories – types of connections- Topologies- Protocols and Standards – ISO/OSI model – Transmission Media – Coaxial Cable – Fiber Optics – Line Coding – Modems.

UNIT II DATA LINK LAYER

9 + 15

Error – Detection and Correction – Parity – LRC - CRC – Hamming code – low Control and Error control – stop and wait – go back –N ARQ – selective repeat ARQ – Sliding window – HDLC – LAN – Ethernet IEEE 802.3 - IEEE 802.5 - IEEE 802.11 – FDDI – SONET – Bridges.

List of Programs

- 1. (a) Implement Single Bit Parity generator and checker using 'C' program.
- (b) Implement two dimensional parity generator and checker using 'C' program.
- 2. (a) Implement Cyclic Redundancy checks sender and receiver using c program.
- (b) Implement checksum sender and receiver using 'C' program.
- 3. Simulate Stop & Wait protocol.
- 4. Implement error detection in data transmission using Hamming code.
- 5. Implement bit stuffing sender and receiver using c program.

UNIT III NETWORK LAYER

9 + 6

Internetworks – Packet switching and Datagram approach – IP addressing methods – subnetting – Routing – Distance Vector Routing – Link State Routing – Routers.

List of Programs

- 7. Simulate the distance vector routing algorithm.
- 8. Simulate the link state routing algorithm.

UNIT IV TRANSPORT LAYER

9 + 6

Duties of Transport Layer – Multiplexing – De multiplexing – Sockets – User Datagram Protocol(UDP) – Transmission Control Protocol (TCP) – Congestion Control – Quality of Service (QOS) – Integrated Services.

List of Programs

- 9. Implement echo Server sender and receiver using TCP.
- 10. Implement the Time Server sender and receiver using TCP.

UNIT V APPLICATION LAYER

9 + 3

Domain Name Space (DNS) – SMTP – POP 3 – FTP – HTTP – WWW- Security - Cryptography Case study on TCP/IP Architecture.

List of Experiments:

- 11. Simulate the file transfer protocol using TCP.
- 12. Implement byte stuffing sender and receiver using c program.
- 13. To study NS2-Simple programs.

LECTURE	PRACTICAL	TOTAL
45	30	75

TEXT BOOKS

- 1. Behrouz A Forouzan "**Data Communications Networking**" 4th Edition Tata McGraw Hill, 2008.
- 2. Andrew S. Tanenbaum, David J. Wetherall, **"Computer Networks"**, 5th Edition, 2010, ISBN-10: 0132126958, ISBN-13: 978-0132126953

E REFERENCES

- 1. http://nptel.ac.in/courses/106105081/
- 2. Nptel videos Computer Networks by Prof. Sujoy Ghosh Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur.
- 3. E-Tools: https://www.wireshark.org/
- 1.W. STALLINGS, "**Data and Computer Communication**", 8th edition, Pearson Education, 2006,
- 2. Larry L. Peterson and Peter S.Davie , "Computer Networks", Harcourt Asia Pvt Ltd., Second Edition

E REFERENCES

- 1. http://nptel.ac.in/downloads/106108113/
- 2. http://www.svecw.edu.in/Docs%5CCSECDLNotes2013.pdf
- 3. https://www.wiziq.com/tests/compiler-design
- 4. http://spoken-tutorial.org/
- **5.** http://vlab.co.in/

COURSE CODE	XUM606	L	Т	Р	С
COURSE NAME	ECONOMICS FOR ENGINEERS	3	0	0	3
PREREQUISITES		L	Т	P	Н
C:P:A	2.64:0.24:0.12	3	0	0	3

Learning Objectives

- ➤ To provide comprehensive coverage of economical concepts for precise decision makings in engineering domains.
- > To develop the ability of engineers to analysis the cost and revenue by using economical tools.

COURSE	OUTCOMES	DOMAIN	LEVEL
CO1	<i>Explain</i> the concepts of economics in	Cognitive	Understand
	engineering and <i>identify</i> element of cost to	Psychomotor	Perception
	prepare cost sheet		
CO2	Calculate and Explain the Break-even point and	Cognitive	Understand
	marginal costing	Psychomotor	&Apply
			Perception
CO3	Summarize and Use value engineering	Cognitive	Understand
	procedure for cost analysis	Affective	Receive
CO4	Estimate replacement problem	Cognitive	Understand
CO5	Compute, Explain and make Use of different methods of depreciation	Cognitive	Understand &Apply

UNIT I: INTRODUCTION TO ECONOMICS

80

Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics- types of costing, element of costs, preparation of cost sheet and estimation, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost

UNIT II: BREAK-EVEN ANALYSIS&SOCIAL COST BENEFIT ANALYSIS

12

Margin of Safety, Profit, Cost & Quantity analysis-Product Mix decisions and CVP analysis, Profit/Volume Ratio (P/V Ratio), Application of Marginal costing, Limitations

Social Cost Benefit Analysis: compare different project alternatives, Calculate direct, indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.

UNIT III: DEPRECIATION

10

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the years digits method of depreciation, sinking fund method of depreciation/ Annuity method of depreciation, service output method of depreciation.

UNIT IV: REPLACEMENT AND MAINTENANCE ANALYSIS

07

Replacement and Maintenance analysis – Types of maintenance, types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset – capital recovery with return and concept of challenger and defender, Simple probabilistic model for items which fail completely.

UNIT V:INFLATION AND PRICE CHANGE

08

Definition, Effects, Causes, Price Change with Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes in Engineering Economic Analysis, Cash Flows that inflate atdifferent Rates.

	LECTURE	TUTORIAL	TOTAL
HOURS	45	0	45

TEXT BOOKS

- 1. G. Rajendra et.al., "Engineering Economy 1st Edition", New Age International, 2006
- 2. S.P.Jain& Narang, "Cost accounting Principles and Practice", Kalyani Publishers, Calcutta, 2012.

REFERENCES

- 1. James L.Riggs, David D. Bedworth, Sabah U. Randhawa: Economics for Engineers 4e , Tata McGraw-Hill
- 2. Donald Newnan, Ted Eschembach, Jerome Lavelle : Engineering Economics Analysis, OUP
- 3. John A. White, Kenneth E.Case, David B. Pratt : Principle of Engineering Economic Analysis, John Wiley
- 4. Sullivan and Wicks: Engineering Economy, Pearson

Table 1: Mapping of CO's with POs

	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁	PO ₁₂
CO1	1	2	0	1	0	0	1	1	1	2	2	3
CO2	2	2	1	2	0	0	2	1	1	2	3	3
CO3	2	2	1	3	0	0	2	2	1	2	2	3
CO4	1	2	1	2	0	0	0	1	1	1	2	3
CO5	1	2	0	1	0	0	1	1	0	1	2	3
Scaled	1	2	1	2	0	0	1	1	1	2	2	3

- 0 No relation
- 1- Low relation
- 2- Medium relation
- 3 High relation

SUBCOD	E	XCSM02		L	T	P	C	
SUB NAM	1E	WEB DESIGN		0.5	0	0.5	1	
PREREQ	UISITES	HTML and Designing Tools		L	Т	P	Н	
C:P:A 0.5	5:0.5:0			1	0	1	2	
COURSE	OUTCOM	IES	Domain	<u> </u>	Lev	vel		
CO1	CO1 Understand and perform the learning principles and techniques of client-side programming with HTML5.					sponse	e	
CO2	Cogniti					Guided Response Understandi ng Apply Guided		
						sponse	e	
HTML5 - Store - V Geolocati	Veb SQL I ion – micr	w – Syntax – Attributes – Events – Web Forn Database – Server Sent Events - Web Sockets rodata – Drag and Drop – Web Workers – Inde	s – Canvas	s – Aud	Res 6 Math lio ar	nd Vid	We leo	
Store – V Geolocati – Web RT UNIT II Introduct Compone	- Overview Veb SQL I ion – micr CC. JOOMLA tion – Instents Menu	Database – Server Sent Events - Web Sockets rodata – Drag and Drop – Web Workers – Inde A BASICS tallation – Architecture – Control Panel – Tool 1 – Extensions Menu – Help Menu.	s – Canvas xDDB – W	s – Aud Veb Mes	Res 6 Math lio an ssagi 6	ML - nd Vid ng – C	We leo COR	
HTML5 - Store - V Geolocati - Web RT UNIT II Introduct Compone UNIT III	- Overview Veb SQL I ion – micr IC. JOOMLA tion – Instents Menu JOOMLA	Database – Server Sent Events - Web Sockets rodata – Drag and Drop – Web Workers – Inde A BASICS tallation – Architecture – Control Panel – Tool a – Extensions Menu – Help Menu. MENUS	s – Canvas xDDB – W lbar – Mei	s – Aud Veb Mes nus – C	Res 6 Math lio aussagi 6 Conte	ML - nd Vid ng – C	We leo COR	
HTML5 - Store - V Geolocati - Web RT UNIT II Introduct Compone UNIT III Create M	- Overview Veb SQL I ion – micr CC. JOOMLA tion – Inst ents Menu JOOMLA enus – Ad	Database – Server Sent Events - Web Sockets rodata – Drag and Drop – Web Workers – Inde A BASICS tallation – Architecture – Control Panel – Tool - Extensions Menu – Help Menu. MENUS ding Menu Items – Modifying Menu Items – Cr	s – Canvas xDDB – W lbar – Mei	s – Aud Veb Mes nus – C	Res 6 Math lio anssagi 6 Conte	ML - nd Vid ng – C	We leo COR	
HTML5 - Store - V Geolocati - Web RT UNIT II Introduct Compone UNIT III	- Overview Veb SQL I ion – micr CC. JOOMLA tion – Inst ents Menu JOOMLA enus – Ad	Database – Server Sent Events - Web Sockets rodata – Drag and Drop – Web Workers – Inde A BASICS tallation – Architecture – Control Panel – Tool a – Extensions Menu – Help Menu. MENUS	s – Canvas xDDB – W lbar – Mei	s – Aud Veb Mes nus – C	Res 6 Math lio aussagi 6 Conte	ML - nd Vid ng – C	We leo COR	
HTML5 - Store - V Geolocati - Web RT UNIT II Introduct Compone UNIT III Create M UNIT IV Create M module	Overview Veb SQL I ion – micr CC. JOOMLA tion – Inst ents Menu JOOMLA toomus – Ad JOOMI odules – E	Database – Server Sent Events - Web Sockets rodata – Drag and Drop – Web Workers – Inde A BASICS tallation – Architecture – Control Panel – Tool – Extensions Menu – Help Menu. MENUS ding Menu Items – Modifying Menu Items – Cr LA MODULES Breadcrumb Module – Feed Display Module – Forch Module – Random Image Module – Who's	s – Canvas xDDB – W lbar – Men reating Sul	s – Aud Veb Mes nus – C bmenus	Resolve And Andrews An	ML - nd Vid ng – C	We leo COR	
HTML5 - Store - V Geolocati - Web RT UNIT II Introduct Compone UNIT III Create M UNIT IV Create M module module -	Overview Veb SQL I ion – micr CC. JOOMLA tion – Inst ents Menu JOOMLA tooms – Ad JOOMI odules – E - Sea Donation	Database – Server Sent Events - Web Sockets rodata – Drag and Drop – Web Workers – Inde A BASICS tallation – Architecture – Control Panel – Tool – Extensions Menu – Help Menu. MENUS ding Menu Items – Modifying Menu Items – Cr LA MODULES Breadcrumb Module – Feed Display Module – Forch Module – Random Image Module – Who's	s – Canvas xDDB – W lbar – Men reating Sul	s – Aud Veb Mes nus – C bmenus	Resolve And Andrews An	ML - nd Vid ng – C	We leo COR	
HTML5 - Store - V Geolocati - Web RT UNIT II Introduct Compone UNIT III Create M UNIT IV Create M module module - UNIT V Template Logo - C Adding B	Overview Veb SQL I ion – micr CC. JOOMLA tion – Instents Menu JOOMLA enus – Ad JOOMLA odules – E - Sea Donation JOOMLA e Manager Category Manners –	Database – Server Sent Events - Web Sockets rodata – Drag and Drop – Web Workers – Inde A BASICS tallation – Architecture – Control Panel – Tool A Extensions Menu – Help Menu. MENUS ding Menu Items – Modifying Menu Items – Cr LA MODULES Breadcrumb Module – Feed Display Module – Forch Module – Random Image Module – Who's a Module	S – Canvas xDDB – W lbar – Men reating Sul Footer Mod Online Mod Creating T g Content ng Forum te SEO.	bmenus dule – I odule – Fempla – Artio	Res 6 Math lio and ssagi 6 Conte 6 S Lates Synce 16 Nng W	ML - nd Vid ng - C nt Me	We leo COR enu ws	

- 1. Eric Meyer on CSS: Mastering the Language of Web Design. 2003. Eric Meyer. New Riders Publishing.
- 2. A. Thomas Powell, "The complete reference HTML and CEE (Covers HTML5)" McGraw Hill, Fifth Edition, 2010.
- 3. Kogent Learning Solutions Inc. "HTML5 Black Book: Covers CSS3, Javascript, XML,

- XHTML, Ajax, PHP and Jquery Black Book", Dreamtech Press, 2011.
- 4. Kogent Learning Solutions Inc "Web Technologies: HTML, JavaScript, PHP, Java, JSP, XML and AJAX, Black Book", Dreamtech Press, 2009.
- 5. Jennifer Marriott, Elin Waring, "The Official Joomla! Book 2nd Edition", Addison-Wesley Professional, 2012.

REFERENCES

- 1. Build Your Own Web Site the Right Way Using HTML & CSS, 2nd Edition by Ian Lloyd.
- 2. The Essential Guide to CSS and HTML Web Design (Essentials) by Craig Grannel.

COU	COURSE CODE XUM801		XUM801	L	Т	P	С
cou	RSE NAI	ME	CYBER SECURITY	3	0	0	3
С	P	A		L	Т	P	Н
3	0	0		3	0	0	3

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	To <i>identify</i> , <i>learn</i> , <i>practice</i> , <i>and understand</i> the basic concepts of networks and cyber-attacks.	Cognitive	Remember, Analyse, Apply.
CO2	To <i>define</i> the concepts of system vulnerability scanning and the scanning tools	Cognitive	Remember
CO3	To <i>demonstrate, describe, and differentiate</i> the network defense mechanisms and <i>identify and apply</i> the tools used to detect and quarantine network attacks.	Cognitive	Understand, Analyze, Apply.
CO4	To <i>describe, differentiate, apply</i> the different tools for scanning.	Cognitive	Understand, Analyze, Apply.
C05	To <i>identify</i> and <i>list</i> the types of cybercrimes, cyber laws and cyber-crime investigations.	Cognitive	Remember

UNIT I - INTRODUCTION

9

History of Information Systems and its Importance, Basics, Changing Nature of Information Systems, Need for Distributed Information Systems: Role of Internet and Web Services. Information System Treats and attacks, Classification of Threats and assessing Damages Security in mobile and Wireless Computing-Security Challenges in Mobile Devices, authentication service Security, Security Implication for Organizations, Laptops security Concepts in Internet and World Wide Web: Brief review of Internet Protocols TCP/IP, IPV4, and IPV6. Functions of various networking components-routers, bridges, switches, hub, gateway and Modulation Techniques.

UNIT II - SYSTEMS VULNERABILITY SCANNING

9

Overview of vulnerability scanning, Open Port / Service Identification, Banner / Version Check, Traffic Probe, Vulnerability Probe, Vulnerability Examples, OpenVAS, Metasploit. Networks Vulnerability Scanning - Netcat, Socat, understanding Port and Services tools - Datapipe, Fpipe, WinRelay, Network Reconnaissance - Nmap, THC-Amap and System tools. Network Sniffers and Injection tools - Tcpdump and Windump, Wireshark, Ettercap, Hping Kismet.

UNIT III - NETWORK DEFENCE TOOLS

9

Firewalls and Packet Filters: Firewall Basics, Packet Filter Vs Firewall, How a Firewall Protects a Network, Packet Characteristic to Filter, Stateless VsStateful Firewalls, Network Address Translation (NAT) and Port Forwarding, the basic of Virtual Private Networks, Linux Firewall, Windows Firewall, Snort: Introduction Detection System, Cryptool.

UNIT IV - TOOLS FOR SCANNING

9

Scanning for web vulnerabilities tools: Metasploit tool, Nikto, W3af, HTTP utilities - Curl, OpenSSL and Stunnel, Application Inspection tools - Zed Attack Proxy, Sqlmap. DVWA, Webgoat, Password Cracking and Brute-Force Tools - John the Ripper, L0htcrack, Pwdump, THC-Hydra.

UNIT V - INTRODUCTION TO CYBER CRIME AND LAW

9

Cyber Crimes, Types of Cybercrime, Hacking, Attack vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems Associated with Computer Crime, Introduction to Incident Response, Digital Forensics, Computer Language, Network Language, Realms of the Cyber world, A Brief History of the Internet, Recognizing and Defining Computer Crime, Contemporary Crimes, Computers as Targets, Contaminants and Destruction of Data, Indian IT ACT 2000.

Introduction to Cyber Crime Investigation: Password Cracking, Key loggers and Spyware, Virus and Worms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Attack on wireless Networks.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS

- 1. Nina Godbole, "Information Systems Security: Security Management, Metrics, Frameworks and Best Practices, w/cd", Wiley Publications, 2008, ISBN 10: 8126516925, ISBN 13: 9788126516926
- 2. Thomas J. Mowbray, "Cybersecurity: Managing Systems, Conducting Testing and Investigating Intrusions", Wiley Publications, 2013, Kindle Edition, ISBN 10:812654919X, ISBN 13:9788126549191
- 3. D.S. Yadav, "Foundations of Information Technology", New Age International publishers, 3rd Edition, 2006, ISBN-10: 8122417620, ISBN-13: 978-8122417623.

REFERENCES

- 1. Mike Shema, "Anti-Hacker Tool Kit", McGraw Hill Education, 4th edition, 2014,
- 2. Nina Godbole, SunitBelapure, "Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley publications, 2013, ISBN 10:8126521791, ISBN 13:9788126521791.
- 3. Corey Schou, Daniel Shoemaker, "Information Assurance for the Enterprise: A Roadmap to Information Security (McGraw-Hill Information Assurance & Security)", Tata McGraw Hill, 2013, ISBN-10: 0072255242, ISBN-13: 978-0072255249.
- 4. VivekSood, "Cyber Laws Simplified", McGraw Hill Education (INDIA) Private Limited in 2001, ISBN-10: 0070435065, ISBN-13: 978-0070435063.
- 5. Steven M.Furnell, "Computer Insecurity", Springer Publisher, 2005 Edition.

E - REFERENCES

- 1. https://www.cryptool.org/en/
- 2. https://www.metasploit.com/
- 3. http://sectools.org/tool/hydra/
- 4. http://www.hping.org/
- 5. http://www.winpcap.org/windump/install/
- 6. http://www.tcpdump.org/

- 7. https://www.wireshark.org/
- 8. https://ettercap.github.io/ettercap/
- 9. https://www.concise-courses.com/hacking-tools/top-ten/
- 10. https://www.cirt.net/Nikto2
- 11. http://sqlmap.org/

Table 1: Mapping of COs with POs

							PO						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	3	0	2	2	2	0	0	0	3	2
CO2	3	3	3	3	2	1	1	1	2	0	0	0	3	2
CO3	0	3	2	2	0	1	2	2	0	0	0	0	0	0
CO4	2	2	2	2	0	0	0	0	0	0	0	0	0	0
CO5	3	2	3	3	3	0	2	2	2	0	0	0	3	2
Total	11	13	13	13	8	2	7	7	6	0	0	0	9	6

							PO						PS	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Original	11	13	13	13	8	2	7	7	6	0	0	0	9	6
Scaled to 0,1,2,3 scale	3	3	3	3	2	1	2	2	2	0	0	0	2	2

COUR	RSE COI	DE	XCSE51		L	T	P	C
COUR	RSE NAI	ME	ARTIFICIAL INTELLIGENCE		3	0	0	3
					L	Т	P	Н
С	P	A			3	0	0	3
3	0	0						
COUR	RSE OU'	DOMAIN		L	EVEI	L		
CO1	1	reser pred	Cognitive	U	Inde	rstar	nd	
CO2		e sea	Cognitive	Α	pply	7		
CO3	Use	infe ressio	Cognitive	Α	pply	7		
CO4	·······	ly ar	Cognitive	Α	pply	7		
CO5	Und abo	Cognitive	U	Inde	rstar	nd		
UNIT			DUCTION	<u>i</u>	i	9		•••••
Histor Strate Backy	ry of A egies, G ward Ch	I; Ch ener nainir	naracteristics of AI applications, Problem Sc al Problem Solving, Production Systems, Cor ng, Exhaustive Searches: Depth First and Brea I STRATEGIES	ntrol Strategi	es;	and		an
Histor Strate Backv UNIT Hill or	ry of A egies, G ward Ch II SEA climbing	II; Chener lainin ARCH g - I	naracteristics of AI applications, Problem So al Problem Solving, Production Systems, Cor ng, Exhaustive Searches: Depth First and Brea I STRATEGIES Backtracking - Graph search - Properties of ecialized production systems - AO* algori	ntrol Strategion of A* algorit	es;] ch. hm	and Forw	vard Iono	an 9 ton
Histor Strate Backv UNIT Hill or	ry of A egies, G ward Ch II SEA climbing ction - ems Ga	AI; Chener ener ARCH g - I Spe me P	naracteristics of AI applications, Problem So al Problem Solving, Production Systems, Cor ng, Exhaustive Searches: Depth First and Brea I STRATEGIES Backtracking - Graph search - Properties	ntrol Strategion of A* algorit	es;] ch. hm	and Forw	vard Iono	ano g ton ctio
Histor Strate Backy UNIT Hill c restri proble UNIT Game Introd	ry of A egies, G ward Ch II SEA climbing ction - ems Ga III playing duction esentati	AI; Chener lainin ARCH g - I Spe me P KNO g - Ki to lon us	naracteristics of AI applications, Problem So al Problem Solving, Production Systems, Cor ng, Exhaustive Searches: Depth First and Brea A STRATEGIES Backtracking - Graph search - Properties of ecialized production systems - AO* algorialized Min Max Search procedure.	ntrol Strategion of A* algorithm. Constration using edicate Calcu	es; lech. hm aint g Pre	and Forw - M Sat	lono isfac	and g ton ction g
Histor Strate Backv UNIT Hill or restri proble UNIT Game Introd Repre UNIT Introd Termi Paran Relati Fuzzy and F	ry of A egies, G ward Ch II SEA climbing ction - ems Ga III playing duction esentati IV duction inology neterizati ons - l w Model duzzy Model	AI; Chener alining ARCH g - I Specific Specifi	naracteristics of AI applications, Problem Solal Problem Solving, Production Systems, Corng, Exhaustive Searches: Depth First and Bread STRATEGIES Backtracking - Graph search - Properties of ecialized production systems - AO* algoritalized production systems - AO* algoritalized production procedure. WLEDGE REPRESENTATION Howledge Representation, Knowledge Representation, Was of Prosing other Logic-Structured Representation of EXTY SET THEORY Neuro - Fuzzy and Soft Computing - Fuzzy Set-theoretic Operations - Member - Fuzzy Rules and Fuzzy Reasoning - Extendible Fuzzy Rules - Fuzzy Reasoning - Fuzzy Ingeno Fuzzy Models - Tsukamoto Fuzzy Moding.	ntrol Strategion of A* algorithm. Construction using edicate Calcumbrates and Calcumbrates	es;] ch. hm aint c De cript cipl tem:	and Forw - M Sat edica FS efini ulati e an	one tion on ad F	and getton ction ogide edg and and uzzz darinin
Histor Strate Backv UNIT Hill corestri proble UNIT Game Introc Repre UNIT Introc Termi Paran Relati Fuzzy and F	ry of A egies, G ward Ch II SEA climbing ction - ems Ga III playing duction esentati IV duction inology neterizati ons - l w Model duzzy Model	AI; Chener alining ARCH g - I Specific Specifi	naracteristics of AI applications, Problem So al Problem Solving, Production Systems, Corng, Exhaustive Searches: Depth First and Bread STRATEGIES Backtracking - Graph search - Properties of ecialized production systems - AO* algoritalized production, Knowledge Representation, Knowledge Representation, Knowledge Representation, Knowledge Representation of CZY SET THEORY Neuro - Fuzzy and Soft Computing - Fuzzy Set-theoretic Operations - Member - Fuzzy Rules and Fuzzy Reasoning - Experimental Set	ntrol Strategion of A* algorithm. Construction using edicate Calcumbrates and Calcumbrates	es;] ch. hm aint c De cript cipl tem:	and Forw - M Sat edica FS efini ulati e an	one tion on ad F	an general section of the section o
Histor Strate Backv UNIT Hill or restri proble UNIT Game Introd Repre UNIT Introd Termi Paran Relati Fuzzy and F UNIT	ry of A egies, G ward Ch II SEA climbing ction - ems Ga III eplaying duction esentati IV duction inology neterizations - la v Model duzzy M V (ative-ba ical Ne	AI; Chener alining ARCH g - I Specific Specifi	naracteristics of AI applications, Problem Solal Problem Solving, Production Systems, Corng, Exhaustive Searches: Depth First and Bread STRATEGIES Backtracking - Graph search - Properties of ecialized production systems - AO* algoritalized production systems - AO* algoritalized production procedure. WLEDGE REPRESENTATION Howledge Representation, Knowledge Representation, Was of Prosing other Logic-Structured Representation of EXTY SET THEORY Neuro - Fuzzy and Soft Computing - Fuzzy Set-theoretic Operations - Member - Fuzzy Rules and Fuzzy Reasoning - Extendible Fuzzy Rules - Fuzzy Reasoning - Fuzzy Ingeno Fuzzy Models - Tsukamoto Fuzzy Moding.	entation using edicate Calcu Knowledge, Softension Pring of Edward Special Cartension Pring of the Special Cartension Pring of	es; dech. hm aint c Decipl cipl tem pace oppose oppose oplex	and Forw - M Sat edica Kn PS efini ulati e an s - I e Par	tion on ad F Mam tition esce zatio	ton ogio edg an an uzz dar nin

TEXT BOOKS

- 1. Elaine Rich and Kevin Knight: Artificial Intelligence Tata McGraw Hill, 2008
- 2. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007.
- 3. G.Luger, W.A. Stubblefield, "Artificial Intelligence", 3rd Edition, Addison-Wesley Longman, 1998

REFERENCES

- 1. Nils J. Nilsson: Principles of Artificial Intelligence Narosa Publication house.
- 2. Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson Education 2nd Edition.
- 3. Artificial Intelligence, Winston, Patrick, Henry, Pearson Education.
- 4. Artificial Intelligence by Gopal Krishna, Janakiraman.
- 5. N.J. NILSSON, "Principles of Artificial Intelligence", Narosa Publishing House, 1980

							PO						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	3	0	0	0	0	0	0	0	0	0	0	1	0
CO2	1	3	0	0	0	0	0	0	0	0	0	0	2	0
CO3	1	3	0	1	1	0	0	0	0	0	0	0	3	0
CO4	1	3	0	2	0	0	0	0	0	0	0	0	1	0
CO5	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Total	5	13	0	3	1	0	0	0	0	0	0	0	6	0

COU	RSE CO	DE	XCSE52	L	Т	P	С
COURSE NAME		ME	GRAPH THEORY	3	0	0	3
				L	Т	P	Н
С	P	A					
3.0	0.0	0.0					

LEARNING OBJECTIVES:

- Be familiar with the most fundamental Graph Theory topics and results.
- Be exposed to the techniques of proofs and analysis.

COURS	SE OUTCOMES	DOMAIN	LEVEL
CO1	Write precise and accurate mathematical definitions of objects in graph theory.	Cognitive	Remembering Understanding
CO2	Use mathematical definitions to identify and construct examples and to distinguish examples from non-examples.	Cognitive	Remembering Understanding
CO3	Validate and critically assess a mathematical proof.	Cognitive	Remembering Understanding
CO4	Use a combination of theoretical knowledge and independent mathematical thinking in creative investigation of questions.	Cognitive	Remembering Understanding
CO5	Reason from definitions to construct mathematical proofs.	Cognitive	Remembering Understanding

UNIT I INTRODUCTION

9

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits –Connectedness – Components – Euler graphs – Hamiltonian paths and circuits – Trees – Properties of trees – Distance and centres in tree – Rooted and binary trees.

UNIT II TREES, CONNECTIVITY & PLANARITY

9

Spanning trees – Fundamental circuits – Spanning trees in a weighted graph – cut sets – Properties of cut set – All cut sets – Fundamental circuits and cut sets – Connectivity and separability – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational and geometric graphs – Planer graphs – Different representation of a planer graph.

UNIT III MATRICES, COLOURING AND DIRECTED GRAPH

8

Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four color problem – Directed graphs – Types of directed graphs – Digraphs and binary relations – Directed paths and connectedness – Euler graphs.

UNIT IV PERMUTATIONS & COMBINATIONS

9

Fundamental principles of counting - Permutations and combinations - Binomial theorem - combinations with repetition - Combinatorial numbers - Principle of inclusion and exclusion - Derangements - Arrangements with forbidden positions.

UNIT V GENERATING FUNCTIONS

10

Generating functions - Partitions of integers - Exponential generating function - Summation operator - Recurrence relations - First order and second order - Non-homogeneous recurrence relations - Method of generating functions.

LECTURE	TUTORIAL	TOTAL
45	0	45

REFERENCES

- 1. Narsingh Deo, "Graph Theory: With Application to Engineering and Computer Science", Prentice Hall of India, 2003.
- 2. Grimaldi R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", AddisonWesley, 1994.
- 3. Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Publishers, 1995.
- 4. Mott J.L., Kandel A. and Baker T.P. "Discrete Mathematics for Computer Scientists and Mathematicians", Prentice Hall of India, 1996.
- 5. Liu C.L., "Elements of Discrete Mathematics", McGraw Hill, 1985.
- 6. Rosen K.H., "Discrete Mathematics and Its Applications", McGraw Hill, 2007.

E-References:

- https://nptel.ac.in/courses/106108054/
- https://nptel.ac.in/courses/111106086/51

		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	3	2	1	1	1	0	1	0	0	0	0	1	2	2	
CO 2	1	3	2	1	1	0	0	0	0	0	0	1	2	2	
CO 3	1	2	3	1	0	0	0	0	0	0	0	1	2	2	
CO 4	1	2	2	3	0	0	0	0	0	0	0	1	2	2	
CO 5	0	2	3	3	0	0	0	2	0	0	0	1	2	2	
Total	6	10	7	2	0	1	0	3	0	0	0	5	5	10	

COURSE CODE	XCSE53	L	T	P	С
COURSE NAME	DATA COMMUNICATION	3	1	0	4

C	P	A							L	Т	P	Н	
3.0	1.0	0.0						3 2			0	5	
COUF	OURSE OUTCOMES							DOMAIN	I	LEVEI			
CO1		e rstanc nunica		basic	concepts	for	data	Cognitive	K	nowl	edge,		
CO2			d the erro	or detect	tion and er	ror cori	rection	Cognitive	A	nalys	is		
CO3	1		d and an creation	<i>alyze</i> r	networks la	ıyer fur	nctions	Cognitive	1	nowl nalys	•		
CO4	Unde	Understand the concepts of transport layer							e Knowledge				
CO5	Reco	<i>gnize</i> t	the design	issue of	application	layer		Cognitive	A	nalys	is		

UNIT I DATA COMMUNICATIONS

9+3

Data Transmission – Transmission Media – Signal Encoding Techniques – Multiplexing – Spread Spectrum. Interfaces and modems - Digital data transmission - Parallel and Serial DTE / DCE interface data terminal equipment, data circuit terminating equipment - Standards RS 232, Transmission rate of modems, Modem standards.

UNIT II DATA LINK LAYER

9+3

Types of errors and detection, redundancy, VRC, LRC, CRC techniques - Error correction - Forward and backward error correction - Single bit and multi bit error correction - Hamming code. Data link control: Need for data link control - Line discipline, ENQ / ACK, Flow control stop and wait sliding window protocol, Error control, ARQ, Stop and wait ARQ, Sliding window ARQ Protocols: Asynchronous and Synchronous communications - Asynchronous and Synchronous Protocol - Character oriented protocol, BSC, bit oriented protocols - HDLC frames - Link access procedures.

UNIT III NETWORK LAYER

9+3

Network layer design issues, Congestion Control algorithm, Internetworks – Packet switching and Datagram approach – IP addressing methods – Subnetting – Routing – Distance Vector Routing – Link State Routing – Routers.

UNIT IV TRANSPORT LAYER

9+3

Duties of Transport Layer – Multiplexing – De multiplexing – Sockets – User Datagram Protocol(UDP) – Transmission Control Protocol (TCP) – Congestion Control – Quality of Service (QOS) – Integrated Services., Connection management .

UNIT V APPLICATION LAYER

9+3

Domain Name Space (DNS) – SMTP – POP 3 – FTP – HTTP – WWW- Security - Cryptography Case study on TCP/IP Architecture , Directory services - Common Management Information Protocol - TCP/IP: TCP/IP and the Internet - TCP/IP and OSI.

	LECTURE	TUTORIAL	Total
	45	15	60
TEXT BOOKS:			

1. Behrouz A Forouzan "Data Communications Networking" 4th Edition Tata McGraw

Hill, 2008.

2. Andrew S. Tanenbaum, David J. Wetherall, "Computer Networks", 5th Edition, 2010, ISBN-10: 0132126958, ISBN-13: 978-0132126953

REFERENCES

- 1. William Schewber, "Data Communication", McGraw Hill, 2009.
- 2. Tanenbaum, "Computer Networks", PHI, 5th Edition, 2011

EREFERENCES

- 1. http://people.du.ac.in/~ngupta/teach_networks.html
- 2. http://www.cs.hunter.cuny.edu/~saad/courses/networks/notes/note1_ho.pdf
- 3. http://www.vub.ac.be/BIBLIO/nieuwenhuysen/courses/chapters/network.pdf
- 4. http://lecturenotes.in/notes/engg/paper/dccn/page1.html

COUF	RSE COD	Е	XCSE54	L	Т	P	С
COUF	RSE NAM	Έ	INFORMATION THEORY AND CODING	3	0	0	3
PREF	REQUISIT	ΓES	Probability theory	L	Т	P	Н
С	P	Α		3	0	0	4

3.0	0.0	0.0					
COUF	RSE OU	TCOMES				Domain	Level
CO1	•	s cribe the acity	ion and channel	Cognitive	Knowledge		
CO2	: Des	scribe the	Pulse code M	tems	Cognitive	Knowledge	
CO3	: Exp	olain and	<i>Apply</i> the err	or control cod	ing	Cognitive	Knowledge, Understand
CO4	•	s cribe an hniques	d Analyze co	mpression and	d decompression	Cognitive	Knowledge, Understand
CO5		o lain and Thniques	d <i>Illustrate</i>	communication	Cognitive	Knowledge, Understand	

UNIT I INFORMATION ENTROPY FUNDAMENTALS

9

Uncertainty, Information and Entropy – Source coding Theorem – Huffman coding –Shannon Fano coding – Discrete Memory less channels – channel capacity – channel coding Theorem – Channel capacity Theorem.

UNIT II DATA AND VOICE CODING

9

Differential Pulse code Modulation – Adaptive Differential Pulse Code Modulation – Adaptive subband coding – Delta Modulation – Adaptive Delta Modulation – Coding of speech signal at low bit rates –Vocoders and LPC.

UNIT III ERROR CONTROL CODING

9

Linear Block codes – Syndrome Decoding – Minimum distance consideration – cyclic codes – Generator Polynomial – Parity check polynomial – Encoder for cyclic codes – calculation of syndrome – Convolutional codes.

UNIT IV COMPRESSION TECHNIQUES

9

Principles – Text compression – Static Huffman Coding – Dynamic Huffman coding – Arithmetic coding – Image Compression – Graphics Interchange format – Tagged Image File Format – Digitized documents – Introduction to JPEG standards.

UNIT V AUDIO AND VIDEO CODING

9

Linear Predictive coding – code excited LPC – Perceptual coding, MPEG audio coders – Dolby audio coders – Video compression – Principles – Introduction to H.261 & MPEG Video standards.

LECTURE	TUTORIAL	TOTAL	
45	0	45	

TEXT

- 1.R Bose, "Information Theory, Coding and Crptography", TMH 2007
- 2. Simon Haykin, Communication Systems, John Wiley & sons, 4th Edition, 2001.
- 3. Fred Halsall, "Multimedia Communications, Applications Networks Protocols and Standards", Pearson Education, Asia 2002; Chapters: 3,4,5.

REFERENCES

1. Mark Nelson, "Data Compression Book", BPB Publication 1992.

2. Watkinson J, "Compression in Video and Audio", Focal Press, London 2002.

E REFERENCE

1. NPTEL, Communication Engineering, Prof. Surendra Prasad, Department of Electrical Engineering Indian Institute of Technology, Delhi HauzKhas New Delhi -110 016

						P	O						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	2	1	0	0	1	0	1	0	0	0	1	2
CO 2	3	2	1	1	0	0	0	0	1	0	0	0	2	2
CO 3	3	2	1	1	0	0	1	0	1	0	0	0	2	2
CO 4	3	2	2	0	0	0	1	0	1	0	0	0	2	2
CO 5	3	2	2	1	0	0	1	0	1	0	0	0	2	3
	15	10	8	4	0	0	4	0	5	0	0	0	9	11

						P	0						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Origina l value	15	10	8	4	0	0	4	0	5	0	0	0	9	11
Scaled to 0,1,2,3 scale	3	2	2	1	2	0	1	0	1	0	0	0	2	3

SUBCO	DE	SUBCODE XCSE61										
SUB NA	ME		WEB AND INTERNET TECHNOLOGY	3	0	0	3					
PRERE	QUISIT	ΓES		L	Т	P	Н					
С	P	A		3	0	0	3					

3.0	0.0 0.0		
COURS	E OUTCOMES	Domain	Level
CO1:	Understand the technological foundations of the Internet and core Internet protocols	Cognitive	Knowledge
CO2:	Understand the fundamental tools and technologies for web design.	Cognitive	Knowledge
CO3:	Develop code to demonstrate, understanding of knowledge related to XML	Cognitive	Knowledge, Understand
CO4:	<i>Identify</i> and <i>outline</i> the threats, firewalls and authentication mechanism.	Cognitive	Knowledge, Understand
CO5:	<i>Use</i> fundamental skills to host a website.	Cognitive	Knowledge, Understand

UNIT I INTRODUCTION TO INTERNET

9

Introduction, Evolution of Internet, Internet Applications, Internet Protocol -TCP/IP, UDP, HTTP, Secure HTTP(SHTTP) Internet Addressing – Addressing Scheme – Ipv4 & IPv6, Network Byte Order, Domain Name Server and IP Addresses, Mapping, Internet Service Providers, Types Of Connectivity Such As Dial-Up Leaded Vsat Etc. Web Technologies: Three Tier Web Based Architecture; JSP, ASP, J2EE .Net Systems.

UNIT II HTML CSS AND SCRIPTING

9

HTML - Introduction, SGML, DTD(Document Type Definition, Basic Html Elements, Tags and usages, HTML Standards, Issues in HTML DHTML: Introduction Cascading Style Sheets: Syntax, Class Selector, Id Selector DOM (Document Object Model) & DSO (Data Source Object) Approaches To Dynamic Pages: CGI, Java Applets, Plug Ins, Active X, Java Script – Java Script Object Model, Variables-Constant – Expressions, Conditions- Relational Operators- Data Types – Flow Control – Functions & Objects-events and event handlers – Data type Conversion & Equality – Accessing HTML form elements.

UNIT III XML 9

What is XML – Basic Standards, Schema Standards, Linking & Presentation Standards, Standards that build on XML, Generating XML data, Writing a simple XML File, Creating a Document type definition, Documents & Data ,Defining Attributes & Entities in the DTD ,Defining Parameter Entities & conditional Sections, Resolving a naming conflict, Using Namespaces, Designing an XML data structure, Normalizing Data, Normalizing DTDS.

UNIT IV INTERNET SECURITY & FIREWALLS

9

Security Threats From Mobile Codes, Types Of Viruses, Client Server Security Threats, Data & Message Security, Various electronic payment systems, Introduction to EDI, Challenges–Response System, Encrypted Documents And Emails, Firewalls: Hardened Firewall Hosts, IP-Packet Screening, Proxy Application Gateways, AAA (Authentication, Authorization And Accounting)

UNIT V WEBSITE PLANNING & HOSTING

9

Introduction, Web Page Lay-Outing, Where To Host Site, Maintenance Of Site, Registration Of Site On Search Engines And Indexes, Introduction To File Transfer Protocol, Public Domain Software, Types Of FTP Servers (Including Anonymous),FTP Clients Common Command. Telnet Protocol, Server Domain, Telnet Client, Terminal Emulation. Usenet And Internet Relay Chat.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT

1.Internet & Intranet Engineering- Daniel Minoli, TMH.

2. Alexis Leon and Mathews Leon – Internet for Every One, Tech World.3. Fred Halsall, "Multimedia Communications, Applications Networks Protocols and Standards", Pearson Education, Asia 2002; Chapters: 3,4,5.

REFERENCES

- 1. Eric Ladd, Jim O'Donnel -"Using HTML 4, XML and JAVA"-Prentice Hall of India 1999.
- 2. "Beginning Java Script" Paul Wilton SPD Publications –2001.
- 3. Frontiers of Electronics of Commerce, Ravi kalakota & Andrew B. Whinston
- 4. Addison WesleyAdvance Java- Gajendra Gupta, firewall Media

E REFERENCE

1. NPTEL, Communication Engineering, Prof. Surendra Prasad, Department of Electrical Engineering Indian Institute of Technology, Delhi HauzKhas New Delhi -110 016

						P	0						PSO PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	3	3	1	0	0	0	0	0	0	0	3	2
CO 2	3	2	3	3	1	0	0	0	0	0	0	0	3	2
CO 3	1	1	2	2	0	0	0	0	0	0	0	0	0	0
CO 4	3	3	2	3	1	0	0	0	0	0	0	0	3	2
	10	8	10	11	3	0	0	0	0	0	0	0	9	6

							РО						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Original	10	8	10	11	3	0	0	0	0	0	0	0	9	6
Scaled to 0,1,2,3 scale	2	2	2	3	1	0	0	0	0	0	0	0	2	2

COUR	SE CO	DE	XCSE62		L	L T P			
COUR	SE NA	ME	Queuing Theory and Modelling		3	3 0 0 :			
С	P	Α			L	Т	P	Н	
3.0	0.0	0.0			3	0	0	3	
COUR	SE OU	TCOM	ES	DOMA	IN	LEVEL			
CO1	and gen	to I	screte and continuous random variables Find the expected values and moment g functions of discrete and continuous ons.	Cogniti	ive	Reme	embe	ring	
CO2			ne standard distribution and Identify the listribution	Cogniti	ive	ve Remember Understand		_	

CO3	Explain the joint and Marginal distribution and to Find the Correlation and regression.	Cognitive	Remembering Understanding
CO4	Explain the Markovian models and to Find the characteristics of the models	Cognitive	Remembering Understanding
CO5	Explain the basic concepts of queuing theory	Cognitive	Remembering
	PROBABILITY AND RANDOM VARIABLE	8	9
Binom	I STANDARD DISTRIBUTIONS ial, poisson, Geometric, Negative Binomial, Uniform, Expo		
		on ontial Car	<u>L</u>
	l distributions and their properties- Function of a ry function and its properties	andom vari	iable. Probabilit
UNIT	III TWO DIMENSIONAL RANDOM VARIABLES		9
	listributions – Marginal and conditional distribution – (sion – Transformation of random variables- Central limit		- Correlation an
UNIT I	V RANDOM PROCESSES AND MARKOV CHAINS		9
	ication – Stationary process – Markov process –Poiss s – Markov chains- transition probabilities – Limiting dis		Birth and deat
UNIT	V QUEUEING THEORY		9
	vian models – M /M/1, M/M/C, finite and infinite capa model – M/G/1 queue (steady state solution only) – Po Leases		

LECTURE

45 Hrs

TEXT BOOKS

- 1. Ross, S., "A first course in probability", Sixth Edition, Pearson Education, Delhi, 2002.
- 2. Medhi j., "Stochastic Processes ", New Age Publishers, New Delhi, 1994. (Chapters 2,3 &
- 3. Taha, H.A., "Operations Research An introduction", Seventh Edition, Pearson Education Edition Asia, Delhi, 2002.
- 4. Gupta .S.C and Kapoor .V.K, "Fundamentals of Mathematical Statistics", 11th
- 5. extensively revised edition, Sultan Chand & Sons, 2007.
- 6. Veerarajan .T, Probability, "Statistics and Random Processes", Tata McGraw
- 7. Hill,3rd edition, 2008.

REFERENCES

- 1. Veerarajan. T., "Probability, Statistics and Random. Processes", Tata McGraw Hill, Second Edition, New Delhi, 2003.
- 2. Allen., A.O., "Probability, Statistics and Queuing Theory", Academic press, New Delhi, 1981.
- 3. Gross, D. and Harris, C.M., "Fundamentals of Queuing theory ", John Wiley and Sons, Second Edition, New York, 1985.

E REFERENCES

1.Advanced Engineering Mathematics Prof. Somesh Kumar.Department of Mathematics, Indian Institute of Technology, Kharagpur.

							GA					
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	0	0	0	0	0	0	0	1	1	0	1
CO 2	3	0	0	0	0	0	0	0	1	1	0	1
CO 3	3	2	0	0	0	0	0	0	0	1	1	2
CO 4	3	2	0	0	1	0	0	0	1	1	1	2
CO 5	3	2	0	0	1	0	0	0	1	1	1	2
Total	15	6	0	0	2	0	0	0	4	5	3	8

SUBCO	DDE		XCSE63	L	Т	P	С
SUB N	AME		DISTRIBUTED SYSTEMS	3	0	0	3
PRERI	EQUISI	TES					
С	P	A		L	Т	P	Н
3.0	0.0	0.0		3	0	0	4

Course	outcomes	Domain	Level
CO1	Describe basics of Distributed Systems, Trends in Distributed Systems and Challenges.	Cognitive	Knowledge
CO2	Define inter process communication and Explain internet protocols for external data representation and multi cast communication.	Cognitive	Knowledge, Understand
CO3	Explain peer to peer services and illustrate different file system and naming.	Cognitive	Knowledge, Understand
CO4	Describe Synchronization and replication in distributed system.	Cognitive	Knowledge
CO5	Explain Process management and Resource management in distributed system.	Cognitive	Knowledge

UNIT I INTRODUCTION 9

Introduction - Examples of Distributed Systems-Trends in Distributed Systems - Focus on resource sharing - Challenges. Case study: World Wide Web.

UNIT II COMMUNICATION IN DISTRIBUTED SYSTEM

9

System Model - Inter process Communication - the API for internet protocols - External data representation and Multicast communication. **Network virtualization:** Overlay networks. **Case study:** MPI **Remote Method Invocation And Objects:** Remote Invocation - Introduction - Request-reply protocols - Remote procedure call - Remote method invocation. **Case study:** Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches - Distributed objects - Case study: Enterprise Java Beans - from objects to components

UNIT III PEER TO PEER SERVICES AND FILE SYSTEM

9

Peer-to-peer Systems - Introduction - Napster and its legacy - Peer-to-peer - Middleware - Routing overlays. **Overlay case studies:** Pastry, Tapestry- Distributed File Systems - Introduction - File service architecture - Andrew File system. **File System:** Features-File model -File accessing models - File sharing semantics **Naming:** Identifiers, Addresses, Name Resolution - Name Space Implementation - Name Caches - LDAP.

UNIT IV SYNCHRONIZATION AND REPLICATION

9

Introduction - Clocks, events and process states - Synchronizing physical clocks- Logical time and logical clocks - Global states - Coordination and Agreement - Introduction - Distributed mutual exclusion - Elections - Transactions and Concurrency Control- Transactions -Nested transactions - Locks - Optimistic concurrency control - Timestamp ordering - Atomic Commit protocols -Distributed deadlocks - Replication - Case study - Coda.

UNIT V PROCESS & RESOURCE MANAGEMENT

9

Process Management: Process Migration: Features, Mechanism - Threads: Models, Issues, Implementation. **Resource Management:** Introduction- Features of Scheduling Algorithms - Task Assignment Approach - Load Balancing Approach - Load Sharing Approach.

45 0 45	LECTURE	TUTORIAL	TOTAL	
TJ 0 TJ	45	0		

TEXT

1. George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012.

REFERENCES

- 1. Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India. 2007.
- 2. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.
- 3. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 4. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003

E REFERENCES

- 1. http://nptel.ac.in/courses/106106107/
- 2. https://www.cs.york.ac.uk/rts/books/.../distributedSystems.pdf

		PO 1 2 2 4 5 6 7 0 0 10 11 11												0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	3	2	0	0	0	0	0	0	0	0	2	2
CO 2	3	2	3	2	0	0	0	0	0	0	0	0	2	2
CO 3	3	3	2	2	0	0	0	0	0	0	0	0	2	2
CO 4	3	3	2	2	0	0	0	0	0	0	0	0	2	2
CO 5	3	3	2	2	0	0	0	0	0	0	0	0	2	2
	15	13	12	10	0	0	0	0	0	0	0	0	10	10

							PO						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Original value	15	13	12	10	0	0	0	0	0	0	0	0	10	10
Scaled to 0,1,2,3 scale	3	3	3	2	0	0	0	0	0	0	0	0	2	2

	E CODE	XCSE64		L	Т	P	C
COURS	E NAME	CRYPTOGRAPHY AND NETWORK SECURITY	Y	3	0	0	3
PRERE	QUISITES			L	Т	P	Н
C:P:A		3:0:0		3	0	0	3
COURS	E OUTCOME	S S	Domain	L	.eve	 [
CO1:		e common network vulnerabilities and attacks	Cognitiv		Jnde		nd
CO2:	:	nd <i>compare</i> the security of different hic algorithm	Cognitiv	1	Knov Jnde		_
CO3:		ne possible threats to each mechanism and otect against these threats	Cognitiv	е	Ana	lyzir	ng
CO4:	1	che requirements and mechanisms for on and authentication.	Cognitiv	e l	Jnde	ersta	nd
CO5:	i -	e requirements of real-time communication nd issues related to the security of web	Cognitiv	e l	Jnde	ersta	nd
UNIT I	INTRODU	ICTION				ç)
Basic c	INTRODU oncepts: conf nce, Maliciou	ICTION Fidentiality, integrity, availability, security policies Software, Denial-of-Service Attacks, Intrus		-		anisı	ns,
Basic co	INTRODU oncepts: conf nce, Maliciou tion	fidentiality, integrity, availability, security polic s Software ,Denial-of-Service Attacks, Intrus		-		anisı	ns ion
Basic coassurar Preventunit III	INTRODUCTION Oncepts: confince, Maliciountion I CRYPTOO DES – Differe	fidentiality, integrity, availability, security polic s Software ,Denial-of-Service Attacks, Intrus	sion Dete	ction	, In	anisi trusi	ms, ion
Basic coassurar Preventunit III	INTRODUCTION Oncepts: confince, Maliciountion I CRYPTOO DES – Difference Attacks – Prince	Fidentiality, integrity, availability, security policies Software ,Denial-of-Service Attacks, Intrus GRAPHY ential cryptoanalysis – DES – Modes of operation	sion Dete	ction	, In	anisi trusi	ms ion
Basic coassurar Preventure III UNIT III Simple - RSA - UNIT II Discret Public I	INTRODIC oncepts: confince, Malicious tion I CRYPTOO DES – Differed Attacks – Prince II SECURIT E Logarithms key cryptosys	Fidentiality, integrity, availability, security policies Software ,Denial-of-Service Attacks, Intrus GRAPHY Intial cryptoanalysis – DES – Modes of operation imality test – factoring.	n – Triple I key exch	DES -	- AE: - E	anisi trusi S – R	ms, ion C4
Basic coassurar Preventunit III Simple – RSA – UNIT III Discret Public II	INTRODUCTION ONCEPTS: confince, Malicioun I CRYPTOO DES – Differe Attacks – Prince II SECURIT E Logarithms key cryptosys res – RSA – E	GRAPHY Integrity, availability, security police GRAPHY Intial cryptoanalysis – DES – Modes of operation Imality test – factoring. GY MECHANISM S – Computing discrete logs – Diffie-Hellman Stems – Hash functions – Secure Hash – Birthday	n – Triple I key exch	DES -	- AE: - E	anisi trusi S – R	ms, ion
Basic coassurar Preventunit II Simple – RSA – UNIT II Discret Public Issignatu	INTRODUCTION ONCEPTS: confince, Malicious I CRYPTOCO DES – Differe Attacks – Prince II SECURIT E Logarithms key cryptosys res – RSA – E V NETWO tication appli	GRAPHY Integrity, availability, security polices of Software of the police of the software of	n – Triple I key exchay	DES - ange	- AE: - E	anisi trusi S – R	ms, ion C4
Basic coassurar Preventunit II Simple – RSA – UNIT II Discret Public Issignatu	INTRODUCTION ONCEPTS: confince, Malicious I CRYPTOCOUNTY DES – Differe Attacks – Prince Attacks – Prince Logarithms key cryptosystes – RSA – E V NETWO tication application ap	GRAPHY Intial cryptoanalysis – DES – Modes of operation imality test – factoring. FY MECHANISM S – Computing discrete logs – Diffie-Hellman stems – Hash functions – Secure Hash – BirthdalGamal – DSA. RK SECURITY cations – Kerberos, X.509, PKI – Electronic Mail curity – SSL, TLS, SET.	n – Triple I key exchay	DES - ange	- AE: - E	anisi trusi S – R	ms, ion C4
Basic coassurar Preventunit III Simple - RSA - UNIT II Discret Public Is signatur UNIT III Authen IP secur	INTRODUCTION ONCEPTS: confince, Malicious I CRYPTOCO DES – Differe Attacks – Pri II SECURIT E Logarithms key cryptosys res – RSA – E V NETWO tication appli rity – Web Se	GRAPHY Intial cryptoanalysis – DES – Modes of operation imality test – factoring. FY MECHANISM S – Computing discrete logs – Diffie-Hellman stems – Hash functions – Secure Hash – BirthdalGamal – DSA. RK SECURITY cations – Kerberos, X.509, PKI – Electronic Mail curity – SSL, TLS, SET.	key exchay attacks	DES - ange - MI	- AE: - ED5 -	anisi trus S – R GlGar Dig	ms, ion

TEXT

- **1.** Network Security (2nd edition) by Kaufman, Perlman, and Speciner. ISBN 0130460192.
- 2. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", 2nd ed, Pearson, 2007.
- 3. William Stallings, "Crpyptography and Network security Principles and Practices", Pearson/PHI, 4th ed, 2006.
- 4. Computer Security: Principles and Practice (2nd Edition), Pearson Press

REFERENCES

- 1. W. Mao, "Modern Cryptography Theory and Practice", Pearson Education, Second Edition, 2007.
- 2. Charles P. Pfleeger, Shari Lawrence Pfleeger Security in computing Third Edition Prentice Hall of India, 2006

E REFERENCE

1. NPTEL, Cryptography and Network Security, Dr.Debdeep Mukhopadhyay, IIT Kharagpur

						P	0						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	2	3	0	1	2	0	1	0	1	1	1	2
CO 2	3	2	1	3	0	1	2	0	1	0	1	1	2	2
CO 3	3	2	1	3	0	1	2	1	1	0	1	1	2	2
CO 4	3	2	1	2	0	1	2	1	1	0	1	1	2	2
CO 5	3	2	1	2	0	1	2	0	1	0	1	1	2	1
	15	10	6	13	0	5	10	2	5	0	5	5	9	9

						F	0						P	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Original value	15	10	6	13	0	5	10	2	5	0	5	5	9	9
Scaled to 0,1,2,3 scale	3	2	2	3	0	1	2	1	1	0	1	1	2	2

COUI	RSE C	CODI	3	XCSE65		L	Т	P	С
COUI	RSE N	IAM	E	DATA MINING		3	0	0	3
С	P)	A			L	Т	P	Н
3.0	0	0.0	0.0			3	0	0	3
PREF	REQU	ISIT	ES	DATABASE MANAGEMENT SYSTEM					
COUI	RSE C	OUT	COMES	3	DO	MAI	N	LE'	VEL
CO1	1			ifferent data mining techniques and compare stems with database systems	Сов	gnitiv	∕e l	Jnder	stand
CO2	Арр	oly tł	ne cond	cepts of pre-processing and characterization	Сов	gnitiv	7e <i>I</i>	Apply	
CO3	1			ssifier from the given dataset by using algorithms	Сов	gnitiv	7e <i>I</i>	Apply	
CO4	1			ers for a given database by applying orithms	Сов	gnitiv	7e <i>I</i>	Apply	
CO5	1			oncepts of Knowledge Mining - Web Mining – patial Mining - Temporal Mining.	Сов	gnitiv	7e l	Jnder	stand
UNIT	Γ – I	INT	RODU	CTION	.1			ç	Hour
Data	Minii	ng to) Data\	ning- Issues and Challenges –Data Mining Fu Warehouse- Machine Learning –Taxonomy of ss – Overview of Data Mining techniques.					
UNIT	Γ – II	DAT	ΓA PRI	E-PROCESSING AND CHARACTERIZATION				Ç	Hour
Conc Sumr	ept H nariz	liera atio	rchy G n – An	Integration and Transformation – Data Redu eneration – Primitives – Data Mining, Query L alytical Characterization, and Comparison - A ata from Transactional Database and Relationa	angu Asso	age ciatio	-Gen on R	eraliz	ation
UNIT	Γ – III	CLA	ASSIFI	CATION				ç	Hour
				sion Tree Induction – Bayesian Classification pagation.	on -	SVM	I Cla	ssific	ation -
UNIT	Γ – IV	CLU	JSTER	ING				Ç	Hour
				tering- Cluster Analysis –K-Means Clusterin d – Grid Based Method – Outlier Analysis.	g- H	iera	rchic	al Me	thod -
UNIT	Γ – V	ΑD	VANCE	D TECHNIQUES AND APPLICATIONS				9	Hour
	_		_	Web Mining –Text Mining- Spatial Mining - '	Temj	pora	l Mir	ning- '	Tools -

Applications – Case Study (at least two).

TEXT BOOK:

1. Jiawei Han, Micheline Kamber, "Data Mining: Concepts and Techniques", Morgan Kaufman Publishers, 2000.

REFERENCES:

- 1. Arun K.Pujari, "Data Mining Techniques", Second Edition, Universities Press, 2010.
- 2. K.P.Soman, Shyam Diwakar, V.Ajay, "Insight into Data Mining Theory and Practice", Prentice Hall of India, 2006.
- 3. Usama M.Fayyad, Gregory Piatetsky Shapiro, Padhrai Smyth, Ramasamy Uthurusamy, "Advances in Knowledge Discovery and Data Mining", The M.I.T. Press, 1996.
- 4. D. Hand, H. Mannila and P. Smyth. Principles of Data Mining. Prentice-Hall. 2001
- 5. Alex Berson, Stephen Smith, Kurt Thearling, "Building Data Mining Applications for CRM", Tata McGraw Hill, 2000.
- 6. Margaret Dunham, "Data Mining: Introductory and Advanced Topics", Prentice Hall, 2002.
- 7. I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. 2000.
- 8. E-books http://www.kdnuggets.com/publications/books.html

CO Vs PO Mapping

					P	0					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1									
CO2	3	2	1									
CO3	2	1	1									
CO4	3	2	3									
CO5	3	2	3					1	1	1		1

Scale: 3-Strong 2- Medium 1 – Low

COUR	RSE COI	DE	XCSE66	L	Т	P	C
COUR	RSE NA	ME	OPTIMIZATION TECHNIQUES	3	0	0	3
PREREQUISITES							
С	P	Α		L	Т	P	Н
3.0	0.0	0.0		3	0	0	4

Cours	se outcomes	Domain	Level
CO1	Understand the basic concepts of linear programming	Cognitive	Knowledge
CO2	Define and Explain the advancements in Linear programming techniques	Cognitive	Knowledge, Understand
CO3	Explain the non-linear programming techniques	Cognitive	Knowledge, Understand
CO4	<i>Discuss</i> the interior point methods of solving problems	Cognitive	Knowledge
CO5	Describe the dynamic programming method	Cognitive	Knowledge

UNIT I LINEAR PROGRAMMING

9

Introduction – formulation of linear programming model-Graphical solution–solving LPP using simplex algorithm – Revised Simplex Method.

UNIT II ADVANCES IN LPP

9

Duality theory- Dual simplex method – Sensitivity analysis--Transportation problems-Assignment problems-Traveling sales man problem -Data Envelopment Analysis.

UNIT III NON LINEAR PROGRAMMING

9

Classification of Non Linear programming – Lagrange multiplier method – Karush – Kuhn Tucker conditions–Reduced gradient algorithms–Quadratic programming method – Penalty and Barrier method.

UNIT IV INTERIOR POINT METHODS

9

Karmarkar's algorithm-Projection Scaling method-Dual affine algorithm-Primal affine algorithm Barrier algorithm.

UNIT V DYNAMIC PROGRAMMING

9

Formulation of Multi stage decision problem–Characteristics–Concept of sub-optimization and the principle of optimality–Formulation of Dynamic programming–Backward and Forward recursion– Computational procedure–Conversion of final value problem into Initial value problem.

45 0 45	LECTURE	TUTORIAL	TOTAL
	: 10	0	73

TEXT

- 1. Hillier and Lieberman "Introduction to Operations Research", TMH, 2000.
- 2. R.Panneerselvam, "Operations Research", PHI, 2006
- 3. Hamdy ATaha, "Operations Research An Introduction", Prentice Hall India, 2003.

REFERENCES

- 1. Philips, Ravindran and Solberg, "Operations Research", John Wiley, 2002.
- 2. Ronald L.Rardin, "Optimization in Operation Research" Pearson Education Pvt. Ltd. New Delhi, 2005.

						P	0						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	1	0	0	0	0	0	0	0	0	2	0
CO 2	3	3	3	2	1	0	0	0	0	0	0	0	1	0
CO 3	3	3	3	0	1	0	0	0	0	0	0	0	3	3
CO 4	3	3	3	2	0	0	0	0	1	0	0	0	3	3
CO 5	3	3	3	2	0	0	0	0	1	0	0	0	3	2
	15	15	15	7	2	0	0	0	2	0	0	0	12	8

		PO											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Original value	15	15	15	7	2	0	0	0	2	0	0	0	12	8
Scaled to 0,1,2,3 scale	3	3	3	2	1	0	0	0	1	0	0	0	3	2

COUI	RSE CO	DE	XCSE67		L	Т	P	С	
coui	RSE NA	ME	Multi Agent Intelligent Systems		3	0	0	3	
С	P	A							
3.0	0.0	0.0			L	Т	P	Н	
	.1	I			3	0	0	3	
COUI	RSE OU	TCOM	ES	DOMA	IN	I	LEVE	Ĺ	
CO1	Descri	be the	basic concepts of Context Awareness.	Cogniti		Remer Under		_	
CO2	Descri contex		concepts in Distributed and Heterogeneous	Cogniti	ve]	Remer	nberi	ng	
CO3	Descri	be the	principles of Dynamic current negotiation	Cogniti		Remer Under		_	
CO4	Explai pervas		concepts of Context aware mobile and stems	Cogniti	ve 1	Under	stand	ling	
CO5	Descri	be the	security issues in Context aware computing	Cogniti	ve]	Remer	nberi	ng	
UNIT	I INTE	RODU	CTION				9		
			ndations - History - Intelligent Agents-P aint Satisfaction Problems - Game playing.	roblem	Solvin	ig-Sea	rchin	g -	
UNIT	II KN	OWLE	DGE REPRESENTATION AND REASONING				9		
	_		rst order logic-First Order Inference-Unif dge Representation-Objects-Actions-Events.	ication-Cl	hainin	ıg- Re	esolut	ion	
UNIT	III PL	ANNIN	IG AGENTS				9		
1	_		n-State Space Search-Partial Order Plann nal Planning-Continuous Planning-MultiAgent			ndete	rmini	stic	
UNIT	IV AG	ENTS	AND UNCERTAINITY				9		
Netw	orks-0t	her A	ncertainty – Probability Notation-Bayes Approaches-Time and Uncertainty-Tempora - Complex Decisions.				Bayes Theor		
UNIT	V HIC	HER	LEVEL AGENTS				9		
Reinf	vledge forceme re of AI.	in	Learning-Relevance Information-Statist Learning-Communication-Formal Gramm		earnin ented	U	Metho amma		
LECTURE 45 Hrs									
TEXT	г воок	S	L .		i				
1			nd Peter Norvig, "Artificial Intelligence - A Moo Hall, 2002	lern Appı	roach'	",2nd			

REFERENCES:

- 1. Michael Wooldridge, "An Introduction to Multi Agent System", John Wiley, 2002.
- 2. Patrick Henry Winston, Artificial Intelligence, 3rd Edition, AW, 1999.
- 3. Nils.J.Nilsson, Principles of Artificial Intelligence, Narosa Publishing House, 1992

E REFERENCES

- 1. http://cgi.csc.liv.ac.uk/~trp/COMP310.html
- 2. http://www.cs.utexas.edu/~patmac/cs344m/resources/index.html#week14

		PO											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	3	2	3	2	1	0	0	2	1	0	2	3	2
CO 2	2	3	2	3	2	1	0	0	2	1	0	1	3	2
CO 3	1	3	3	2	1	1	0	0	1	1	0	2	3	2
CO 4	2	2	2	2	2	1	0	0	1	1	0	1	3	2
CO 5	2	3	3	1	1	1	0	0	1	1	0	1	3	2
Total	9	14	12	11	8	5	0	0	7	5	0	7	15	10

COURSE CODE			XCSE68	L	Т	P	С
COU	RSE NA	AME	IMAGE PROCESSING	3	0	0	3
С	P	Α					
3.0 0.0 0.0		0.0		L	Т	P	Н
PRE	PREREQUISITES		SIGNALS AND SYSTEMS	3	0	0	3

COUF	RSE OUTCOMES	DOMAIN	LEVEL
CO1	Describe how digital images are represented and manipulated in a computer	Cognitive	Understand
CO2	Explain about various image transforms techniques.	Cognitive	Understand
CO3	Apply the knowledge of image enhancement and restoration techniques in different applications.	Cognitive	Apply
CO4	Apply the age segmentation methods for a particular application.	Cognitive	Apply
CO5	Compare various image compression techniques.	Cognitive	Apply

UNIT - I DIGITAL IMAGE FUNDAMENTALS

8

Introduction — applications of digital image processing—Steps in Digital Image Processing—Components—Elements of Visual Perception—Image Sensing and Acquisition—Image Sampling and Quantization—Relationships between pixels—color models.

UNIT - II IMAGE TRANSFORM

9

1D and 2D DFT- DCT- Discrete Wavelet Transform – Discrete Hadamard transform – Walsh transform – SVD transform – Slant transform- Haar transform.

UNIT - III IMAGE ENHANCEMENT AND RESTORATION

10

Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering–Smoothing and Sharpening Spatial Filtering – Frequency Domain: Introduction to Fourier Transform – Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters.

Image Restoration - Noise models - Mean Filters - Order Statistics - Adaptive filters - Band reject Filters - Band pass Filters - Notch Filters - Optimum Notch Filtering - Inverse Filtering - Wiener filtering - Geometric transformations-spatial transformations.

UNIT - IV IMAGE SEGMENTATION

9

Pixel based approach – feature threshold – choice of feature - optimum threshold - threshold selection methods – Edge detection, Edge linking via Hough transform -region based

approach – region growing – region split	tting – regio	on merging, s _l	plit and merge.	
UNIT - V IMAGE COMPRESSION				9
Need for data compression, Huffman, F Vector Quantization, Transform coding,	O	O.	nift codes, Arithme	etic coding,
	LECTURE	TUTORIAL	TOTAL	
	4 -	•	4 -	

TEXT BOOK: 9

1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education, Third Edition, 2010.

REFERENCES:

- 1. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Tata McGraw Hill Pvt. Ltd., Third Edition, 2011.
- 2. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., 2011.
- 3. Willliam K Pratt, "Digital Image Processing", John Willey, 2002.
- 4. Jayaraman S., Esaki Rajan S., T.Veera Kumar, "Digital Image Processing", Tata McGraw Hill Pvt. Ltd., Second Reprint, 2010.
- 5. Bhabatosh Chanda, Dwejesh Dutta Majumder, "Digital Image Processing and analysis", PHI Learning Pvt. Ltd., Second Edition, 2011.
- 6. Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", PHI Learning Pvt. Ltd., First Edition, 2011.
- 7. http://eeweb.poly.edu/~onur/lectures/lectures.html
- 8. http://www.caen.uiowa.edu/~dip/LECTURE/lecture.html

CO Vs PO Mapping

							PO					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1									
CO2	3	2	1									
CO3	2	1	1									
CO4	3	2	3									
CO5	3	2	3					1	1	1		1

Scale: 3-Strong 2- Medium 1 – Low

COUF	RSE CO	DE	XCSE69	•	L	Т	P	С
COUF	RSE NA	ME	CONTEXT AWARE COMPUTING		3	0	0	3
С	P	A		•	L	Т	P	Н
3.0.	0.0	0.0		·	3	0	0	3
COUF	RSE OU	TCOM	ES	DOMAI	N	I	ÆVEI	Ĺ
CO1	Descr	be the	basic concepts of Context Awareness.	Cognitive	e]	Remer	nberi	ng,
	_			_	······	Under		······································
CO2	Descri		e concepts in Distributed and Heterogeneous	Cognitive	9]	Remer	nberi	ng
CO3	Descr	be the	principles of Dynamic current negotiation	Cognitive		Remer Under		_
CO4	-	Explain the concepts of Context aware mobile and Cognitive Under pervasive systems						ing
CO5	Descr	be the	security issues in Context aware computing	Cognitive	e]	Remer	nberi	ng
UNIT	I INT	RODU	CTION	<u> </u>			9	
			ss – Surrounding Context – Activity on a S context from multiple sensors – I Badge- Media		ser .	Attent	ion i	n a
UNIT			UTED AND HETEROGENEOUS CONTEXT FOR	R AMBIEN	IT		9	
			epts – Ontology Representation and Reasonin ches – Campus Approach	g about Co	ontex	t – On	tolog	у
UNIT	III DY	NAMI	C CURRENT NEGOTIATION IN WEB ENVIRO	NMENTS			9	
-			System Description – System Deployment – Co on – Provisioning.	ollaborativ	e Op	timiza	tions	_
UNIT	IV CO I	NTEXT	Γ AWARE MOBILE AND PERVASIVE SYSTEM	IS			9	
Tool	Kits - o	contex	ntext aware pervasive system- Architecture- t for mobile device users – Location based S pile services – Mobile code and policy – Multi a	Services –	Amb	ient s		
UNIT	V CON	TEXT	AWARE SECURITY				9	
т 1:								
raai	tional S	Securit	y issues – models – context aware security sys	stems – co	ntex	t awar	e safe	ety.

REFERENCES

Context aware pervasive systems-Architecture for a new breed of applications Sengloke, Auerbach publications, 2006.

2. Context Aware Computing and Self Managing systems ,Waltenegus Dargie,A chapman & Hall

Book/CRC press, 2010

3. Context-Aware Mobile and Ubiquitous Computing for Enhanced Usability: Adaptive Technologies

and Applications: Dragan Stojanović, IGI Global Snippet, 2009

4. Context Management for Distributed and Dynamic Context-Aware Computing, **Rocha**, Ricardo

Couto Antunes da, Endler, Markus, Springer, 2012.

- 5. Context-Aware Computing: A Special Triple Issue of Human-Computer Interaction, Thomas P.Moran Paul Dourish, www. Amazon.com, 2002.
- 6. Seeking a Foundation for Context-Aware Computing, Paul Dourish, University of California, Irvine

E REFERENCES

1.https://sites.google.com/site/hprabhatgupta/teaching/cso303

2. https://www.cs.helsinki.fi/group/cbu-ict/SummerSchool09/context-and-location-awaress.pdf

	P01	P02	PO3	PO	PO	PO	PO	P08	PO	P01	P01	P01	PSO	PSO
				4	5	6	7		9	0	1	2	1	2
CO 1	2	3	2	3	2	1	0	0	2	1	0	2	3	2
CO 2	2	3	2	3	2	1	0	0	2	1	0	1	3	2
CO 3	1	3	3	2	1	1	0	0	1	1	0	2	3	2
CO 4	2	2	2	2	2	1	0	0	1	1	0	1	3	2
CO 5	2	3	3	1	1	1	0	0	1	1	0	1	3	2
Total	9	14	12	11	8	5	0	0	7	5	0	7	15	10

COUR	SE CO	DE	XCSE71		L	Т	P	С
COUR	SE NA	ME INFORMATION RETRIEVAL			3	0	0	3
С	P	A			L	Т	P	Н
3.0.	0.0	0.0			3	0	0	3
COUR	SE OU	TCOM	IES	DOMA	IN		LEV	EL
CO1	Def	ine an	d Explain document and query structure.	Cognitiv	e	Rem	embe	r
CO2		<i>lain,</i> analy	Develop and Estimate query matching and rsis.	Cognitiv	e		erstar icatio	,
CO3		<i>lain</i> forma	and <i>Measure</i> information retrieval nces.	Cognitiv	e		erstar uatio	•
CO4	•	<i>lain</i> asures	and <i>Estimate</i> performance improvement .	Cognitiv	e	1	erstar icatio	•
CO5	Ехр	<i>lain</i> v	veb search, crawling and link analysis.	Cognitiv	e	Und	erstar	ıd.
		· · · · · ·				<u>.</u>		· _

UNIT I DOCUMENT AND QUERY STRUCTURE

9

Overview: Abstraction – Information System – Measures. Documents and Query Forms: document – data structures – document Surrogates – vocabulary control – structure of data – data compression – text documents – images and sounds. Query Structures: Matching criteria – Boolean queries – vector queries – extended boolean queries – fuzzy queries – probabilistic queries – natural language queries – information retrieval and database systems.

UNIT II QUERY MATCHING AND TEXT ANALYSIS

9

Matching Process: Relevance and similarity measures – Boolean based matching – vector based matching – missing terms and term relationship – probabilistic matching – fuzzy matching – proximity matching – effects of weighting – effects of scaling – data fusion. Text Analysis: Indexing – Matrix representation – term extraction and analysis – term association – lexical measures of term significance – document analysis – document similarity – stop lists – stemming.

UNIT III PERFORMANCE MEASURES

6

Binary versus N-ary measures – precision and recall – user oriented measures – average precision and recall – operating curves and single measures – expected search length.

UNIT IV PERFORMANCE IMPROVEMENT TECHNIQUES

12

Relevance feedback and query expansion - Text classification and Naive Bayes: Text classification problem - Naive Bayes text classification - The Bernoulli model - Properties of Naive Bayes - Feature selection - Vector space classification: Document representations and measures of relatedness in vector spaces - Rocchio classification - k nearest neighbor - Linear versus nonlinear classifiers - Classification with more than two classes - The bias-variance tradeoff - Flat clustering: Clustering in information retrieval - Problem statement - Evaluation of clustering - K-means - Model-based clustering - Hierarchical clustering: Hierarchical agglomerative clustering - Single-link and complete-link clustering - Groupaverage agglomerative clustering - Centroid clustering - Optimality of HAC - Divisive clustering - Cluster labeling - Implementation notes.

UNIT V	WEB SEARCH AND LINK ANALYSIS	1

Web search basics: Background and history - Web characteristics - Advertising as the economic model - The search user experience - Index size and estimation - Near-duplicates and shingling - Web crawling and indexes: Overview - Crawling - Distributing indexes - Connectivity servers - Link analysis: The Web as a graph - PageRank - Hubs and Authorities.

9

LECTURE	TOTAL
45	45

TEXT BOOKS

- 1. Robert *R. Korfhage, Information storage and retrieval*, John *Wiley* & Sons, Inc., New York, NY, 1997
- 2. C. Manning, P. Raghavan, and H. Schütze , *Introduction to Information Retrieval*, Cambridge University Press, 2008

REFERENCE BOOKS

- 1. Baeza-Yates and B. Ribeiro-Neto. Modern Information. Retrieval. Addison Wesley, 1999
- 2. Gerard Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw Hill Book Co.,. New York, 1983.
- 3. C. J. van RIJSBERGEN, *The geometry of information retrieval*, Cambridge University Press, 2004

						PC)						F	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	2	1	1	1	1	0	0	0	1	1	2	2
CO 2	2	2	1	1	1	0	1	0	0	0	1	1	2	2
CO 3	2	2	2	1	1	1	1	0	0	0	1	1	2	2
CO 4	2	3	2	1	1	0	1	0	0	0	1	1	2	3
CO 5	2	2	2	1	1	1	1	1	0	0	1	1	3	2
	11	11	9	5	5	3	5	1	0	0	5	5	11	11

]	P O						PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Original	11	11	9	5	5	3	5	1	0	0	5	5	11	11
Scaled to 0,1,2,3 scale	3	3	2	1	1	1	1	0	0	0	1	1	3	3

COUR	SE COI	ЭE	XCSE72	L	Т	P	С
COUR	SE NAI	ME	CLOUD COMPUTING	3	0	0	3
С	P	A		L	Т	Р	Н
3.0	0.0	0.0		3	0	0	3

Objectives:

The Cloud computing course objectives are to understand the current trend and basics of cloud computing, cloud enabling technologies and cloud security.

COURS	SE OUTCOMES	DOMAIN	LEVEL
CO1	Describe and understand the idea of evolution of cloud computing and its services available today.	Cognitive	Remember Understand
CO2	Describe , Ability to develop, classify and analyze components of cloud computing and its business perspective	Cognitive	Understand Analyze
CO3	Describe , apply , analyze and evaluate the various cloud development tools.	Cognitive	Understand Apply
CO4	<i>Explain, Analyze</i> , Demonstrate knowledge on services, architecture, types of infrastructural models, disaster recovery and Virtualization	Cognitive	Understand Analyze
CO5	<i>Understand, Explain, develop and analyze</i> the case studies to derive the best practice model to apply when developing and deploying cloud based applications.	Cognitive	Understand

UNIT-I CLOUD COMPUTING FUNDAMENTALS

(

Understanding Cloud Computing: Origins and Influences, Basic Concepts and Terminology, Goals and Benefits, Risks and Challenges. Types of cloud, Cloud services: Benefits, challenges and issues of cloud computing, Evolution of Cloud Computing, usage scenarios and Applications - Fundamental Concepts and Models: Roles and Boundaries, Cloud Characteristics, Cloud Delivery Models, Cloud Deployment Models.

UNIT -II CLOUD COMPUTING MECHANISMS AND ARCHITECTURE 9

Cloud-Enabling Technology: Broadband Networks and Internet Architecture, Data Center Technology, Virtualization Technology, Web Technology, Multitenant Technology, Service Technology. Fundamental Cloud Architectures: Architecture - Workload Distribution, Resource Pooling, Dynamic Scalability, Elastic Resource Capacity, Service Load Balancing, Cloud Bursting, Elastic Disk Provisioning, Redundant Storage.

UNIT-III CLOUD SERVICES AND FILE SYSTEM

9

Software as a Service - Platform as a Service - Infrastructure as a Service - Database as a Service - Monitoring as a Service - Communication as services. Service providers- Google App Engine, Amazon EC2, Microsoft Azure, Sales force. Introduction to Map Reduce, GFS, HDFS, Hadoop Framework.

UNIT -IV	WORKING WITH CLOUDS	9

Cloud Delivery Model Considerations: Cloud Delivery Models: The Cloud Provider, Cloud Delivery Models: The Cloud Consumer, Case Study Example. Cost Metrics and Pricing Models: Business Cost Metrics, Cloud Usage Cost Metrics, Cost Management - Considerations Email Communication over the Cloud - CRM Management

UNIT - V VIRTUALIZATION FOR CLOUD AND SECURITY IN THE CLOUD 9

Need for Virtualization – Pros and cons of Virtualization – Types of Virtualization –System Vm, Process VM, Virtual Machine monitor – Virtual machine properties - Interpretation and binary translation, HLL VM - Hypervisors – Xen, KVM , VMWare, Virtual Box, Hyper-V - Cloud Security Challenges and Risks – Software-as-a-Service Security – Security Governance – Risk Management – Security Monitoring – Security Architecture Design – Data Security – Application Security – Virtual Machine Security

LECTURE	PRACTICAL	TOTA	
		L	
45	-	45	

TEXT BOOKS

- 2. Thomas Erl and RicardoPuttini "Cloud Computing- Concepts, Technology & Architecture," Pearson, 1st edition 2013.
- 3. Cloud Computing "A Practical Approach" Anthony T. Velte, Toby J. Velte, Robert Elsenpeter. McGraw-Hill.
- 4. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 5. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010.
- 6. James E Smith, Ravi Nair, "Virtual Machines", Morgan Kaufmann Publishers, 2006.

REFERENCES

- 5. Barrie Sosinsky, "Cloud Computing Bible," Wiley India Pvt Ltd, 1st edition, 2011.
- 6. Rajkumar Buyya, James Broberg and Andrzej Goscinski, "Cloud computing principles and paradigms," john Wiley and sons, 2011.
- 7. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", TMH, 2009. Kumar Saurabh, "Cloud Computing insights into New -Era Infrastructure", Wiley India, 2011
- 8. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring Processes for Ondemand Computing", Applications and Data Centers in the Cloud with SLAs, Emereo Pty Limited, July 2008

E REFERENCES

- 7. http://cloud-standards.org/wiki/index.php?title=Main Page
- 8. webpages.iust.ac.ir/hsalimi/.../89.../Cloud%20Common%20standards.pptop ennebula.org,
- 9. www.cloudbus.org/cloudsim/, http://www.eucalyptus.com/

COURS	SE COD	E	XCSE73			L	Т	P	C
COURS	SE NAM	IE .	FAULT TOLERANCE COMPUTIN	G		3	0	0	3
PRERI	EQUISI'	TES				L	Т	Р	Н
C	P	A				3	0	0	3
3.0	0.0	0.0							
COURS	E OUT	COMES			Dom	ain	Lev	el	
CO1	<i>Expla</i> tolera		efinition, fundamentals and app	lication of fa	ult Cogn	itive	Ren	iemb	er
CO2	Descr system		vailability, safety and fault prevent	ion against th	e Cogn	itive		ersta lysis	nd,
СО3			ossible failure rate and the procnechanism process.	ess to clear t	he Cogn	itive	Ren App	iemb ly	er,
CO4		ne the sch redundai	nemes of redundancy, evaluation as	nd techniques	to Cogn	itive	Und App	ersta ly	nd,
CO5		<i>in</i> the fau ult tolera	lt tolerance techniques and progra	amming to avo	oid Cogn	itive	Und App	ersta ly	nd,
UNIT I	INT	RODUCT	ION				<u> </u>		9
	ion of f dability		ance, Redundancy, Applications of	fault-tolerand	e, Fundan	nenta	ls of		
UNIT I	I AT	TRIBUTI	ES						9
	•	ailability, forecastin	safety, Impairments: faults, errors g	and failures,	Means: fai	ılt pr	event	ion,	
UNIT	III D	EPENDAI	BILITY EVALUATION						9
		sures: fai rkov proc	lures rate, mean time to failure, mo esses.	ean time to re	pair, etc. R	eliab	ility b	lock	
UNIT I	V R	EDUNDA	NCY						9
Hardw	are rec	lundancy	, Redundancy schemes, Evaluation	and compari	son, Appli	catio	ns , Ir	ıform	iatio
redunc	dancy,	Codes: li	near, Hamming, cyclic, unordere	d, arithmetic,	etc. ,Enc	oding	g and	dec	odin
technic	ques ,A	pplicatior	ns , Time redundancy						
UNIT V	V PRO	GRAMM	ING						9
			e, Specific features, Software fault y blocks, self-checking software, et		niques: N	-vers	ion		
			L	ECTURE	ΓUTORIA	L	TO 1	CAL	
				45	0			45	

TEXT

- 1. Anderson, T., and P.A. Lee, Fault-Tolerant Principles and Practices, Prentice-Hall
- 2. Hwang, K., and F.A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill.
- 3. Jalote, P.
- 4. Fault-Tolerance in Distributed Systems, ISBN 0-13-301367-7, Prentice-Hall,

REFERENCES

- 1. Johnson, B.W., Design and Analysis of Fault-Tolerant Systems, Addison Wesely
- 2. Leveson, Nancy G., Safe ware, system safety and computers, Addison Wesely.
- 3. Pradhan, D.K., Fault-Tolerant Computing Theory and Techniques, (2 Volumes), Prentice-Hall.
- 4. Pradhan, Dhiraj K., Fault-Tolerant Computer System Design, ISBN 0-13-057887-8, Prentice-Hall

E REFERENCE

						P	O						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	2	3	0	1	2	0	1	0	1	1	1	2
CO 2	3	2	1	3	0	1	2	0	1	0	1	1	2	2
CO 3	3	2	1	3	0	1	2	1	1	0	1	1	2	2
CO 4	3	2	1	2	0	1	2	1	1	0	1	1	2	2
CO 5	3	2	1	2	0	1	2	0	1	0	1	1	2	1
	15	10	6	13	0	5	10	2	5	0	5	5	9	9

	PO											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Origina l value	15	10	6	13	0	5	10	2	5	0	5	5	9	9
Scaled to 0,1,2,3 scale	3	2	2	3	0	1	2	1	1	0	1	1	2	2

cou	RSE	L	Т	P	С				
COUI	RSE N	IAME	COMPUTER GRAPHICS		3	0	0	3	
					L	Т	P	Н	
С	P	A			3	0	0	3	
3.0	0.0	0.0							
Prer	equis	sites	Computer Fundamentals, Principles of Comp Programming, Problem Solving Methodologies	outer					
COUI	RSE (IAI	V	LEV	EL				
CO1			e the working of appropriate drawing and algorithms for 2D objects.	Cogn	itiv	e	App	oly	
CO2			an object after applying the required 2D/ 3D mation techniques.	Cogn	itiv	e	App	oly	
CO3	3 E	Cogn	itiv	ive Understand					
CO4	l Io	Cogn	itiv	tive Apply					
COS		-	2D/3D animation for a given scenario by the principles of animation.	Cogn	itiv	e	e Apply		
UNIT	Γ – I	INTR	DDUCTION TO COMPUTER GRAPHICS			I	9 H	Iours	
Brese	enhar	n Lin	and its applications, Points and Lines, Line Draw e Algorithm, Midpoint Circle drawing Algori Line Polygon, Fill Algorithm, Boundary Fill Algorithm	ithm,	Elli	pse ;	gener	ating	
UNIT	Γ – II	2D AN	ID 3D GEOMETRIC TRANSFORMATIONS				9 H	lours	
Basic Trans		ansforr ations	nations- Translation, Rotation, Scaling, Reflection	on, Sh	ear	ing,	Comp	osite	
UNIT	Γ – III	2D V	IEWING AND CLIPPING				9 H	Iours	
View	ing F	'ipeline	, Window to view-port coordinate Transformatio	n, Clij	pir	ıg			
Clipp	ing, S		nt Clipping, Cohen Sutherland Line Clipping, and Hodgeman Polygon Clipping, Weiler - Atherton g		_	,	rsky oing, (
UNIT		9 Hours							
Curv	es an	d Surf	arallel and Perspective Projection, Bezier Curves aces, Visible Surface Detection Algorithms- Back-F hod, Scan line Method					•	

UNIT - V COLOR MODELS AND ANIMATION

9 Hours

RGB Color Model, YIQ Color Model, CMY Color Model, HSI Color Model,

Animation - Principles of animation, Design of Animation Sequences, Key Frame Systems - Morphing and Simulating Accelerations, Motion Specifications.

TEXT BOOK:

1. Donald Hearn and M. Pauline Baker: Computer Graphics, PHI/Pearson Education, Second Edition, 2004.

REFERENCES:

- 1. F.S. Hill, Computer Graphics using OPENGL, Second edition, Pearson Education, 2003.
- 2. James D. Foley, Andries Van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics- Principles and practice, Second Edition in C, Pearson Education, 2007.
- 3. Zigang Xiang and Roy A.Plastock "Schaum"s Outline of Computer Graphics" Second Edition, McGraw -Hill 2000.
- 4. D. F. Rogers, J. A. Adams "Mathematical Elements for Computer Graphics (2nd Ed.)" TMH

CO Vs PO Mapping

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	2	1									
CO2	3	2	1									
CO3	2	1	1									
CO4	3	2	3									
CO5	3	2	3					1	1	1		1

Scale: 3-Strong 2-Medium 1-Low

COUI	COURSE CODE		XCSE75	L	Т	P	С
COURSE NAME			ADVANCED OPERATING SYSTEM	3	3		
С	P	A		L	Т	P	Н
3.0	0.0	0.0		3	0	0	3

Objective:

Objective of Advanced Operating systems course are to learn the fundamentals of Operating Systems, to gain knowledge on distributed operating system concepts that includes architecture, mutual exclusion algorithms, deadlock detection algorithms and agreement protocols

and to gain insight on to the distributed resource management components viz. the algorithms for implementation of distributed shared memory, recovery and commit protocols.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Describe the various synchronization, scheduling and memory management issues	Cognitive	Remember, Understand
CO2	Demonstrate the mutual exclusion, deadlock detection and agreement protocols of Distributed operating system	Cognitive	Create, Analyze
CO3	Discuss the various resource management techniques issues and various deadlock detection algorithm and resolution for distributed systems.	Cognitive	Remember, Understand Apply
CO4	Describe and analyze the various agreement problems and solutions.	Cognitive	Remember, Understand
CO5	Understand and explain the various Mechanisms for building Distributed File Systems, Design issues and install open source kernel modify existing open source kernels in terms of functionality or features used.	Cognitive	Remember, Understand, Analyze, Apply.
	PUND AMENDAL C OF ODED ATIMIC CUCTEMC		0

UNIT-I FUNDAMENTALS OF OPERATING SYSTEMS

9

Overview – Synchronization Mechanisms – Processes and Threads - Process Scheduling – Deadlocks: Detection, Prevention and Recovery – Models of Resources – Memory Management Techniques.

UNIT -II DISTRIBUTED OPERATING SYSTEMS

9

Issues in Distributed Operating System – Architecture – Communication Primitives – Lamport's Logical clocks – Causal Ordering of Messages – Distributed Mutual Exclusion Algorithms – Centralized and Distributed Deadlock Detection Algorithms – Agreement Protocols.

UNIT-III DISTRIBUTED RESOURCE MANAGEMENT

9

Distributed File Systems – Design Issues - Distributed Shared Memory – Algorithms for Implementing Distributed Shared memory–Issues in Load Distributing – Scheduling Algorithms – Synchronous and Asynchronous Check Pointing and Recovery – Fault Tolerance – Two-Phase Commit Protocol.

UNIT -IV REAL TIME AND MOBILE OPERATING SYSTEMS

9

Basic Model of Real Time Systems - Characteristics- Applications of Real Time Systems - Real Time Task Scheduling - Handling Resource Sharing - Mobile Operating Systems - Micro Kernel Design - Client Server Resource Access - Processes and Threads - Memory Management - File system.

UNIT V CASE STUDIES

9

Linux System: Design Principles - Kernel Modules - Process Management Scheduling - Memory Management - Input-Output Management - File System - Interprocess Communication. iOS and Android: Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System.

-	LECTURE	PRACTICAL	TOTAL	
	45	0	45	

REFERENCES

- 1. Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems Distributed, Database, and Multiprocessor Operating Systems", Tata McGraw-Hill, 2011.
- 2. Abraham Silberschatz; Peter Baer Galvin; Greg Gagne, "Operating System Concepts", Seventh Edition, John Wiley & Sons, 2012
- 3. Daniel P Bovet and Marco Cesati, "Understanding the Linux kernel", 3rd edition, O'Reilly, 2005
- 4. Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2006.
- 5. Neil Smyth, "iPhone iOS 4 Development Essentials Xcode", Fourth Edition, Payload media, 2011.

E REFERENCES

- 10. https://nptel.ac.in/courses/106108101/
- 11. https://www.researchgate.net/publication/2959795_Advanced_Operating_Systems

	PO	PO8	PO	PO1	PO1	PO12	PSO1	PSO						
	1	2	3	4	5	6	7		9	0	1			2
CO 1	1	0	0	0	0	0	0	0	0	0	1	0	0	0
CO 2	1	3	2	0	0	1	3	0	0	0	0	1	2	0
CO 3	1	3	0	0	0	1	0	0	0	0	1	3	3	0
CO 4	1	3	0	0	0	0	0	0	0	0	1	3	3	0
CO 5	1	0	0	0	3	1	1	0	0	0	2	3	0	0
	5	9	2	0	3	3	4	0	0	0	5	10	8	0

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Original value	5	9	2	0	3	3	4	0	0	0	5	10	8	0
Scaled to 0,1,2,3 scale	1	2	1	0	1	1	1	0	0	0	1	2	2	0

COURSE CODE	XCSE77	L	T	P	С
COURSE NAME	VIRTUALIZATION	3	0	0	3
PREREQUISITES	CLOUD COMPUTING	L	T	P	Н
C:P:A	3:0:0	3	0	0	3

COURS	E OUTCOMES	Domain	Level
CO1	Deploy legacy OSs on virtual machines	Cognitive	Understand
CO2	Understand the intricacies of server, storage, network, desktop and application virtualizations	Cognitive	Understand
CO3	Design new models for virtualization	Cognitive	Understand
CO4	Design and develop cloud applications on virtual machine platforms	Cognitive	Understand
CO5:	Design new models for Bigdata processing in cloud	Cognitive	Understand

LEARNING OBJECTIVES

- To understand the need of virtualization Explore the types of virtualization
- To understand the concepts of virtualization and virtual machines
- To understand the practical virtualization solutions and enterprise solutions
- To understand the security issues in cloud computing

UNIT I INTRODUCTION TO VIRTUALIZATION

•

Basics of Virtualization – Virtualization Types – Model of Virtualization – Layers of Virtualization – Server Machine Virtualization - Application Virtualization – Goals of Virtualization – Taxonomy of Virtual Machines.

UNIT II VIRTUALIZATION INFRASTRUCTURE

9

Hardware Virtualization - Virtual Hardware Overview - Virtual Machine Products - Sever Consolidation - Server Pooling - Types of Server Virtualization - Business cases for Sever-Virtualization - Selecting server Virtualization Platform

UNIT III NETWORK VIRTUALIZATION

9

Virtual File Systems – Process Virtualization – Layers in Virtualization – Players in Virtualization - Virtualizing the Campus WAN Design – - Routing Protocols- Virtualization Aware Routing - Multi-Topology Routing – Case Studies of Network Virtualization.

UNIT IV DESKTOP VIRTUALIZATION AND STORAGE VIRTUALIZATION

9

Virtualization - Preparing a Virtualization Machine Host- Storage Virtualization - iSCSI Architecture - Securing iSCSI - SAN backup and recovery techniques - RAID - SNIA Shared Storage Model - Classical Storage Model - Virtual Information Systems.

UNIT V SECURITY

9

Secure Virtual Infrastructure- Protect Virtual Infrastructure-Prepare Business Continuity -**Update Management Structure**

	LECTURE	TUTORIAL	TOTAL	
	45	0	45	
BOOK				

1. Dan Kusnetzky ,"Virtualization: A Manager's Guide", O'Reily,2011

REFERENCES

- 1. Danielle Ruest, Nelson Ruest," Virtualization: A Beginner's Guide", McGraw Hill, 2009
- 2. Chris 2Wolf, Erick M. Halter, "Virtualization: From Desktop to the Enterprise", A Press, 2006

E REFERENCE

- 1. http://www.ss.pku.edu.cn/vs/style/resources/Introduction%20to%20Virtualization. pdf
- 2. http://www.vmware.com/in/virtualization
- 3. http://bradhedlund.com/2013/01/28/network-virtualization-a-next-generationmodular-platform-forthe-virtual-network/
- 4. http://en.wikipedia.org/wiki/Desktop_virtualization

	DO1	DO2	DO2	DO4	DOF	DO6	DO 7	DOO	DOO	P10	P11	P12	PSO	PSO
	P01	PO2	P03	PU4	PUS	P06	P07	P08	P09				1	2
CO 1	3	2	2	3	0	1	2	0	1	0	1	1	1	2
CO 2	3	2	1	3	0	1	2	0	1	0	1	1	2	2
CO 3	3	2	1	3	0	1	2	1	1	0	1	1	2	2
CO 4	3	2	1	2	0	1	2	1	1	0	1	1	2	2
CO 5	3	2	1	2	0	1	2	0	1	0	1	1	2	1
	15	10	6	13	0	5	10	2	5	0	5	5	9	9

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO 1	PSO 2
Original value	15	10	6	13	0	5	10	2	5	0	5	5	9	9
Scaled														
to 0,1,2,3 scale	3	2	2	3	0	1	2	1	1	0	1	1	2	2

COUR	SE CODE	XCSE79	L	T	P	C		
COUR	SE NAME	ADHOC AND SENSOR NETWORKS		3	0	0	3	
C:P:A		3:0:0		L	Т	P	Н	
				3	0	0	3	
COUR	SE OUTCOM	ES	DOMAIN		LEV	VEL		
CO1	Describe th	ne design issues in ad hoc and sensor	Cognitive	Ren	nemb	ering		
	networks.		_		lersta		<u> </u>	
CO2	Describe a MAC protoc	nd distinguish the different types of cols.	Cognitive	Ren	nemb	ering	5	
CO3	Describe the different types of adhoc routing Cognitive Reme protocols.							
CO4						ndin	g	
CO5	Describe th sensor nety	e architecture and protocols of wireless vorks.	Cognitive	Ren	nemb	ering	5	
UNIT	I INTRODUC	CTION	<u>i</u>			9		
netwo Applio Netwo	orks (MANETs cations of Ad orks.	Mechanisms – Characteristics of the We) and wireless sensor networks (WSN Hoc and Sensor networks. Design Claracteristics of the West New Yorks (WSN Hoc and Sensor networks) Design Claracteristics (WSN Hoc and Sensor networks) Design Claracteristics (WSN Hoc WIRELESS NETWORK)	Ns) :concepts hallenges in A	and	archi	tectu	res.	
netwo Applic Netwo UNIT Issues protoc	orks (MANETs cations of Adorks. II MAC PRO in designing cols-Contention	and wireless sensor networks (WSN) Hoc and Sensor networks. Design Cl TOCOLS FOR AD HOC WIRELESS NETW g a MAC Protocol- Classification of M. on based protocols with Reservation	Ns) :concepts hallenges in A ORKS AC Protocols- Mechanisms-	and Ad ho Cont	archi c and	tectu l Ser 9 n ba	res ISOI	
Application Network UNIT Issues protocomprotocom UNIT NETW	orks (MANETs cations of Adorks. II MAC PRO in designing cols-Contention cols with Scheller ROUTING PROCES	TOCOLS FOR AD HOC WIRELESS NETW g a MAC Protocol- Classification of M.	Ns) :concepts hallenges in A ORKS AC Protocols- MechanismsIEEE 802.11 IN AD HOC W	and Ad ho Cont Cont	archi c and entio entio	tectu l Ser 9 n ba n ba	sec sec	
Netwo Applic Netwo UNIT Issues protoc protoc UNIT NETW Issues routin	orks (MANETs cations of Adorks. II MAC PROCES in designing cols-Contention cols with Scheller Contention cols with Scheller C	Hoc and Sensor networks (WSN Hoc and Sensor networks. Design Classification of Managed protocols with Reservation eduling Mechanisms – Multi channel MAC PROTOCOLS AND TRANSPORT LAYER	Ns) :concepts hallenges in A ORKS AC Protocols- MechanismsIEEE 802.11 IN AD HOC W	and ho Cont Cont	entio	9 n ban ban	sec sec	
Netwo Applic Netwo UNIT Issues protoc UNIT NETW Issues routin solutio	orks (MANETs cations of Adorks. II MAC PROCES in designing cols-Contention cols with Scheller Contention cols with Scheller Contention cols with Scheller Contention cols with Scheller Constant designing in designing in designing in cons-TCP over	Hoc and Sensor networks (WSN Hoc and Sensor networks. Design Classification of Management of Managem	Ns) :concepts hallenges in A ORKS AC Protocols- MechanismsIEEE 802.11 IN AD HOC W I for Ad hoc no lassification of	and Ad ho Cont Cont VIREI etwor	entio	9 n ban ban	res sor sed sed	
Netwood Application Netwood Ne	orks (MANETs cations of Adorks. II MAC PRO in designing cols-Contention cols with Scheen cols with Scheen cols with Scheen cons-TCP over cons-TCP over consequence architecture architecture.	Hoc and Sensor networks (WSN Hoc and Sensor networks. Design Classification of Management of Managem	NS) :concepts hallenges in A CORKS AC Protocols-Mechanisms-IEEE 802.11 IN AD HOC WILLIAM HOC WILLIAM HOC MILLIAM HOC PROTOCOL Hents of a sellaying and agg	and Ad ho Cont Cont VIREI etwor f Tra	entio ESS Cks- p Inspo	9 n ba n ba groac rt La	sed sed	
netwo Applic Netwo UNIT Issues protoc protoc UNIT NETW Issues routing solutio UNIT Single Netwo	orks (MANETs cations of Adorks. II MAC PRO in designing cols-Contention cols with Scheen cols cols with Scheen cols with Scheen cols cols with Scheen cols cols with Scheen cols cols cols cols cols cols cols cols	Hoc and Sensor networks. Design Classification of Management of Manageme	NS) :concepts hallenges in A CORKS AC Protocols-Mechanisms-IEEE 802.11 IN AD HOC WILLIAM HOC WILLIAM HOC MILLIAM HOC PROTOCOL Hents of a sellaying and agg	and Ad ho Cont Cont VIREI etwor f Tra	entio ESS Cks- p Inspo	9 n ba n ba groac rt La	seconstive	
Netwood Application Netwood Netwood Protocolor Protocolor Protocolor Network Issues routing solution UNIT Single Network -MAC UNIT Issues absolution absolution is the protocolor Protocolo	reactive reconstructions of Adorks. II MAC PRO in designing cols-Contention cols with Scheller ROUTING Properties of Adorks in designing ag, reactive recons-TCP over IV WIRELES on the architecture and relation with a relation cols and relation with a r	Hoc and Sensor networks (WSN Hoc and Sensor networks. Design Classification of Manager and Protocol- Classification of Manager and Protocols with Reservation eduling Mechanisms – Multi channel MAC PROTOCOLS AND TRANSPORT LAYER a routing and Transport Layer protocolouting (on-demand), hybrid routing- Classification of Manager and Machanisms – Multi channel MAC PROTOCOLS AND TRANSPORT LAYER a routing and Transport Layer protocolouting (on-demand), hybrid routing- Classification of Manager and Ma	NS) :concepts hallenges in A CORKS AC Protocols-Mechanisms-IEEE 802.11 IN AD HOC WILLIAM HOC MILLIAM HOC NOTOCOL MENTS of a sealaying and aggrand CSMA and CSMA	and Ad ho Cont Cont VIREI etwork S nsor gregat	entio Ess canc Entio Ess canc canc	9 n ban ban bart La	res sed sed vsN gies	

TEXT BOOKS

C. Siva Ram Murthy, and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols ", Prentice Hall Professional Technical Reference, 2008

REFERENCES

- 1. Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2006.
- 2. Feng Zhao and Leonides Guibas, "Wireless Sensor Networks", Elsevier Publication 2002.
- 3. Holger Karl and Andreas Willig "Protocols and Architectures for Wireless Sensor Networks", Wiley,
- 4. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, and Applications", John Wiley, 2007.
- 5. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.

E REFERENCES

1. https://lecturenotes.in/subject/396/adhoc-and-sensor-network-asn

	P01	P02	P03	PO	PO	PO	PO	P08	PO	P01	P01	P01	PSO	PSO
				4	5	6	7		9	0	1	2	1	2
CO 1	2	3	2	3	2	1	0	0	2	1	0	2	3	2
CO 2	2	3	2	3	2	1	0	0	2	1	0	1	3	2
CO 3	1	3	3	2	1	1	0	0	1	1	0	2	3	2
CO 4	2	2	2	2	2	1	0	0	1	1	0	1	3	2
CO 5	2	3	3	1	1	1	0	0	1	1	0	1	3	2
Tota	9	14	12	11	8	5	0	0	7	5	0	7	15	10
l														

COUI	RSE CC	DE	XCSE7A	L	T	P	С
COUF	RSE NA	ME	EMBEDDED SYSTEMS	3	0	0	3
				L	Т	P	Н
С	P	A		3	0	0	3
3.0	0.0	0.0					

Objective:

Objective of Embedded systems course are to know the building blocks of embedded system, to educate in various embedded development strategies, to Introduce bus communication in processors, input/output interfacing. And to impart knowledge in various processor scheduling algorithms, basics of real time operating system tool.

COURS	SE OUTCOMES	DOMAIN	LEVEL
CO1	Discuss the structural units in Embedded processor.	Cognitive	Remember, Understand
CO2	Understand and apply the embedded networking	Cognitive	Understand, Analyze
CO3	Discuss the development environment of embedded systems.	Cognitive	Remember, Understand
CO4	Describe the real time operating system based embedded system design.	Cognitive	Understand, Apply
CO5	Understand and develop embedded system applications.	Cognitive	Understand, Create

UNIT-I INTRODUCTION TO EMBEDDED SYSTEMS

g

Introduction to Embedded Systems – The build process for embedded systems- Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.

UNIT -II EMBEDDED NETWORKING

9

Embedded Networking: Introduction, I/O Device Ports & Buses – Serial Bus communication protocols - RS232 standard – RS422 – RS485 - CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I2C) –need for device drivers.

UNIT-III EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT

9

Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modeling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object oriented Model.

UNIT -IV RTOS BASED EMBEDDED SYSTEM DESIGN

9

Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communication- shared memory, message passing - Inter process Communication - synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, RT Linux.

UNIT V	UNIT V EMBEDDED SYSTEM APPLICATION DEVELOPMENT										
Case Study of Washing Machine- Automotive Application- Smart card System Application											
		LECTURE	PRACTICAL	TOTAL							
		45	0	45							

TEXT BOOKS

- 12. Rajkamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013.
- 13. Peckol, "Embedded system Design", John Wiley & Sons, 2010
- 14. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013

REFERENCES

- 1. Shibu. K.V, "Introduction to Embedded Systems", Tata Mcgraw Hill, 2009.
- 2. Elicia White," Making Embedded Systems", O' Reilly Series, SPD, 2011.
- 3. Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006.
- 4. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.
- 5. Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007.

E- REFERENCES

1. https://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Embedded%20systems

	PO	РО	PO	PO	PO	РО	PO	PO8	PO	PO1	PO1	PO12	PSO1	PSO
	1	2	3	4	5	6	7		9	0	1			2
CO 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 2	0	0	0	0	0	0	0	0	0	0	0	1	0	0
CO 3	1	0	3	3	0	0	1	0	0	0	2	1	2	0
CO 4	2	2	0	0	0	0	0	0	0	0	1	1	2	0
CO 5	1	3	0	0	1	1	3	0	0	0	3	3	3	0
	4	5	3	3	1	1	4	0	0	0	6	6	7	0

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Origin al value	4	5	3	3	1	1	4	0	0	0	6	6	7	0
Scaled to 0,1,2,3 scale	1	1	1	1	1	1	1	0	0	0	2	2	2	0

COMMON SUBJECTS

SUBCODE	XUME706	L	Т	P	С
SUB NAME	CYBER SECURITY	3	0	0	3
PREREQUISITES		L	Т	P	Н
C:P:A	3:0:0	3	0	0	3

LEARNING OBJECTIVES

- To understand key terms and concepts in cyber law, intellectual property and cyber crimes, trademarks and domain theft.
- Able to examine secure software development practices.
- The learner will be able to incorporate approaches for risk management and best practices.
- To understand the basic knowledge of information security and security threats.

COURS	E OUTCOMES	Domain	Level
CO1:	Able to <i>understand</i> the Cyber Security Policy, Laws and Regulations	Cognitive	Remember
CO2:	Able to <i>discuss</i> the Cyber Security Management Concepts	Cognitive	Understand
CO3:	Able to <i>understand</i> the Cyber Crime and Cyber welfare	Cognitive	Understand
CO4:	Able to <i>discuss</i> on issues related to Information Security Concepts	Cognitive	Understand
CO5:	Able to <i>understand</i> various security threats	Cognitive	Understand
IIIITI	INTDODICTION	<u> </u>	

UNIT I INTRODUCTION

9

Cyber Security – Cyber Security policy – Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration - Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges.

UNIT II CYBER SECURITY OBJECTIVES AND GUIDANCE

9

Cyber Security Metrics – Security Management Goals – Counting Vulnerabilities – Security Frameworks – E Commerce Systems – Industrial Control Systems – Personal Mobile Devices – Security Policy Objectives – Guidance for Decision Makers – Tone at the Top – Policy as a Project– Cyber Security Management – Arriving at Goals – Cyber Security Documentation – The Catalog Approach – Catalog Format – Cyber Security Policy Taxonomy.

UNIT III CYBER SECURITY POLICY CATALOG

9

Cyber Governance Issues – Net Neutrality – Internet Names and Numbers – Copyright and Trademarks – Email and Messaging - Cyber User Issues - Malvertising - Impersonation – Appropriate Use – Cyber Crime – Geo location – Privacy - Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare

UNIT IV INFORMATION SECURITY CONCEPTS

9

Information Security Overview: Background and Current Scenario - Types of Attacks - Goals for Security - E-commerce Security - Computer Forensics – Steganography

UNIT V SECURITY THREATS AND VULNERABILITIES

9

Overview of Security threats -Weak / Strong Passwords and Password Cracking - Insecure Network connections - Malicious Code - Programming Bugs - Cyber crime and Cyber terrorism - Information Warfare and Surveillance

LECTURE	TUTORIAL	TOTAL
45	0	45

REFERENCES

1.Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs, Jeffrey Schmidt, Joseph Weiss "Cyber Security Policy Guidebook" John Wiley & Sons 2012.

- 2. Rick Howard "Cyber Security Essentials" Auerbach Publications 2011.
- 3. Richard A. Clarke, Robert Knake "Cyberwar: The Next Threat to National Security & What to Do About It" Ecco 2010
- 4. Dan Shoemaker Cyber security The Essential Body Of Knowledge, 1st ed. Cengage Learning 2011
- 5. Rhodes-Ousley, Mark, "Information Security: The Complete Reference", Second Edition, McGraw-Hill, 2013.

E REFERENCE

- 1. https://www.coursera.org/specializations/cyber-security
- 2. www. nptel.ac.in
- 3. http://professional.mit.edu/programs/short-programs/applied-cybersecurity

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO	PSO
	101	102	105	101	105	100	107	100	10)				1	2
CO 1	3	2	2	3	0	1	2	0	1	0	1	1	1	2
CO 2	3	2	1	3	0	1	2	0	1	0	1	1	2	2
CO 3	3	2	1	3	0	1	2	1	1	0	1	1	2	2
CO 4	3	2	1	2	0	1	2	1	1	0	1	1	2	2
CO 5	3	2	1	2	0	1	2	0	1	0	1	1	2	1
	15	10	6	13	0	5	10	2	5	0	5	5	9	9

	P0 1	PO 2	P0 3	PO 4	P05	P06	P07	P08	P09	P 0 10	PO 11	P01 2	PSO 1	PSO 2
Origin al value	15	10	6	13	0	5	10	2	5	0	5	5	9	9
Scaled to 0,1,2,3 scale	3	2	2	3	0	1	2	1	1	0	1	1	2	2

		L	Т	P	С
COURSE NAME	E-WASTE MANAGEMENT	3	0	0	0
C:P:A	3:0:0	L	Т	P	Н
		3	0	0	3

LEARNING OBJECTIVES:

- To classify waste sources
- To identify methods of waste disposal
- To study various energy generation methods

To analyze recycling of e-waste

COURSE	OUTCOMES	DOMAIN	LEVEL		
CO1	Able to find the technologies for waste electrical and electronic equipment	Cognitive	Remember		
CO2	Able to explain the methods of Mechanical Processing of waste disposal	Cognitive	Remember		
CO3	Able to classify the sources of Hydrometallurgical Processing	Cognitive	Remember, Understand		
CO4	Able to summarize the Electronic Waste Recycling	Cognitive	Remember Understand		
CO5	Able to demonstrate the methods for Batteries disposal	Cognitive	Remember Understand		

UNIT I

9

Introduction, Electronic Waste, Generation and Management, Electronic Waste in the World, The Problem of WEEE, WEEE Management Leaching Processes, Acid and Alkaline Leaching, Leaching Using Supercritical Fluids, Bioleaching.

UNIT II 10

Mechanical Processing, Comminution, Size Separation, Density Separation, Separation by Dense Medium, Separation via Suspensions, Jigs, Flowing Film Concentrators, Air Separation, Magnetic Separation, Dry Separators, Wet Separators, Electrostatic Separation, Electrification by Contact or Friction, Electrification by Ion Bombardment, Eddy Current (Foucault Current)

UNIT III 8

Hydrometallurgical Processing:, Liquid-Liquid Extraction, Supercritical Extraction, Cementation, Electrometallurgical Processing: , Pyrometallurgical Processing

UNIT IV 9

Electronic Waste Recycling: Materials Recycling Considerations, Polymers, Ceramics, Printed Circuit Boards, Mechanical Processing, Hydrometallurgical Processing, Bio hydro metallurgical Processing, Pyro metallurgical Processing, Monitors, Cathode Ray Tube, Liquid Crystal Displays/Light Emitting Diodes

UNIT V 9

Batteries: Nickel-Cadmium (NiCd) Batteries, Manual Sorting, Component Separation by Unity Operations of Mineral Treatment, Pyro metallurgical Route, Hydrometallurgical Route, Nickel Metal Hydride (NiMH) Batteries, Characteristics of Nickel Metal Hydride Batteries—NiMH, Recycling NiMH Batteries, Lithium Ion Batteries, Constituents of Rechargeable Lithium-Ion

Batteries (LIBs), Cathode Materials, Anode Materials, Electrolytes, Separator, Recycling LIBs Batteries, Zinc-Manganese Dioxide Systems,

LECTURE	TUTORIAL	TOTAL
45	-	45

TEXT BOOKS

- 1. Hugo Marcelo Veit Andréa Moura Bernardes ,Electronic Waste Recycling Techniques, Springer International Publishing Switzerland 2015.
- 2. "E-waste in India: Research unit, Rajya Sabha Secretariat, New Delhi, June 2011"

GOOGLE BOOKS:

- 1. e-waste Management: From waste to Resource Klaus Hieronymi, Ramzy Kahnat, Eric williams Tech. & Engg.-2013(Publisher: Earthscan 2013).
- 2. What is the impact of E-waste: Tamara Thompson
- 3. E-waste poses a Health Hazard: Sairudeen Pattazhy

WEBLINKS:

- www.unep.org
- www.routledge.com
- www.amazon.com
- www.bookdepository.com
- www.ecoactiv.com