FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT DEPARTMENT OF CHEMISTRY

Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT

DEPARTMENT OF CHEMISTRY

CURRICULUM AND SYLLABUS (I - IV SEMESTER)

M.Sc. CHEMISTRY (FULL TIME – 2 Years)

REGULATION 2018

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT DEPARTMENT OF CHEMISTRY

Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

CURRICULUM & SYLLABUS (I to IV Semester) FOR M.Sc. CHEMISTRY

(FULL TIME – 2 Years)

REGULATION 2018

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

CURRICULUM AND SYLLABUS FOR MASTER OF SCIENCE M.Sc. (Chemistry) - (TWO YEARS - FULL TIME) REGULATION - 2018

(Applicable to the students admitted from the academic year 2018-2019 onwards)

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

I. <u>UNIVERSITY VISION AND MISSION</u>

VISION

• To be a world class innovative, competitive, up-to-date, academic institution providing technological and other inputs appropriate to the branch of study student has chosen to specialize.

MISSION

- UM1: Offering well balanced programmes with scholarly faculty and state of art facilities to impart high level of knowledge.
- **UM2:** Providing student centric education and foster their growth in creativity and entrepreneurship, critical thinking and collaborative work.
- UM3: Involving progressive and meaningful research with concern for sustainability and environment.
- UM4: Enabling the students to acquire the skill sets for global competencies.
- UM5: Inculcating social responsibilities and ethics along with imparting knowledge.

II. <u>DEPARTMENT VISION AND MISSION</u>

To prepare the students with basic scientific knowledge in Chemistry for technological development and to provide resources for industry and society through education and research to achieve environmental protection, energy generation and drug development.

MISSION

DM 1: To provide in-depth knowledge in Chemistry to impart technology.

DM 2: To create new idea to improve the technology by offering M.Phil. and Doctoral programme.

DM 3: To undertake project in thrust areas with societal requirements.

DM 4: To develop novel method for clean technology, Bio energy and drug development.

Table1: Mapping of University Mission with Department Mission

	DM1	DM2	DM3	DM4	TOTAL
UM1	3	3	2	1	9
UM2	3	2	3	1	9
UM3	2	2	3	3	10
UM4	3	2	3	2	10
UM5	2	2	3	3	10

3 - Highly related 2 – Medium 1 - Low

CURRICULUM -M.Sc. (Chemistry) - (TWO YEARS - FULL TIME) REGULATION - 2018

		SEMESTER I						
Туре	Course Code	Course Title	L	Т	SS	Р	Н	С
CCI	YCY101	Organic Chemistry I	4	1	0	0	5	5
CCII	YCY102	Inorganic Chemistry I	4	1	0	0	5	5
CCIII	YCY103	Physical Chemistry I	4	1	0	0	5	5
CPI	YCY104	Inorganic Practical I	0	0	0	6	6	3
CPII	YCY105	Physical Chemistry Practical I	0	0	0	6	6	3
		Total	12	3	0	12	27	21

		SEMESTER II						
Туре	Course Code	Course Title	L	Т	SS	Р	Н	С
CCIV	YCY201	Inorganic Chemistry II	4	1	0	0	5	5
CCV	YCY202	Physical Chemistry II	4	1	0	0	5	5
CPIII	YCY203	Inorganic Chemistry Practical II	0	0	0	6	6	3
CPIV	YCY204	Physical Chemistry Practical II	0	0	0	6	6	3
ECIA	YEC205A/	(A) Solid State Chemistry/	4	1	0	0	5	5
ECIB	YEC205B	(B) Supramolecular Chemistry	4	1	0	0	5	5
		Total	12	3	0	12	27	21

	SEMESTER III								
Туре	Course Code	Course Title	L	Т	SS	Р	Н	С	
CCVI	YCY301	Organic Chemistry II	4	1	0	0	5	5	
CCVII	YCY302	Physical Methods in Chemistry-I	4	1	0	0	5	5	
CPV	YCY303	Organic Chemistry Practical -I	0	0	0	6	6	3	
ECIIA ECIIB	YEC304A/ YEC304B	(A) Pharmaceutical Chemistry/(B) Electro-Organic Chemistry	4	1	0	0	5	5	
ECIC	YEC305	Analytical Chemistry	4	1	0	0	5	5	
		Total	16	4	0	6	26	23	

		SEMESTER IV								
Туре	Course Code	Course Title	L	Т	SS	Р	Η	С		
CCVIII	YCY401	Physical Methods in Chemistry-II	4	1	0	0	5	5		
CCVI	YCY402	Organic Chemistry Practical -II	0	0	0	6	6	3		
ECIIIA ECIIIB	YEC403A/ YEC403B	(A) Green Chemistry/(B) Industrial Chemistry	4	1	0	0	5	5		
ECIVA ECIVB	YEC404A/ YEC404B	(A) Selected topics in Chemistry/(B) Chemistry of nanoscience and nanotechnology	4	1	0	0	5	5		
Project	YCY405	Dissertation – Project work	0	0	0	12	12	6		
		Total	12	3	0	18	33	24		

Credit Summary

Semester	S1	S2	S 3	S 4	S 5	S 6	P1	P2
Ι	CCI	CCII	CCIII				CPI	CPII
II	CCIV	CCV	ECIA	ECIB			CPIII	CPIV
III	CCVI	CCVII	ECIIA	ECIIB	ECIC		CPV	
IV	CCVIII	CCVI	ECIIIA	ECIIIB	ECIVA	ECIVB	Project	

Total Number of Courses proposed with the credits is given below:

S. No.	Type of Course	Numbers	Total Credit
1	CCI (Theory & Lab)	14	58
2	Elective Course (Theory)	05	25
4	Dissertation- Project Work	01	06
	Total	31 + 4*	89

Programme	Total Credits	Core DSC (%)	DSE (%)
M.Sc.(Chemistry)	89	64 (71.9%)	25 (28.08%)

COURSE CODE	COURSE NAME	L	Т	Р	С					
YCY101	ORGANIC CHEMISTRY- I	4	1	0	5					
C:P:A	4.0: 0.5 : 0.5									
		L	Т	Р	Η					
		4	1	0	5					
Learning Object	ctives:									
1. To learn the cond	cept of aromaticity, Huckel's theory of aromati	city and	l relation	n betv	veen					
Electron occupa	Electron occupancy in MO's and aromaticity.									
2. To understand th	e difference between oxidation and reduction r	eaction	s and va	rious						
oxidizing and re	ducing reagents used in organic synthesis.	. C		1						
3. To learn and und	erstand the concepts of stereochemistry and co	nforma	tional ai	natysi	.S.					
4. To understand th	derstand the mechanisms involved in pericyclic	reactio	nc							
	MES. On the successful completion of the		Δ ΙΝ	LEV	VFL					
COURSE OUTCO	vill be able to	DOM								
CO1	Recognize the various basic concepts of	Cogni	tive	Ren	nember					
001	aromaticity.	008-11								
CO2	<i>Identify</i> the oxidation and reducing reagents	Cognitive		Und	lerstand					
	for organic synthesis.	Ŭ								
CO3	<i>Describe</i> and <i>give</i> examples of	Cogni	tive	Remember						
	stereochemistry of organic compounds.	Psychomotor U		Understand						
				Mec	hanism					
CO4	Recognize the effect of light in organic	Cogni	tive	Und	Understand					
	photochemistry	Affect	ive	Rec	eiving					
C05	<i>Recall</i> and <i>explain</i> the mechanism of	Cogni	tive	Ren	nemher					
005	pericyclic reactions	Cogin	live	Und	lerstand					
	perio yene reactions.									
UNIT - I Ar	omaticity				15					
Aromatic cha	aracter: Five, six, seven, and eight membered	d rings	– othe	r syst	ems with					
aromatic sext	tets – Huckel's theory of aromaticity, concept	of hom	noaroma	ticity	and anti-					
aromaticity.			C							
Electron occ	supancy in MO's and aromaticity – NMR	concep	pt of a	romat	icity and					
antiaromatici	ty, systems with 2,4,8 and 10 electrons, syste	ms of 1	nore that	$(n \ 10)$	electrons					
(annulenes),	trops, alternant and non alternant hydrocarbon	stems	with (4r	$(\pm 2)\pi$	-electrons					
in heteroaron	nons, anemant and non-anemant hydrocarbon	is (azuic	type) – a	lomaticity					
III neteroaromatic morecures. UNIT - II Responts in Organic Synthesis 15										
Oxidation [•] F	Baever-Villiger, Jacobsen epoxidation Iones	reage	nt. NOO	<u></u>	u(OAC) ₂					
Swern oxidat	ion. Sommelet reaction. Oxidative counling of	phenol	s. Prevo	st rea	action and					
Woodward r	nodification. Reduction: palladium / platinu	m / rh	odium	/ nicl	kel based					
heterogeneou	s catalysts for hydrogenation, Wilkinson's	catalys	t, Noyc	ori as	symmetric					
hydrogenatio	n – reductions using Li/Na in liquid ammonia.	Hydride	e transfe	r reag	gents					
from group II	I in reductions.	-		·						
	6									

(i)	triacetoxyborohydride, Luche redu	iction, NaBH4.						
(ii)	stereo/enantioselectivity reduction	S						
	UNIT – III Stereochemistry an	nd Conformational	Analysis	15				
	Stereoisomerism – symmetry – en	antiomers and diast	tereomers – R and S	S nomenclature –				
	optical activity and chirality – ty	pes of molecules e	xhibiting optical ad	ctivity – absolute				
	configuration – chirality in mole	cules with non- ca	arbon stereocenters	(N, S and P) -				
	molecules with more than one of	chiral centre – atro	opisomerism. Mole	cular chirality –				
	allenes, spiranes, biphenyls –	methods of deter	mining configurati	on $-$ E and Z				
	nomenclature – determination of	configuration of ge	ometrical isomers -	- stereochemistry				
	of addition and elimination rea	ctions – stereospe	cific and stereose	lective synthesis				
	[elementary examples] Basic co	ncents of conformation	ational analysis – (conformations of				
	cyclopentane cyclohexane cycloh	necepts of conformation	(norbornane type) r	ing systems –				
	anomeric effect in cyclic compounds							
	UNIT -IV Organic Photochemis	trv		15				
	Organic photochemistry funda	mental concents	anarov transfar	characteristics of				
	photoreactions photoreduction a	nd photooxidation	photosonsitization	Photoreactions of				
	Instance and anonage Normish Ty	ma L and IL reaction	photosensitization.					
	Records and enones – Norrish Ty	pe I and II leachor	is – Paterilo-Ducili	reaction – Files				
	methang memory	bemieters, dielles	and aronnatic con	npounds – ui- <i>n</i> -				
	methane rearrangement – photoc	tolutio noonnon como	isaturated carbony	/I compounds –				
	photolytic cycloadditions and phot	torytic rearrangement	nts – photo addition	s – Barton				
	INUT V Devievelie Desetions			15				
	UNIT –v Pericyclic Reactions	. 1	. 1					
	Concerted reactions – orbital sy	ymmetry and conc	erted symmetry –	Woodward and				
	Hoffmann rules – selection rules	for electrocyclic re	eactions – frontier	molecular orbital				
	approach – correlation diagram –	examples. Selection	n rules for cycloadd	lition reactions –				
	frontier molecular orbital appro	ach – correlation	diagram – examp	les. Sigmatropic				
	rearrangements $-1,3,1,5$ and $1,7$ -	hydrogen shifts – ex	kamples – Cope and	l Claisen				
	rearrangements – 1,3-dipolar cyclo	baddition reactions		TOTAL				
				IOIAL				
		6 U	15	75				
-	IEAT BOOKS	A 11 A 1 1 C						
	1. J. March and M. B. Smith, N	March's Advanced C	Organic Chemistry:	Reactions,				
	Mechanisms, and Structure;	/th Ed., Wiley, New	w York, 2013.					
	2. I.L. Finar, Organic Chemisti	ry; Vol.II, 7th Ed., F	earson education L	td, New Delhi,				
	2009.							
	3. R. T. Morrison and R. N. Bo	byd, Organic Chemi	stry, 7th Ed., Pearso	on, New Delhi,				
	2011.							
	4. F. A. Carey and R. J. Sundb	erg, Advanced Orga	anic Chemistry; Par	ts A and B, 5th				
	Ed., Springer, Germany, 200	<i>J</i> 7.						
	5. T. H. E. Lowry and K. S. Ri	chardson, Mechanis	sm and Theory in O	rganic				
	Chemistry; Addison-Wesley	7, USA, 1998.						
	6. P. S. Kalsi, Stereochemistry	; Wiley eastern limi	ted; New Delhi, 19	93.				
	7. D. Nasipuri, Stereochemistr	y of Organic Compo	ounds - Principles a	nd Applications;				
	2nd Ed., New Age Internation	onal, New Delhi, 19	94.					
	8. E. L. Eliel, and S. H. Wilen,	Stereochemistry of	Organic Compound	ds; John Wiley,				
	New York, 1994.							
	9. J. D. Coyle, Organic Photoc	hemistry; Wiley, Ne	ew York, 1998.					

1.	R. K. Bansal, Organic Reaction Mechanisms; 11th Ed., Tata McGraw Hill, Noida, 2006.
2.	Jagdamba Singh, Jaya Singh, Photochemistry and Pericyclic Reactions, New Academic Science, 2009.
3.	J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry; 1st Ed., Oxford University Press, UK, 2000.
4.	G. R. Chatwal, Organic Phtochemistry; 1st Ed., Himalaya Publications house, Bangalore, 1998.
5.	S. Sankararaman, Pericyclic Reactions - A Textbook: Reactions, Applications and Theory; Wiley-VCH, New York, 2005.
6.	J. M. Coxon, and B. Halton, Organic Photochemistry; 2nd Ed., Cambridge, University Press, UK, 1987.
E RES	OURCES
1.	http://nptel.ac.in/courses/104103071/21
2.	https://www.youtube.com/watch?v=Ih7tQ7rY2Wc
3.	http://nptel.ac.in/courses/104101005/
4.	https://www.youtube.com/watch?v=12hmgzeiGo4
5.	https://www.youtube.com/watch?v=WEeFhsjn-lo

COURSE CODE	COURSE NAME	L	Т	P	С				
YCY102	INORGANIC CHEMISTRY- I	4	1	0	5				
C:P:A	4.5: 0 : 0.5								
		L	Т	P	Η				
		4	1	0	5				
Learning Objectives: 1. To learn the chemistry of boron, silicon, P-N compounds, S-N compounds and other main group									
 To understand var systematic names and list the approx 	 To understand various types of isomerism which can occur in coordination complexes, systematic names of simple coordination compounds, concept of the Spectrochemical Series and list the approximate order of common ligands in the spectrochemical series and also the 								
concepts of stabil 3. To learn and unde complexes.	ity constant. It is a service of the bonding theories which describe the bonding theory and the bonding theories which describe the bonding theories which describe the bonding theory and the bonding theories which describe the bonding the bonding theories which describe theories wh	nding i	n coor	dinatior	1				
4. To understand the	mechanisms involved in the reactions of coordina	tion co	omplex	es.					
COURSE OUTCO	MES- On the successful completion of the	DOM	ISU y.	LEV	EL				
course, students wi	ll be able to								
C01	<i>Describe</i> the basic concepts of main group elements.	Cogn	itive	Rem	ember				
CO2	<i>Explain</i> the reactions of coordination compounds and <i>estimate</i> the physical constants	Cognitive Underst		erstand					
CO3	Summarize the theories and bonding nature of coordination compounds.	Cogn	itive	Unde	erstand				
CO4	<i>Identify</i> and <i>understand</i> the reaction mechanism of four and six coordinated compounds.	Cogn and Affec	nitive tive:	Unde Rece	erstand ive				
CO5	<i>Rewrite</i> the basic concepts of photochemistry and its applications to coordinated compounds.	Cogn	itive	Unde	erstand				
UNIT - I Mai	n Group Chemistry			15					
Chemistry of boron – borane, higher boranes, carboranes, borazines and boron nitrides – chemistry of silicon – silanes, higher silanes, multiple bonded systems, disilanes, silicon nitrides. P-N compounds, cyclophosphazanes and cyclophosphazenes – S-N compounds – S_2N_2 , S_4N_4 , (SN)x, polythiazyl S_xN_4 compounds – S-N cations and anions, S-P compounds – molecular sulphides such as P_4S_3 , P_4S_7 , P_4S_9 and P_4S_{10} – homocyclic inorganic systems – oxocarbon anion. Ionic model – lattice energy – Born-Lande equation – Kapustinskii equation – high Tc superconductors – solid state reactions – tarnish reaction decomposition, solid-soild meetion and photographic process.									
UNIT – II Pr	UNIT – II Principles of Coordination Chemistry 15								
Studies of coord stability constant	UNIT - II Principles of Coordination Chemistry 15 Studies of coordination compounds in solution – detection of complex formation in solution – stability constants – stepwise and overall formation constants. Simple methods 15								

		1. •• .1	c		
(potentiometric, pH metric and photometric methods) of determining the formation constants.					
Factors affecting stability – statistical and chelate effects – forced configurations.					
UNIT – III Theories of Metal-Liga	and Bond		15		
Crystal field theory – splitting of d-orbitals under various geometries – factors affecting splitting – CFSE and evidences for CFSE (structural and thermodynamic effects). Spectrochemical series – Jahn-Teller distortion – spectral and magnetic properties of complexes – site preferences.Limitations of CFT – ligand field theory – MO theory – sigma- and pi-bonding in complexes – Nephelauxetic effect – the angular overlap model.					
UNIT –IV Reaction Mechanism in C	coordination Com	iplexes	15		
Kinetics and mechanism of reactions in solution – labile and inert complexes – ligand displacement reactions in octahedral and square planar complexes – acid hydrolysis, base hydrolysis and anation reactions. Trans effect – theory and applications – electron transfer reactions – electron exchange reactions – complementary and non-complementary types – inner sphere and outer sphere processes – application of electron transfer reactions in inorganic complexes – isomerisation and racemisation reactions of complexes. Molecular rearrangements of four- and six-coordinate template effect and its applications for the					
UNIT V Inorganic Photochomistry			15		
Various photophysical and photochemical processes of coordination compounds. Unimolecular charge-transfer photochemistry of cobalt(III) complexes, photoreduction – ligand-field photochemistry of chromium(III) complexes – Adamson's rules, photoactive excited states, Photochemistry of organometallic compounds – metal carbonyl compounds – compounds with					
Photochemistry of organometallic com metal-metal bonding – Reinecke's salt,	pounds – metal ca chemical actinom	urbonyl compound	ds – compounds with		
Photochemistry of organometallic com metal-metal bonding – Reinecke's salt,	pounds – metal ca chemical actinom LECTURE	urbonyl compound neter. TUTORIAL	ds – compounds with TOTAL		
Photochemistry of organometallic com metal-metal bonding – Reinecke's salt,	pounds – metal ca chemical actinom LECTURE 60	arbonyl compound neter. TUTORIAL 15	ds – compounds with TOTAL 75		
Photochemistry of organometallic com metal-metal bonding – Reinecke's salt, TEXT BOOKS	pounds – metal ca chemical actinom LECTURE 60	arbonyl compound neter. TUTORIAL 15	ds – compounds with TOTAL 75		
 Photochemistry of organometallic commetal-metal bonding – Reinecke's salt, TEXT BOOKS 1. M. C. Day, J. Selbin and H. H. Siske (LLC), Montana, 2012. 2. F. A. Cotton and G. Wilkinson, C. A Chemistry; 6th Ed., A Wiley - Inter 3. J. E. Huheey, Inorganic Chemistry; 4. W. Adamson, Concept of Inorganic 1975. 5. S. F. A. Kettle, Physical Inorganic C Spectrum; Academic Publishers, Ox 	pounds – metal ca chemical actinom LECTURE 60 er, Theoretical Inc A. Murillo and M. science Publication 4th Ed., Harper a Photochemistry; Chemistry – A Co xford University F	arbonyl compound neter. TUTORIAL 15 organic Chemistry Bochmann, Adv ons, John Wiley a nd Row publisher John Wiley and S ordination Chem Press, New York,	ds – compounds with TOTAL 75 y; Literary Licensing ranced Inorganic nd Sons, USA, 1999. r, Singapore, 2006. Sons, New York, istry Approach, 1996.		
 Photochemistry of organometallic commetal-metal bonding – Reinecke's salt, TEXT BOOKS 1. M. C. Day, J. Selbin and H. H. Siske (LLC), Montana, 2012. 2. F. A. Cotton and G. Wilkinson, C. A Chemistry; 6th Ed., A Wiley - Inter 3. J. E. Huheey, Inorganic Chemistry; 4. W. Adamson, Concept of Inorganic 1975. 5. S. F. A. Kettle, Physical Inorganic Competition of Spectrum; Academic Publishers, Operational Systems, Commetal Systems, Commetal	pounds – metal ca chemical actinom LECTURE 60 er, Theoretical Inc A. Murillo and M. rscience Publicatic 4th Ed., Harper a Photochemistry; Chemistry – A Co xford University F	arbonyl compound neter. TUTORIAL 15 organic Chemistry Bochmann, Adv ons, John Wiley a nd Row publisher John Wiley and S oordination Chem Press, New York,	ds – compounds with TOTAL 75 y; Literary Licensing vanced Inorganic and Sons, USA, 1999. r, Singapore, 2006. Sons, New York, istry Approach, 1996.		

E RESOURCES

- 1. <u>https://www.youtube.com/watch?v=YChUH_XSZJ0</u>
- 2. <u>https://www.youtube.com/watch?v=7gNByyjaYrY</u>
- 3. <u>https://www.youtube.com/watch?v=Ox3pnVN47gw</u>
- 4. <u>https://www.youtube.com/watch?v=wq4XHcNBBgg</u>

COURSE CODE	COURSE NAME	L	Т	P	С
YCY103	PHYSICAL CHEMISTRY- I	4	1	0	5
C:P:A	4.5: 0: 0.5				
		L	Т	Р	Η
		4	1	0	5

Learning Objectives:

- 1. To learn the chemistry involved in Ion transport in solution, Fick's laws of diffusion conduction, Debye Huckel-Onsager law and other concepts of electrochemistry.
- 2. To understand and describe the theories of classical mechanics and quantum mechanics of a microscopic particles.
- 3. To learn and understand the different theories of chemical kinetics.
- 4. To understand the concept of different laws of thermodynamics.
- 5. To learn and understand the photo physical properties of chemical reactions.

COURSE OUT course, students	COURSE OUTCOMES- On the successful completion of the course, students will be able toDOMAIN					
CO1	<i>Identify</i> the basic concept of Electrochemistry and related laws	Cognitive	Remember			
CO2	<i>Describe</i> the theories of classical mechanics and quantum mechanics of a microscopic particles and <i>predict</i> the energy of the particles	Cognitive	Understand Apply			
CO3	<i>Recognize</i> the various theories of chemical kinetics of reactions.	Cognitive	Remember			
CO4	<i>Explain</i> the fundamentals of thermodynamic and <i>Label</i> the various thermodynamic parameters.	Cognitive and Affective	Understand Receive			
CO5	<i>Generalized</i> the photo physical properties of chemical reactions.	Cognitive	Understand			
UNIT - I	Electrochemistry I		15			

Ion transport in solution - migration, convention and diffusion -Fick's laws of diffusion conduction - influence of ionic atmosphere on the conductivity of electrolytes-The Debye Huckel-Onsager equation for the equivalent conductivity of electrolytes - experimental verification of the equation - conductivity at high field and at high frequency - conductivity of non aqueous solutions-effect of ion association on conductivity. The electrode-electrolyte interface-electrical double layer-electro capillary phenomena-Lippmann equation - the Helmholtz- Perrin - Guoy-Chapmann and Stern models.

UNIT – II Quantum Chemistry – I	15
Inadequacy of classical mechanics - black body radiation - Planck's quantum con	ncept —
photoelectric effect - Bohr's theory of hydrogen atom - hydrogen spectra - wave	-particle
dualism - uncertainty principle - decline of old quantum theory. Schrödinger equ	ation –

	postulates of quantum mechanics – operator algebra: linear operator, Hermitian operators,					
	eigen functions and eigenvalues, angular momentum operator - commutation relations and					
	related theorems - orthogonality and normalization. Applications of wave mechanics to					
	simple systems – particle in a box, one and three dimensional, particle with finite potential					
	barrier – the quantum mechanical tunneling.					
	UNIT – III Chemical Kinetics – I 15					
	Theories of reaction rate – absolute reaction rate theory (ARRT) – transmission coefficient,					
	reaction coordinate - potential energy	surfaces – kinetic	isotope effect -	Hinshelwood theory		
	-Slater's treatment. Principle of micro	scopic reversibilit	y – steady-state	approximation –		
	chain reactions: thermal and photochem	mical reactions be	tween hydrogen	and halogens –		
	explosions and hydrogen-oxygen react	ions.				
	UNIT –IV Statistical Thermodynam	ics		15		
	Thermodynamic probability – prob probability (Boltzmann-Planck equa	bability theorems tion), ensembles	s – relation be , phase space,	etween entropy and Ergodic hypothesis,		
	microstates and macrostates, Maxwe translational, rotational, vibrational and	ell-Boltzmann dis nd electronic part	stribution law– ition functions.	partition functions – Relationship between		
	partition functions and thermodynami	c properties – he	at capacities of	monatomic crystals –		
	Einstein theory and Debye theory. Qua	antum statistics –	Bose-Einstein (E	3.E.) and Fermi-Dirac		
	(F.D.) distribution equations – compared at the statistical sector of quantum	rison of B.E. and	F.D. statistics w	trong in motols and		
	Planck's radiation law concept of ne	statistics to hyperative Kelvin tem	ulu liellulli, elec	tions in metals and		
	UNIT V Fast Poaction Tachniques	Photochomistry	and Radiation	15		
	Chemistry	, I notochennsti y		15		
	Introduction – flow methods (continue and P jump methods) – pulse technic	ous and stopped f ques (pulse radio	low methods) – 1 lysis, flash photo	relaxation methods (T olysis). Photophysical		
	processes of electronically excited me	olecules – Jablon	ski diagram. – S	tern-Volmer equation		
	and its applications - experimental te	chniques in photo	ochemistry – che	emical actinometers -		
	lasers and their applications. Differen	ces between radi	ation chemistry a	and photochemistry -		
	sources of high energy radiation and	interaction with	matter – radioly	sis of water, solvated		
	electrons – definition of G value, Cur	rie, linear energy	transfer (LET) a	nd Rad – scavenging		
	techniques – use of dosimetry and dosi	imeters in radiation	on chemistry – ap	plications of		
-	radiation chemistry.					
				TOTAL		
T		DU	15	75		
	TEXT BOOKS					

	1. F. A. Cotton, Chemical Applications of Group Theory; 3rd Ed., John Wiley and Sons,
	Singapore, 2003.
	2. K. Chandra, Introductory Quantum Chemistry; 4th Ed., Tata McGraw Hill, Noida, 1994.
	3. D. A. Mcquarrie, Quantum Chemistry; University Science Books, Sausalito, 2008.
	4. K. J. Laidler, Chemical Kinetics; 3rd Ed., Tata McGraw Hill, Noida, 1987.
	5. J. W. Moore and R. G. Pearson, Kinetics and Mechanism; 3rd Ed., John Wiley and Sons,
	New York, 1981.
	 M. Mortimer and P. G. Taylor, Chemical Kinetics and Mechanism; 1st Ed., Royal Society of Chemistry, UK, 2002.
	7. J. N. Gurtu and A. Gurtu, Advanced Physical Chemistry; 5th Ed., Pragathi Prakashan, Meerut 2006
	8 I I Steinfeld I S Francisco and W I Hase Chemical Kinetics and Dynamics: 2nd
	Ed Prentice Hall New Jersey 1999
	9 P. W. Atkins, Physical Chemistry: 7th Ed. Oxford University Press, Oxford, 2001
	10 I Rajaram and I C Kurjacose Thermodynamics for Students of Chemistry - Classical
	Statistical and Irreversible; Pearson Education, New Delhi, 2013.
	11. Horia Metiu, Physical Chemistry, Thermodynamics; Taylor and Francis, Singapore,
	2006.
	12. K. K. Rohatgi-Mukherjee, Fundamentals of Photochemistry; 3rd Ed., New Age
	International Pvt. Ltd., New Delhi, 2014.
F	REFERENCE BOOKS
	1. R. L. Flurry, Jr, Symmetry Groups: Theory and Chemical Applications; Prentice Hall,
	New Jersy, 1980.
	2. S. F. A. Kettle, Symmetry and Structure; 2nd Ed., John Wiley and Sons, Chichester,
	1995.
	3. N. Levine, Quantum Chemistry; 5th Ed., Prentice Hall, New Jersey, 2000.
F	ERESOURCE
	1. <u>https://www.youtube.com/watch?v=pGerRhxNQJE</u>
	2. <u>https://www.youtube.com/watch?v=R-x9KdNjQmo</u>
	3. <u>https://www.youtube.com/watch?v=F_NmS-Wy2lE</u>
	4. <u>https://www.youtube.com/watch?v=6QXtnmB1vqk</u>
	5. <u>https://www.youtube.com/watch?v=1zZ6rvh1cgw</u>

COURSE CODE	COURSE NAME	L	Т	P	H	
YCY105	PHYSICAL CHEMISTRY PRACTICAL - I	0	0	6	3	
PREREQUISITE	Nil	L	Т	P	H	
C:P:A	0.6: 2.2:0.2	0	0	6	6	
Learning Objecti	ves:	roto consta	ont optiv	tion onor	au	
COURSE CODE order of reactions.	COURSE NAME	L	T	P	c gy,	
2. To estimate and an	alwolder NICo CHIENEIS II RY ical param	eters of the	chemica	l reactions	· ~	
COURSE OUTCON	IERACTICAL - I	DŎMAI	N	LĚVE	L	
CREREQUESTE he	Numinition and significance of physical	Cognitive	and T Re	emen B ber	H	
Cpprameters l	ibs:1212:0:2nstant, activation energy,	Psy c homo	tor 0 Pe	rception	6	
Learning Child Chi	The results and also relate the results. The reactions of the reactions in and quantitative gravimetric analysis he relations betw en these parameters ons present and estimate their amount pre- results and recognize the relation of the result in a stand the different metal ions present in a stand the difference of the stand the stand the difference of the stand the difference of	Cognitive of morgani Psychomot sent in the Cognitive mixture/ so	and Un c mixture or Set iven solu ind Ap lution.	derstand s. ition. ply		
COURSE OUTCON reaction.	Esters and its significance in the	A BOMA Phycomo	Nor M	echanism	L	
CO1 Recognize E	e chemical reaction takes place in the	Cognitive	and Re	emember		
separation Experiments	of inorganic mixture and in the experiment and relate the results.	Psychomo	tor Pe	rception		
CO2 <i>Identify</i> the 2 Kinetics-ac mixture and 3 Kinetics-se present tins-se present tins-se CO3 <i>Interpret</i> the 5 Determina 6 Determina	eid hydrolysis of ester comparison of stre various cations present in the given in hydrolysis of ester determination fe estimate the amount of metal ion ponification of ester determination of eth signification of the ster determination of eth results and <i>labels</i> the various specific- tion of molecular weight of substance by tion of molecular weight of substances by	ngths of ac Gognitive Psychomoti nyl acetate l of order, ef Cognitive transition to Bast metho	ids Un ivation (J or conduction fective of and Ap emperature od, M	nderstand Ea). ctometry. ionic stre pply re m hoc ceive hoc echanism	ength I.	
7 Determina Inorganic C effect of imp	tion of Critical Solution Temperature (CS hemistry Practical I urity on CST.	s1) of phen	öf-water	system an	ld	
8.936669677	asemlagratioonuald correpondents forming	a simple et	itectic.			
PRACT	hesmetia Bram as two components forming phane and the second point of the second provident of the ation of integraliand differential heat of se fation of integraliand differential heat of se fation prate of the lymerization of the second on law – study of Iodine-Iodine equilibriu on law – study of assoring of the second of the second of the study of the second of the second of the second of the study of the second of t	a compound by two com y after two pl plutions by finanganese im. contor two points of the two points finanganese im.	d. mon cati éss comr colorime ions usi zene.	ons (Pb, non cation try. ng photoo TOTAI	Bi, Ca, ns (W, electric	
90 16. Adsorptio	mjanxalicoganic secience charmality	ing Freund	lich isoth	enn tional	Pubs,	
 IDENTING BOORKS G. Svehlæ afsætufanak Infordanico Sendi Snorim Qualidativel Jeisrgani EA, alvæi fon aft PEds, Longman 988 p Ltd, London, 1987. A. G. Sogala, Test Bookkof Quantitative Soorganico Qualifeiristi och Fadganico ganabyske vot Delli, 2000 gman group Ltd, London, 1987. A. I. Vogel, Text Book of Quantitative Inorganic Analysis; 6th Ed., Longman, New Delhi, 2000 						

	SEMESTER II 14		
kk.		 	

COURSE	CODE	COURSE NAME	L		Т	P	С		
YCY201		INORGANIC CHEMISTRY-II	4		1	0	5		
C:P:A		4.0:0.5:0.5	L	4	Т	P	Η		
			4		1	0	5		
Learnin	g Objecti	ves:				i			
1. To lear	n the concept	ots, structure and bonding of organor	neta	allic c	compour	nds.			
2. To und	erstand the	mechanisms involved in the reaction	s of	f orga	nometal	lic co	mpounds.		
3. To iden	tify and unc	lerstand the chemistry of carbenes an	nd tl	heir r	eaction	mech	anism.		
4. To und	erstand the	concepts of bioinorganic chemistry a	nd i	its ap	plicatio	18.			
5. To learn and understand the chemical properties of metalloenzymes/metalloporphyrins.									
COURSE		AES: On the successful completion		D	OMAI	N	LEV	EL	
of the cou	Des all or	ts will be able to	£	Carr	:4:		Domorphor		
COI	Kecall an	and bonding of organometalli		Cogn	llive		Understand	4	
	compound	s: Display the geometries	of 1	Psych	omotor		Set	1	
	organomet	allic molecules using 18 electron	/1]	1 Syci	lomotor		500		
	rule.								
CO2	Summariz	e and Report reaction mechanism of	f (Cogn	itive		Understand	and	
	inorganic a	and organometallic compounds.		Affec	tive		Respond		
CO3			(Cogn	itive		Understand	nd	
	<i>Explain</i> the	s and <i>Interpret</i> the mechanism of		Affective Apply		Apply	pply		
	their chem	and <i>Interpret</i> the mechanism of an and <i>Interpret</i> the mechanism of a sections					Respond		
CO4		the principles of bioinorgani	c (Cogn	itive		Analyze	Analyze	
	concepts	and the application of variou	S	Psycr	omotor		Perception	1	
CO5	Identify	the various metalloenzymes	:/ (Coon	itive		Remember		
000	metallopoi	rphyrins and their chemica	1	Cogn			remember		
	properties.	1 5							
SYLL	ABUS:								
	N4							1	
UNII 1-3	structure a	nd bonding in Organometallics:							
The 18 el	ectron rule	– applications and limitations – iso	loba	al con	ncept ar	d its	usefulness.		
Nitrosyl c	omplexes –	bridging and terminal nitrosyls, ben	t an	nd line	ear nitro	syls -	- dinitrogen		
complexe	s – metalloc	ene and arene complexes – metal ca	rber	nes.		-	ũ		
Classifica	Classification based on captivity and polarity of M-C bond, organometallic compounds of						15		
lanthanide	es and actini	des – fluxional organometallic com	our	nds –	organoi	netal	lics in		
medicine.	agriculture	horticulture and industry.			6				
UNIT II .	Reaction n	nechanism and Catalysis							
Civit in -Reaction incentation and Catalysis.									

Ligand substitution-oxidative addition and reductive emmination-1,1 and 1,2-insertion				
addition and elimination reactions-alkene isomerization - hydroboration hydrocyanation –				
hydrogenation of olefins - Wilkinson's catalyst - hydroformylation of olefins- wacker-				ter-
Schmidt synthesis-	Monsanto acetic ac	id process- Eastmar	h Halcon process- Fischer-	
Tropsch process- h	ydrosilylation.			
UNIT III Carbenes:				
Fischer and Schrock carbenes - bonding and reactivity- Grubbs catalyst- carbenes				nes
structure, synthes	is and reactions-al	lkene metathesis	– mechanism- C-H and C	C-C 15
activation- agnostic	c bonds -Ziegler-Nat	tta polymerization o	of olefins-Heck reaction- The	10
Pauson Khand reac	tion- Ene reaction.			
UNIT IV -Genera	l Principles of Bioi	norganic Chemistr	·y:	I
Occurrence and	availability of	inorganic element	ts in biological systems	_
biomineralization	– nucleation and	crystal growth –	various biominerals – calci	um
phosphate-iron bio	minerals – strontiun	n and barium sulpha	ate.	
Function and trans	sport of alkali and	alkaline earth met	al ions: characterization of I	_{z+} 15
$\frac{1}{2} \frac{1}{2} \frac{1}$	sport of alkali and 2^{\perp}			× ,
Na ^{$+$} , Ca ²⁺ and	Mg^{2+} – complexe	s of alkali and a	alkaline earth metal ions w	/ith
macrocycles – ion channels – ion pumps, catalysis.				
UNIT V -Metallop	oorphyrins/Metallo	enzymes:		
Dioxygen transp	ort and storage-he	moglobin and my	oglobin: electronic and spa	tial 15
structures-hemeyth	rin and hemocyanin	ne- synthetic oxyge	en carriers, model systems-b	olue
copper proteins (Cu)-iron-sulfur pro	teins (Fe)-cytochro	omeselectron transport cha	uin-
carbon monoxide	poisoning- iron enz	ymes- peroxidase,	catalase and cytochrome P-4	.50,
copper enzymes- si	uperoxide dismutase	, vitamin B12 and	B12 coenzymes,	
photosynthesis- ph	otosystem-I &II, nit	rogen fixation, cispl	latin.	
	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	<i>Z</i> 0	1.5		HOURS
Hours	60	15	•	75
References Books				
1 I F Hubaay I	porganic Chamistry	Ath Ed Harper	and Pow Publishers Singapor	· <u>a</u> 2006
1. J. E. Huneey, morganic Chemistry; 4th Ed., Harper and Row Publishers, Singapore, 2006.				
2. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; Thomson Learning, Boston, 1980.				
3. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry; Panima Publishing				
Company, New	Delhi, 1997.			
4. W. Kaim and B	. Schewederski, Bio	inorganic Chemistr	y: Inorganic Elements in the G	Chemistry
of Life; 2nd Ed., John Wiley and Sons, New York, USA, 2013.				

- G. L. Eichhorn, Inorganic Biochemistry; Volumes 1 and 2, 2nd Ed., Elsevier Scientific Publishing Company, New York, 1975.
- 6. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry; 6th Ed., John Wiley and Sons,

New York, 1999.

- R. C. Mehrotra and A. Singh, Organometallic Chemistry; 2nd Ed., New Age International Ltd. New Delhi, 2014.
- 8. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals; 3rd Ed., John Wiley and Sons, New York, 2001.
- S. E. Kegley and A. R. Pinhas, Problems and Solutions in Organometallic Chemistry; 2nd Ed., University Science Books, Oxford University Press, 1986.

10. A. J. Pearson, Advances in Metal-Organic Chemistry, Vol. 1; Jai Press, Inc., Greenwich, 1989.

Text books

- 1. A. W. Parkins and R. C. Poller, An Introduction to Organometallic Chemistry; 1987, Oxford University Press, Chennai.
- I. Haiduc and J. J. Zuckerman, Basic Organometallic Chemistry; Walter De Gruyter Inc, USA, 1985.
- 3. P. Powell, Principles of Organometallic Chemistry; 2nd Ed., Chapman and Hall, London, 1988.
- B. Douglas, D. H. McDaniel and J. J. Alexander, Concepts and Models of Inorganic Chemistry; 3rd Ed., John Wiley and sons, New York, 1994.
- M. Bochmann, Organometallics 1: Complexes with transition metal-carbon bonds; Oxford Chemistry Primers Series, No. 12, and M. Bochmann, Organometallics 2: Complexes with transition metal-carbon bonds; No. 13, 1994.
- 6. J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, California, 1987

E-Resources

- 1. https://nptel.ac.in/courses/104103069/33
- 2. https://nptel.ac.in/courses/104105038/21
- 3. <u>https://onlinecourses.nptel.ac.in/noc18_cy09/preview</u>

COURSE CODE	COURSE NAME	L	Т	P	С
YCY202	PHYSICAL CHEMISTRY-II	4	1	0	5
C:P:A	4.5:0:0.5	L	Т	P	Η
		4	1	0	6

Learning Objectives:

- 1. To learn the concepts and applications of symmetry elements and symmetry operations.
- 2. To understand the concepts of molecular spectroscopy and interaction of electromagnetic radiation with monoatomic and diatomic molecules.
- 3. To understand the concepts of third law of thermodynamics and thermodynamic properties of real gases.
- 4. To learn and understand the theories and concepts of electrochemistry.
- 5. To learn the various concepts of adsorption and free energy reaction at interphase.

COUR course,	SE OUTCOMES: <i>On the successful completion of the students will be able to</i>	DOMAIN	LEVEL
CO1	<i>Explain</i> the various symmetry elements and symmetry operations	Cognitive	Understandin g
CO2	<i>Describe</i> the physical aspects of molecular spectroscopy and interaction of electromagnetic radiation with monoatomic and diatomic molecules.	Cognitive	Remember
CO3	<i>Interpret</i> third law of thermodynamics and thermodynamic properties of real gases	Cognitive Affective	Apply Receiving
CO4	<i>Describe</i> the principle of dynamics of electron transfer and electro deposition of metals.	Cognitive Affective	Remember Responding
CO5	<i>Apply</i> and <i>Identify</i> the various concepts of adsorption and free energy reaction at interphase.	Cognitive	Apply Remember

SYLLABUS:

UNIT I -Concept of Group Theory

Symmetry elements and operations – point groups – assignment of point groups to molecules – group postulates and types of groups – group multiplication tables, sub groups, similarity transformations – conjugate elements and classes. Matrix representation of symmetry operations and point groups – reducible and irreducible representations – properties of irreducible representation. The great orthogonality theorem – construction of character table – direct product – projection operators – 15 symmetry of hybrid orbitals.

UNIT II -Molecular Spectroscopy

Einstein coefficient of absorption and transition probabilities -basis of selection rules

-Representation of spectra -the width and intensity of spectra transitions oscillator	
strength. Electronic spectra -electronic spectra of molecules -Born Oppenheimer	
approximation -vibrational coarse structure -Franck-condon principle -dissociation	
energy -fortrat diagram -Pre-dissociation -various types of transitions -solvent effect	
on spectra. Infra red spectra -vibrational spectra -selection rules -harmonic and	15
anharmonic oscillators -vibration and rotation spectra of diatomic molecules -	
vibration spectra of polyatomic molecules -normal vibration and normal coordinates -	
Influence of rotation on the spectra of polyatomic molecules -parallel and	
perpendicular bands -FTIR. Laser Raman spectra -rotational Raman spectra of linear	
molecules -vibrational Raman spectra -rotational fine structure -Fermi resonance.	
UNIT III- Classical Thermodynamics	
Third law, thermodynamics, need for it, Nernst heat theorem and other forms of	
stating the third law. Thermodynamic quantities at absolute zero, apparent	
exceptions to the third law - thermodynamics of systems of variable	
composition, partial molar properties, chemical potential, relationship between	
partial molar quantities, Gibbs Duhem equation and its applications (the	15
experimental determination of partial molar properties not included) -	
thermodynamic properties of real gases, fugacity concept, calculation of	
fugacity of real gas, activity and activity coefficient, concept, definition,	
standard states and experimental determinations of activity and activity	
coefficient of electrolytes.	
UNIT IV- Electrochemistry II	
Dynamics of electron transfer - Marcus theory - tunneling - the rate of charge	
transfer - current density - Butler-Volmer equation - Taft equation - 29 polarization	
and overvoltage – mechanism of hydrogen evolution and oxygen evolution reactions.	
Principles of electrodeposition of metals - corrosion and passivity - Pourbaix and	
Evans diagrams - methods of protection of metals from corrosion. Power storage	15
systems - fuel cells - construction and functioning - applications - photovoltaic cells	
UNIT V- Surface Phenomena	
Adsorption and free energy reaction at interphase -potential energy diagram -	
Lennard-Jones plot -surface area determination -heats of adsorption -determination -	
adsorption from solution -Gibbs adsorption theorem -solid-liquid interface -Wetting	

and contact angle -solid-gas interfaces -soluble and insoluble films. Surface tension: **15** methods of measuring surface tension -electrical phenomena at interface including electro kinetic phenomenon -Micelles and reverse micelles -solubilisation -micro emulsion or micellar emulsions. Role of surface in catalysis: semiconductor catalysis -n-and p-type surfaces -kinetics of surface reaction involving adsorbed species. Langmuir-Hinshelwood mechanism of bimolecular reaction -Langmuir-Rideal mechanism -Rideal-Eley mechanism.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
Hours	60	15	-	75
Reference Books				•

1. K. Chandra, Introductory Quantum Chemistry, 4th ed., Tata McGraw Hill, 1994.

- 2. R. K. Prasad, Quantum Chemistry, 2nd ed., New Age International Publishes (2000),
- 3. I. N. Levine, Quantum Chemistry, 4th ed., Prentice Hall of India Pvt Ltd., (1994),
- 4. D. A. McQuarrie, Quantum Chemistry, University Science Books (1998),
- 5. S. Glasstone, Introduction to Theoretical Chemistry, Affiliated East-West Press
- 6. G. N. Barrow, Introduction to Molecular Spectroscopy, International Mc.Graw Hill Edition (1993),
- 7. G. N. Barrow, Introduction to Molecular Spectroscopy, International McGraw Hill Student Edition (1984),
- 8. B. P. Straughan and S. Walker, Spectroscopy, Vol.I to III, Chapman Hall, London (1976),
- 9. S. Glasstone, Thermodynamics for Chemists, East-west Affiliated Pvt Ltd, New Delhi (1969),
- R. P. Rastogi and R. R. Misra, An Introduction to Chemical Thermodynamics Vikas Publishing House Pvt Ltd., (1992),

Text Books

- 1. Kloz and P. M. Rosenberg, Chemiscal Thermodynamics: Basics Theory and Methods, 3rd ed., W. A. Benjamin, NY (1974),
- 2. K. J. Laidler, Chemical Kinetics, 2nd ed, Tata McGraw Hill (1975),
- 3. A. A. Frost and R. G. Pearson, Kinetics and Mechanisms, John Wiley & Sons (1953),

E-Resources

https://nptel.ac.in/courses/103106070/33 https://nptel.ac.in/courses/113108051/2 https://onlinecourses.nptel.ac.in/noc18_cy15/preview

COUR	URSE CODE COURSE NAME			L	T	P	С	
YCY2	03	INORGANIC CHEM PRACTICAL-II	IISTRY	0	0	6	3	
C:P:A		0.6: 2.2:0.2		L	Τ	P	Η	
				0	0	6	6	
Learn 1. To le solution 5. To le	 Learning Objectives: 1. To learn and understand the volumetric and gravimetric analysis of metal ions present in solution. 5. To learn the synthetic procedure of various inorganic compounds. 							
COUR	COURSE OUTCOMES DOM				Ν		LEVEL	
CO1	CO1 <i>Identify</i> the various Metals ions in the solution using volumetric method		Cognitive Psychomotor		Remember Perception			
CO2	D2 <i>Estimate</i> the amount of Metal ions present in solution using gravimetric method.		Cognitive Psychomotor		Understand Set			
CO3	<i>Synthesis</i> of various inorganic compounds.			Cognitive Psychomotor Affective		A S R	Apply Set Receiving	

1.	Titrimetry (V) a A mixture of solu 1. Cu (V) and Ni 2. Cu (V) and Zn 3. Fe (V) and Zn 4. Fe (V) and Ni 5. Zn (V) and Cu	nd Gravimetry (G) tion(s) should be giv (G); (G); (G); (G); (G).	en for estimation					
2.	Preparation of the following compounds: 1. Tetramminecopper (II) sulphate. 2. Potassium trioxalatochromate (III). 3. Potassium trioxalatoaluminate (III). 4. Trithioureacopper (I) chloride.							
	5. Trithioureaco	pper (I) sulphate.	TUTORIAL	PRACTICAL	TOTAL HOURS			
Hours		-	-	90	90			

Reference Book

- 1. A. I. Vogel, "Quantitative Inorganic Analysis", ELBS, 3rd Edition, 1971.
- 2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis; 3rd Ed., National Pubs, London, 1988.
- 3. G. Svehla, Text Book of Macro and Semimicro Qualitative Inorganic Analysis; 5th Ed., Longman group Ltd, London, 1987.

COUR	COURSE CODECOURSE NAMELTP				С				
YCY20)4	PH PR	YSICAL CHEN ACTICAL-II	IISTRY		0	0	6	3
C:P:A		0.6	: 2.2:0.2			L	Т	P	Η
						0	0	6	6
Learn	ing Obje	ectives:			L				L
1. To le	arn and ur	nderstand the co	onductometric me	ethod of analy	sis of va	rious	type	s of so	lutions.
2. To le	arn the de	termination of	dissociation cons	tants, solubili	ty and ac	tivity	coe	fficien	ts of
various	ions using	g potentiometrie	c method.						
COUR	SE OUTO	COMES			DOM	AIN		LF	EVEL
CO1	Identify	the strength of	various types of s	solutions	Cognitiv	ve	R	emem	ber
	using co	nductometric m	nethod.		Psychor	notor	P	ercepti	ion
CO2	Estimate	the dissociation	on constants of ac	ids using	Cognitiv	ve	U	nderst	and
	conducto	metric method	•		Psychon	notor	S	et	
CO3	Estimate	the dissociatio	on constants, solu	bility and	Cognitiv	ve	A	pply	
	activity	coefficients	of various i	ons using	Affectiv	notor	or Set		2
Any to	potention	nettic method.	acidad by the ac	ursa taaaha	r) out of	tha	T falla	wing	iig
experi	ments	lients (to be u	ectueu by the co	uise teache	I) out of	uie		wing	
1. Cor	ductomet	rv - Acid- alka	ali titrations.						
2. Con	ductomet	ry - Precipitat	ion tritrations.						
3. Con	ductomet	ry - Displacen	nent titrations.						
4. Con	ductomet	ry - Determin	ation of dissocia	tion constant	t of weak	acid	ls.		
5. Con	ductomet	ry - Solubility	product of spar	ingly soluble	e silver s	alts.			
6. Con	ductomet	ry- Verificatio	on of Onsager ec	luation					_
7. Cor	ductomet	ry - Determina	ation of degree o	of hydrolysis	and hydr	olysi	is co	nstant	of a
sub:	stance.			- 4					
$\begin{array}{ccc} \delta. & \text{Con} \\ 0 & \text{Rot} \end{array}$	auctomet	ry - 10 detern	hine the relative	strength of t	wo acids.				
9. FOR	entiometri	ic titrations - F	Precipitation titre	ations					
10. 1 Ott	entiometri	ic titrations - F	Redox titrations	ations.					
12. Pote	entiometry	v - Determinat	ion of dissociation	on constant o	of weak a	acids	_		
13. Pote	entiometry	y - Determinat	ion of solubility	of silver sale	ts.				
14. Pote	entiometry	y - Determinat	tion of activity a	nd activity c	oefficien	t of i	ons.		
15. Potentiometry - pH titration of ortho -phosphoric acid.									
16. Pote	entiometry	y- To determin	ne the pH of a b	uffer solution	n using q	uinh	ydro	ne ele	ectrode.
		LECTURE	TUTORIAL	PRA	CTICAL			TOTA	L HOURS
	Hours	-	-		90				90
Refere	nce:								

- 1. J. B. Yadav, "Advanced Practical Physical chemistry", 20th edn. GOEL publishing House, Krishna Pakashan Media Ltd., (2001).
- 2. Findlay's "Practical Physical Chemistry" Revised and edited by B. P. Levitt 9th ed., Longman, London, 1985.
- 3. J. N. Gurtur and R. Kapoor, "Advanced Experimental chemistry", Vol. I. Chand & Co., Ltd

		7			
COURSE CODE	COURSE NAME		Т	P	С
	SOLID STATE CHEMISTRY-IA	4	1	0	5
YEC205A					
C:P:A	4.5:0:0.5	L	Т	P	Η
		4	1	0	5

Learning Objectives:

- 1. To learn the concepts of c rystal structure and crystal engineering of organic solids.
- 2. To understand the mechanisms involved in the reactions of metallo organic framworks.
- 3. To identify and understand the methods of preparation and crystallization of metallo organic solids.
- 4. To understand the concepts of magnetic and optical properties of inorganic solids.
- 5. To learn and understand the various concepts of solid state chemistry with respect to organic solids.

COUF	RSE OUTCOMES: <i>On the successful completion of urse, students will be able to</i>	DOMAIN	LEVEL
CO1	<i>Explain</i> the concepts of crystal structure and basics of crystal engineering of organic solids.	Cognitive	Understand
CO2	<i>Summarize</i> and <i>Report</i> the chemical properties of Metallo organic frameworks and their applications.	Cognitive Affective	Understand Respond
CO3	<i>Interpret</i> various method for preparation and crystallization of solids.	Cognitive Affective	Apply Receive
CO4	<i>Describe</i> the magnetic and optical properties of inorganic solids.	Cognitive Affective	Remember Respond
CO5	<i>Apply</i> and <i>Identify</i> the various concepts of solid state chemistry with respect to organic solids.	Cognitive	Apply Remember

SYLLABUS:

UNIT I- Crystal Structure and Crystal Engineering of Organic Solids

Types of close packing – hcp and ccp – packing efficiency – SC, BCC, and FCC, radius ratio rule - applications - polyhedral description of solids structure types: Na₂O, Cs₂O, rutile, perovskite (ABO₃), ReO₃, K₂NiF₄, spinels and antispinels. Hydrogen bonded supramolecular patterns involving water / carboxyl / halide motifs – concepts of different types of synthons based on noncovalent interactions _ principles ofcrystalengineering and non-15 covalentsynthesis-polymorphism and pseudopolymorphism supramolecular isomorphism, polymorphism and crystal engineering of pharmaceutical phases.

UNIT II- Metal Organic Frameworks				
M.O.Fs (Metal Organic Frameworks) – organometallic systems – combinations of different interactions to design molecular rods, triangles, ladders, networks, etc. Design of nanoporous solids. Interligand hydrogen bonds in metal complexes – implications for drug design – crystal engineering of NLO and OLED materials.	15			
UNIT III- Preparative Methods in Solid State Chemistry				
Experimental procedure, coprecipitation as a precursor to solid state reaction, other precursor methods, kinetics of solid state reactions – crystallizations of solutions, melts, glasses and gels, solutions and gels: zeolite synthesis – precipitation from solution or melt: flux method, epitaxial growth of thin layers, verneuil flame fusion method. Graphite intercalation compounds, transition metal dichalcogenide and other intercalation compounds, ion exchange reaction, synthesis of new metastable phases by 'Chimie Douce'. Vapour phase transport, hydrothermal methods, comparison of different methods – high pressure and hydrothermal methods and dry high pressure methods.	15			
UNIT IV -Magnetic Materials and Optical Properties				
Selected examples of magnetic materials and their properties – metals and alloys, transition metal oxides, spinels, garnets, ilmenite and perovskites. Magnetoplumbites – applications – structure/property relations – transformer, information storage, magnetic bubble memory devices, permanent magnets. Luminescence, Lasers and phosphors – definitions and general comments, configurational coordinate model, some phosphor materials, anti-Stokes phosphors – lasers – the ruby laser, Neodymium lasers	15			
UNIT V- Organic Solid State Chemistry				
Topochemical control of solid state organic reactions – intramolecular reactions – conformational effects – intermolecular reactions – molecular packing effects – photodimerization of 2-ethoxycinnamic acid (α form, β form, γ form) – photopolymerization of 2,5-distyrylpyrazine – photopolymerizations of diacetylenes. Asymmetric syntheses – dimerization of anthracene – control of molecular packing arrangements.	15			
LECTURE TUTORIAL PRACTICAL T	OTAL HOURS			
Induity 00 15 - REFERENCE BOOKS	13			
 R. West, Solid State Chemistry and Its Applications; 2nd Ed., John Wiley and sons, New York, 2014 (Unit III – V). J. M. Lehn, Supramolecular Chemistry; VCH, Weinheim, 1995. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids; Elsevier, Amsterdam, 1989. 				

4. G. R. Desiraju, and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, 2002.

5.

TEXT BOOKS

- 1. J. M. Lehn, Transition Metals in Supramolecular Chemistry; Vol 5, John Wiley and Sons, New York, 1999.
- 2. G. A. Jeffrey, Introduction to Hydrogen Bonding; Oxford University Press, New York, 1997. C. N. R. Rao, Current Science, 2001, 81, 1030.

i.					
E-RESOURCES					
(i) <u>http://www.pubs</u>	s.acs.org/journals/cgdefu/index.html				
(ii) http://www.rsc.c	org/Publishing/ Journals /ce/ index.asp				
COURSE CODE	COURSE NAME	L	Т	P	С
YEC205B	SUPRAMOLECULAR CHEMISTRY-IB	4	0	0	5
C:P:A	4.0:0.5:0.5	L	Т	Р	H
		4	1	0	5

Learning Objectives:

- 1. To learn and describe the basic concepts of supramolecular chemistry and the synthons based interactions and polymorphism.
- 2. To understand the the chemical properties of Metallo organic frameworks and their applications.
- 3. To identify and understand the concepts of co-receptor molecules and multiple rcognition.
- 4. To understand the reaction mechanism of supromoleclar compounds.
- 5. To learn and understand the applications of various supramolecular compounds.

COURSI	E OUTCOMES: On the successful completion of the	DOMAIN	LEVEL			
course, st	tudents will be able to					
CO1	<i>Recall</i> and <i>Explain</i> the basic concepts of supramolecular	Cognitive	Remember			
	chemistry; <i>Display</i> the synthons based interactions and		Understand			
	polymorphism.	Psychomotor	Set			
CO2	Summarize and Report the chemical properties of	Cognitive	Understand			
	Metallo organic frameworks and their applications.	Affective	Respond			
CO3		Cognitive	Understand			
	<i>Explain</i> the concepts of co-receptor molecules and	Affective	Apply			
	multiple rcognition.		Respond			
CO4	Describe the reactivity of supromoleclar compounds and	Cognitive	Analyze			
	the mechanism of catalysis.	Psychomotor	Perception			
CO5	<i>Identify</i> the applications of various supramolecular compounds.	Cognitive	Remember			
SYLLABUS:						
UNIT I- Concepts of Supramolecular Chemistry						
Concepts and languages of supramolecular chemistry – various types of non-covalent						
interactions – hydrogen bonds, C-H···X interactions, halogen bonds – π - π						

interactions, non-bonded interactions – various types of molecular recognition.Crystal engineering of organic solids – hydrogen bonded supramolecular patterns involving water / carboxyl / halide motifs – concepts of different types of synthons based on non-covalent interactions – principles of crystal engineering and non-covalent synthesis – polymorphism and pseudopolymorphism – supramolecular isomorphism / polymorphism – crystal engineering of pharmaceutical phases.					15
				-	
M.O.F (Metallo Organ different interactions to design of nanoporous so implications for drug de	blic Frameworks) – b design molecular blids – interligand hy ssign – crystal engine or Moleculos and N	organometallic sy rods, triangles, la ydrogen bonds in m eering of NLO mate	adders, networks, etc. etal complexes – erials, OLED.	10	15
UNIT III- Co-recepto	or molecules and N	multiple Recognit	1011		
Dinuclear and polynulclear metal ion cryptates – linear recognition of molecular length by ditopic co-receptors – heterotopic co-receptors – cyclophane receptors, amphiphilic receptors and large molecular cages – multiple recognition in metalloreceptors – supramolecular dynamics.				of –	15
UNIT IV- Supramole	cular Reactivity a	nd Catalysis			
Catalysis by reactive macrocyclic cation receptor molecules – catalysis by reactive anion receptor molecules – catalysis with cyclophane type receptors – supramolecular metallocatalysis – cocatalysis – catalysis of synthetic reactions – biomolecular and abiotic catalysis. Supramolecular chemistry in solution – cyclodextrin, micelles, dendrimers, gelators – classification and typical reactions – applications				by s – s – –	15
UNIT V- Supramolec	ular Devices				
Supramolecular devices and sensors – various types of supramolecular devices – an overview – supramolecular photochemistry – molecular and supramolecular photonic devices – light conversion and energy transfer devices – molecular and supramolecular electronic devices – electronic conducting devices – molecular wires, modified and switchable molecular wires – molecular and supramolecular ionic devices – tubular mesophases, molecular protonics – switching devices – electro-photo switch – ion and molecule sensors – role of supramolecular chemistry in the development of nanoscience and technology.				and and s – and ing ılar	15
	LECTURE	TUTORIAL	PRACTICAL	T H	OTAL
Hours	60	15	-		75
 REFERENCES 1. J. M. Lehn, Supramolecular Chemistry; VCH, Weinheim, Germany, 1995. 2. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids; Elsevier, United States, 1989. 3. G. R. Desiraju, and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press, Oxford, 1999. 				tes,	

TEXT BOOKS

- 1. G. A Jeffrey, Introduction to Hydrogen Bonding; Oxford University Press: UK, 1997.
- 2. J. M. Lehn, Transition Metals in Supramolecular Chemistry; John Wiley and Sons: New York, 1999.

3. G. R. Desiraju, Current Science; 2001, 81, 1038.

E-RESOURCES

- (i) http://www.pubs.acs.org/journals/cgdefu/index.html
- (ii) http://www.rsc.org/Publishing/ Journals /ce/ index.asp

	SEMESTER III			Т	Р	С
COUH	RSE CODE	COURSE NAME	4	1	0	5
YCY3	01	ORGANIC CHEMISTRY II	L	Т	Р	Η
C: P:	A	4.5:0:0.5	4	1	0	5
COUH	RSE OUTCON	AES:	Domai	n	Lev	el
CO1	<i>Recall</i> and <i>su</i> reactions of a	<i>mmarize</i> the nucleophilic substitution liphatic and aromatic compounds.	Cogniti	ve	Remer Unders	nber stand
CO2	<i>Outline</i> the resubstitution reorientation of	eaction mechanism of electrophilic eactions and explain the structure and the substituted products.	Cogniti	ve	Remer Unders	nber stand
CO3	<i>Identify</i> the read and <i>illustrate</i> elimination read	eagents of various rearrangement reaction the mechanism of the addition and eactions	Cogniti	ve	App Unders	ly stand
CO4	<i>Recognize</i> an <i>of</i> various het	d <i>Interpret</i> the preparation and properties erocyclic compounds	Cogniti Affectiv	ve ve	Understa Reco	and eive
CO5	<i>Understand</i> a of various of	and <i>Examine</i> the structural components natural products.	Cogniti Affecti	ve ve	Analy Rece	yze ive
UNIT	I - NUCLEO	PHILIC SUBSTITUTION REACTIONS			15	
allylic stereoo rearran rearran Aroma orienta nucleo	mechanisms – neighbouring group participation, non-classical arbocations – substitutions at allylic and vinylic carbons. Reactivity – effect of structure, nucleophile, leaving group and stereochemical factors – correlation of structure with reactivity – solvent effects – rearrangements involving carbocations – Wagner-Meerwein and dienone-phenol rearrangements. Aromatic nucleophilic substitutions – SN1, SNAr, Benzyne mechanism – reactivity orientation – Ullmann, Sandmeyer and Chichibabin reaction – rearrangements involving					
UNIT	II - ELECTR	OPHILIC SUBSTITUTION REACTION	NS		1	.5
Aromatic electrophilic substitution reaction – orientation, reactivity and mechanisms based on transition state theory with suitable reactions – substitutions in thiophene and pyridine – N- oxide quantitative treatment of the structural effects on reactivity. Substituent effects – origins of Hammett equation – principles of Hammett correlation – effect of structure on reaction mechanisms Hammett parameters – σ and ρ , modified forms of Hammett equation, Taft Equation. Aliphatic electrophilic substitution – SE2, SEi and SE1 mechanisms – diazonium coupling reactions – metals as electrophile in substitution reactions and decomposition of diazonium salts.						
UNIT III - ADDITION AND ELIMINATION REACTIONS 15						
Addition to carbon-carbon multiple bonds – electrophilic, nucleophilic and free radical additions – orientation of the addition – stereochemical factors influencing the addition of bromine and hydrogen bromide, hydroxylation, 1,2- dihydroxylation – hydroboration leading to formation of alcohols – oxidation and ozonolysis. Addition to carbonyl and conjugated carbonyl systems – mechanism – Grignard reagents – 1,2- and 1,4-additions (lithium dimethylcuprate) – addition to						

carbon-oxygen	double bond -	Benzoin, Knoevenagel, S	tobbe, Darzens gl	ycidic ester	
condensation an	d Reformatsky rea	actions.			
Elimination rea	actions – mechar	nisms; E1, E2, E1cB – s	stereochemistry of	elimination,	
Hofmann's and	Zaitsev's rules – c	competition between elimination	ation and substitution	n – pyrolytic	
cis-elimination,	Chugaev reaction	on – examples such as	Hofmann degrada	ation, Cope	
elimination – B	redt's rule with exa	amples.			
UNIT IV - HE	TEROCYCLES			15	
Nomenclature:	Trivial, systematic	c and replacement nomencla	ture – nonaromatic l	heterocycles	
– synthesis of te	etrahydrofurans – J	pyrrolidines – tetrahydropyr	ans – piperidines. Sy	nthesis and	
reactivity of het	erocycles: aziridin	es - oxiranes - thiranes - a	azetidines – oxetanes	s – oxazoles	
– imidazoles –	thiazoles – isooxaz	zoles. Synthesis and reactivi	ty of aromatic hetero	ocycles:	
pyrazoles – iso	othiazoles – triazo	oles – pyrimidines – purin	es – triazines – py	rıdazınes –	
pyrazines.					
UNIT V - NAT	URAL PRODUC	CTS		15	
Terpenoids: int	roduction – biosy	nthesis of menthol, campl	nor – total synthesi	s: Takasago	
synthesis of me	nthol, Corey's syn	thesis of longifolene, Currar	n's synthesis of hirsu	tene.	
Steroids: introd	uction – partial syr	thesis of androsterone and	testosterone (from C	holesterol)	
– total synthesi	s: Johnson's syntl	nesis of progesterone and	ollhardt's synthesis	s of estrone.	
Alkaloids: intro	duction - biosynt	thesis of nicotine, camptoll	hecin - total synthe	sis: Corey's	
synthesis of ep	ibatidine, Comin's	s asymmetric synthesis of	Camptothecin and	Woodward's	
synthesis of rese	TUTODIALS			ΤΟΤΑΙ	
	IUIORIALS	SELF STUDY	PRACTICAL	TOTAL	
	15	-	-	75	
TEXT BOOKS			1.0		
1. S. H. Pine an	d J. B. Hendricks	on, D. J. Cram and G. S. Ha	mmond, Organic Cho	emistry; 5th	
2 T H E Low	V HIII, NOIUA, (198	ordson Mashanism and The	omi in Organia Char	nistry 2rd	
2. 1. H. E. LOV	vry and K. S. Kich	ardson, Mechanism and The	ory in Organic Cher	illistry, 5rd	
Benjamin-Ci	ummings Publishir	ng USA (1997)			
3 I March and	M R Smith Adv	anced Organic Chemistry: F	Reactions Mechanis	ms and	
Structure 6t	h Ed Wiley New	York (2007)		ins and	
4 I Clavden N	J Greeves S Wat	ren and P Wothers Organ	ic Chemistry 2nd Ec	1 Oxford	
University P	ress UK (2012)	ren, and r. Wothers, organ	ie enemistry, 2nd Ee	ii, Oxioiu	
5 I L Finar	Organic Chemistry	v Vol II 7th Ed Pearson E	ducation Ltd New 1	ersev	
(2009).	organie chemistry			ersey,	
REFERENCE	5				
1. R. K. Bans	al. Reaction Mech	anism in Organic Chemistry	: Tata McGraw Hill	. Noida.	
(1990)	,	6		, ,	
2. F. A. Carey,	and R. J. Sundber	g, Advanced Organic Chem	istry, Parts A and B,	5 th Ed.,	
Springer, Go	ermany, (2007).				
3. E. J. Corey, and X-M. Cheng, The Logic of Chemical Synthesis: 1st Ed., Wilev-					
Interscience,				•	
New York,	(1995).				
4. T. L. Gilchr	ist, Heterocyclic C	hemistry; 3rd Ed., Prentice	Hall, New Jersey, 19	97.	
5. R. K. Bansal, Heterocyclic Chemistry; 3rd Ed., Wiley Eastern Ltd, New Delhi, 1999.					
6. K. C. Nicola	ou and E. J. Sorer	sen, Classics in Total Synth	esis, Targets, Strateg	gies,	
Methods; W	iley VCH, Germa	ny, 1996.			
7. Longifolene	$\cdot \mathbf{F} \mathbf{\Delta} \mathbf{C}$ are v and \mathbf{C}	R. J. Sundberg, Advanced C	Organic Chemistry; V	/ol.2.	

5th Ed., Springer, Berlin, 2008.

- 8. Androsterone and Testosterone: J. Chem. Soc. Perkin Trans. I; 1986, 117.
- 9. Epibatidine: J. Org. Chem; 1993, 58, 5600.
- 10. Estrone, Estradiol and 2-Methoxyestradiol: J. Org. Chem; 2009, 74, 6362.

COLU		ODE		-	T	-	a
COU	RSE CO	ODE	COURSE NAME	L	Т	P	C
YCY3	302		PHYSICAL METHODS IN CHEMISTRY- I	4	1	0	5
PREREQUISITE C:P:A COURSE OUTCO After the completio		SITE	NIL	L	Т	Р	Η
	C:P:A		4.5:0:0.5	4	1	0	5
COU	RSE O	UTCO	MES	DOM	/IAIN	LE	VEL
After the completion of the course, students will be able to							
CO1	Expla	<i>in</i> the b	pasic principles of molecular spectroscopy.	Cognitive		Understand	
CO2	Relate	e the fu MR spe	ndamentals of NMR spectroscopy and interpret	Cognitive Ren		Remei Under	nber stand
CO3	Expla Identi	<i>in</i> the pify the I	principles of UV, and IR spectroscopy & R and UV active organic compounds	Cogn	itive	Under Apply	stand
CO4	Apply of org	the tec ganic co	hniques of ESR, ORD and Mass spectroscopy mpounds.	Cogn Affec	itive tive	Apply Respo	nd
CO5	Exam compo	<i>ine</i> the ounds.	X-ray, electron, neutron diffractions of simple	Cogn Affec	itive tive	Analyz	ze /e
UNI	UNIT I PRINCIPLES OF MOLECULAR SPECTROSCOPY						15

Interaction of electromagnetic radiation with molecular systems, Microwave spectroscopy – rotational spectra of diatomic molecules, rigid and non-rigid rotors – intensity of spectral lines – effects of isotopic substitution – microwave spectra of polyatomic molecules – linear and symmetric top molecules – infrared spectra – diatomic molecules, simple harmonic and anharmonic oscillators – diatomic vibrating rotator rotation – vibration spectrum of carbon monoxide – interaction of rotation and vibration (breakdown of Born-Oppenheimer approximation) – influence of the rotation on the spectrum of polyatomic molecules, linear and symmetric top molecules, parallel and perpendicular vibrations – influence of nuclear spin. Raman spectra – rotational Raman spectra of linear and symmetric top molecules – vibrational fine structure – electronic spectra of diatomic molecules – vibrational coarse structure – intensity of vibrational lines in electronic spectra – rotational fine structure – fortrat diagram.

UNIT II NU

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

15

¹H NMR Spectroscopy – multiplicity – coupling constant – spin-spin splitting – vicinal and geminal coupling constants – Karplus equation – long range coupling constants, influence of stereochemical factors on chemical shift of protons. Simplification of complex spectra – double resonance techniques, shifts reagents – chemical spin decoupling of rapidly exchangeable protons (OH, SH,

COOH, NH, NH₂) – an elementary treatment of NOE phenomenon. ¹³C NMR Spectroscopy – broad band decoupling – off resonance decoupling – chemical shifts of common functional groups – FT NMR and its importance-DEPT spectra – identification of small compounds based on NMR data – 2D techniques: 1H–1H COSY, ¹H–¹³C HETCOSY – NOESY.

UNIT III	UV-VISIBLE AND IR SPECTROSCOPY	15

UV-Visible spectroscopy – introduction – instrumentation, sampling techniques – Woodward-Fieser and Scott's rules for conjugated dienes and polymers, ketones, aldehydes, α , β -unsaturated acids, esters, nitriles, and amides – differentiation of geometrical isomers and positional isomers – disubstituted benzene derivatives – study of steric effect in aromaticity. Infrared spectroscopy – Introduction – instrumentation, sampling techniques – factors influencing group frequencies – quantitative studies – hydrogen bonding (intermolecular and intramolecular).

UNIT IV ESR, ORD AND MASS TECHNIQUES

 ESR – basic principles – comparison between ESR and NMR spectra – hyperfine splitting – applications to organic free radicals.

Optical rotatory dispersion and circular dichroism – introduction to theory and terminology – cotton effect – ORD curves – axial halo-ketone rule and its applications – the octant rule – its applications – applications of ORD to determine absolute configuration of monocyclic ketones – comparison between ORD and CD – their interrelationships.

Mass Spectrometry – instrumentation – resolution – ESI, EI, CI and FAB methods – base peak, isotopic peaks, metastable peaks – importance of metastable peaks, parent peak, recognition of molecular ion peak – fragmentation – general rules – pattern of fragmentation for various classes of compounds, McLafferty rearrangement – nitrogen rule.

UNIT V X-RAY DIFFRACTION

15

15

X-Ray diffraction by single crystal method – space groups – systematic absences in X-ray data and identification of lattice types, glide planes and screw axes – X-ray intensities – structure factor and its relation to intensity and electron density – phase problem – structure solution by heavy atom method and direct method – determination of absolute configuration of molecules – a brief account of Cambridge Structural Database (CSD) and Protein Data Bank (PDB). Electron diffraction by gases – scattering intensity vs. scattering angle, Wierl equation – measurement techniques. Neutron diffraction by crystals – magnetic scattering – measurement

	1	5 5	0 0	
techniques - elucida	ation of structure of n	nagnetically ordered	ed unit cell.	
LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL
60	15	-	-	75

TEXT BOOKS

- 1. C. N. Banwell, Fundamentals of Molecular Spectroscopy; 4th Ed., McGraw Hill Education, Noida, 1994.
- 2. B. P. Straughan and S. Walker, Spectroscopy; Vol.3, Halstead Press, Sydney, 1978.
- 3. G. M. Barrow, Introduction to Molecular Spectroscopy; McGraw Hill, New York, 1964.
- 4. P. K. Ghosh, Introduction to Photoelectron Spectroscopy; John Wiley, New York, 1989.
- 5. P. M. Silverstein and amd F. X. Western, Spectroscopic Identification of Organic
- Compounds;

8th Ed., John Wiley, New York, 2014.

REFERENCES

- 1. W. Kemp, Organic Spectroscopy; 3rd Ed., Palgrave, New York, 1991.
- 2. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, PHI Learning,

New Delhi, 2009.

3. Y. R. Sharma, Elementary Organic Spectroscopy – Principles and Chemical applications; S. Chand, New Delhi, 1992.

4 . P. S. Kalsi, Spectroscopy of Organic Compounds; 6th Ed., New Age International Publishers,

New Delhi, 2004.

- 5. W. Clegg, Crystal Structure Determination; Oxford University press, UK, 1998.
- 6. G. H Stout and L. H. Jensen, X-ray Structure Determination: A Practical Guide; John Wiley and

Sons, New York, 1992.

- 7. J. P. Glusker and K. N. Trueblood, Crystal Structure Analysis: A Primer; 3rd Ed., Oxford University Press, UK, 2010.
- 8. D. N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques; University

Press, Hyderabad, 2001.

E REFERENCES

- 1. Web Pages: Cambridge Structural Database (CSD)-
- http://www.ccdc.cam.ac.uk/products/csd/Protein Data Bank (PDB)
- 2. <u>http://www.rcsb.org/pdb/home/home.do</u>

COUR	SE CODE	COURSE	NAME		L		Т	Р	С
YCY3)3	ORGANIC PRACTIC	CHEMISTR AL –I	Y	0		0	6	3
PRER	EQUISITE	Nil			L		Т	Р	H
C:P:A		1.8: 0.8:0.4			0		0	6	6
COUR	SE OUTCOM	IES				DC) MAI	N	LEVEL
CO1	<i>Interpret</i> the in the given o	individual or rganic mixtu	ganic compone	nts present	Cogi Psyc	nitiv hom	e notor		Understand Perception
CO2	<i>Estimate</i> the synthesized present in the	melting point compounds mixture.	/boiling point o/ /individual	of the component	Cogi Psyc	nitiv hom	e notor		Understand Set
CO3	<i>Predict</i> the na given mixture	ture of funct	ional group pre	sent in the	Cognitive Apply Psychomotor Set Affective Receive				
ORGA	ORGANIC CHEMISTRY PRACTICAL –I								
1. Qua	alitative analys	sis of an orga	nic mixture co	ontaining tv	vo con	npor	nents		
Mixtur separat 2. Prep	es containing ty ion) – The phys paration of org	wo componen sical constant g anic compo t	nts are to be sep are to be repo ands (single sta	arated (pilot orted (analys age)	t separ is).	ratio	n) and	purifi	ied (bulk
 Meth Gluc Resa Benz <i>o</i>-Ch <i>p</i>-Be Phen 	nyl- <i>m</i> -nitrobenz ose pentaacetat cetophenone fr cophenone oxin lorobenzoic ac nzoquinone fro nylazo-2-naphth	zoate from mo te from gluco om resorcino ne from benz- id from anthr om hydroquin nol from anili	ethylbenzoate (se (acetylation) l (acetylation) ophenone (addi anilic acid (San one (oxidation) ne (diazotizatio	nitration) () () () () () () () () () () () () ()	ction)				
			LECTURE	TUTORIA	AL I	PRA	CTIC	AL	TOTAL
	H	IOURS	0	0			90		90
TEXT 1. J. M 2. V. F Inte 3. N. S (198	 TEXT BOOKS 1. J. Mohan, Organic Analytical Chemistry: Theory and Practice; Narosa, (2003). 2. V. K. Ahluwalia, P. Bhagat, and R. Agarwal, Laboratory Techniques in Organic Chemistry; I. K. International, (2005). 3. N. S. Gnanaprakasam and G. Ramamurthy, Organic Chemistry Lab Manual; S.V.Printers, (1987) 								

 A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford and P. W. G. Smith, Vogel's Textbook of Practical Organic Chemistry; 5th Ed., Prentice Hall, (1989).

COURS	SE CODE	COURSE NA	ME		L	Т	P	С
YEC304	1 A	PHARMACE	UTICAL CHEMI	STRY	4	1	0	5
PRERE	QUISITES	Nil			L	Т	P	H
C:P:A		4:0:1			4	1	0	5
COURS	SE OUTCO	MES		DOM	AIN	LE	VEL	1
CO1	Recall the	various terminolog	y of pharmaceutical	Cogni	tive	Rer	nemł	ber
	chemistry.					Uno	dersta	and
CO2	Outline the	e structural aspects	of antibiotics and	Cogni	tive	Uno	dersta	and
GOA	relate them	functions				<u> </u>		
CO3	<i>Illustrate</i> t	the biological activity	ties of analgesic	Cogni	tive	Rer	nemt	ber
	and antipy	retics.		A ff a at		Uno	Jersta	ana
<u>CO4</u>	Current ani-	a the estimities of e	magethetics and loss		live	Kec	donet	and
04	anaesthetic		naestnetics and loca		ive		nond	1110 1
CO5	Informaco	.s. the verious concept	a of clinical	Cogni	tivo	An	alvza	1
005	chemistry	the various concept	is of children	Affect	ive	Res	anyze	1
UNIT I	BASIC	S OF PHARMAC	EUTICALCHEMI	STRY	.100	1	5	
Definitio	$\frac{1}{1000}$ ons – the ter	ms – drugs pharma	cology pharmacy	chemothe	erany	ther	aneut	ics –
pharmac	cologically a	ctive principles in	plants – first aid –	importa	nt rule	s of	first	aids.
cuts, fra	ctures, blee	ding for blood, m	aintaining breathin	g burns	and fi	rst	aid t)OX -
tubercul	osis (t.b.),	jaundice, piles, ty	phoid, malaria, ch	olera – c	causes	- 8	symp	toms,
diagnosi	s – prevent	ion and treatment	– medicinally imp	ortant co	ompou	nds	of in	ron –
ferrous g	gluconate, fe	errous sulphate and	ferric ammonium ci	trate.	-			
UNIT I	I ANTIE	BIOTICS					15	
Definition	on – intro	duction – classif	fication and biolo	gical ac	tions	- p	enici	llin,
chloram	phenicol, st	reptomycin and tet	racycline – structur	re, proper	rties a	nd tl	herap	eutic
uses – cl	hemical stru	cture and pharmaco	ological activity – ef	fect of un	isatura	tion	, cha	in
length, i	somerism, h	alogens, amino gro	ups, hydroxyl group	os and aci	d grou	ips.	·	
UNIT I	I ANAL	GESIC AND ANT	TIPYRETICS				15	
Narcotic	analgesic	- analgesic action of	of morphine – deriv	atives of	morph	nine	– h	eroin
and apoi	morphine –	synthetic analgesics	s - pethidine, metha	done – no	onnarc	otic	anal	gesic
- aspirir	i, paracetam	of and phenacetin –	- anaigin – preparati	on, prope	erties a	na u	lses –	-
		STUETICS AND	IU USES.	UFTICS	1		15	
Charact	v ANAL	STHETICS AND	fightion of engasth		noral	0000	15 othot	tion
volatile	anaesthetics	ether chlorofor	meation of anaesting m and halothane $-$	dvantage	s and	diea	dvan	.ICS —
- non-v	allatile anaes	thetics (intravenous	$s_{anaesthetics} = methods$	thohexite	one and	d nra	onani	idid _
structure	e and uses -	- cocaine and ame	thocaine – structur	e and use	es - b	enzo	cain	e and
procaine	e – structure.					••••••	•••••••	
synthesi	s and uses.							
ÚNIT V	CLINI	CAL CHEMISTE	RY				15	
Determi	nation of su	igar (glucose) in s	erum – <i>o</i> -toluidine	method -	– diag	nost	ic te	st for
sugar in	sugar in urine – Benedict's test – detection of diabetes – detection of cholesterol in urine						urine	
- detecti	detection of anaemia – estimation of haemoglobin (Hb concentration) – red cell count					ount.		
LEC	TURE	TUTORIAL	SELF STUDY	PRACT	ICAL	'	ΤΟΤ	AL
	60	15	-	-			75	5
TEXT I	BOOKS							
1. Jayasl	1. Jayashree Ghosh, A Text Book of Pharmaceutical Chemistry; 5th Ed., S.Chand and							

Company Ltd., New Delhi, (2014).

REFERENCES 1. S. Lakshmi; Pharmaceutical Chemistry; 1st Ed., S. Chand and Company Ltd., New Delhi, (1995).

2. Bhagavathi Sundari; Applied Chemistry; 1st Ed., MJP Publishers, Chennai, (2006).

COURSE C	ODE	COURSE NAME	L	Т	Р	С	
YCY304B		ELECTR-ORGANIC CHEMISTRY	4	1	0	5	
PREREOUI	SITES	Nil	L	Т	Р	H	
C:P:A		4.4:0:0.6	4	1	0	5	
COURSE O	UTCOM	ES: On the successful completion of the	DOM	IAIN	L	EVEL	
course, stude	ents will b	be able to					
CO1	Describ	<i>e</i> the basic concepts of electron transfer	Cogni	tive	Ren	nember	
	reaction	s and also the fundamentals aspects of			Und	lerstand	
	electroc	hemical methods.					
CO2	Illustra	te the structure and activity of enzymes and	Cogni	tive	Und	lerstand	
	cofactor	`S.	Affect	ive	Res	pond	
CO3			Cognitive Un		Und	Understand	
Identify		the properties of lipids and nucleic acids.	Affective Decreased		oly		
			Affective I			Respond	
CO4	Summa	<i>rize</i> the concept of bioenergetics.	Cogni	tive	Und	lerstand	
	~		~ .				
CO5	Compar	<i>e</i> the principles of lead and analogue	Cogni	tive	Ana	lyze	
	synthesi	S.	Affect	ive	Rec	eive	
	BASIC	CONCEPTS OF ELECTRO ORGANIC	SYNTI	HESIS		15	
Introduction,	fundam	ental aspects of electron transfer reaction	\mathbf{n} : o	xidatio	n, re	duction	
reactions vs	electron t	ransfer reactions in organic chemistry and e	electroc	hemist:	ry - S	tandard	
potentials : N	lechanisi	n and theory of outer sphere electron transfe	er react	ions –	Fund	amental	
aspects of el	ectrode p	henomena, monitoring a nail-reactions, get	ineral VI	ew of	an ei		
reaction, aus	orption p	migal matheds. Transfort algotrophamical m	istry, Iu	indame	entar	aspects,	
	METH	ODS FOR STUDIES OF FLECT	rpoct	IEMI	CAT	15	
	REACT	TIONS				15	
Introduction,	linears s	weep voltammetry and cyclic voltammetry,	Experin	nental	setup,	, simple	
electrotransfe	er reactio	on, electron transfer reaction followed b	y cher	nical	reacti	on and	
solutions li	miting e	experimental factors – potential step a	nd cur	rent s	ten i	method	

electrotransfer reaction, electron transfer reaction followed by chemical reaction and solutions, limiting experimental factors – potential step and current step method chronoamperometry, chronocoulometry, chronopotentiometry – polarography – methods for determination of number of electrons.

UNIT III CATHODIC REDUCTIONS

15

Introduction, formation of radical anions, dianions and polyanions, experimental aspects, thermodynamics kinetics, addition of electrophilic reagents and related reaction, dimerization. Electrochemical reduction of halogenated compounds: monohalogenated alkanes, halogenated aromatic compounds, acyl halides, aliphatic alpha – halo carbonyl compounds, cathodic reduction of nitro and related compounds, Aliphatic nitro compounds, aromatic nitro compounds(preparation of para amino phenol nitrobenzenes, nitramines and azides). Eletrochemical reduction of carbonyl compounds, general aspects.

UNIT IV ANODIC OXIDATION OF ORGANIC COMPOUNDS

15

Introduction, general mechanistic consideration, directs anodic oxidation, indirect anodic oxidation. Anodic oxidation of hydrocarbons, nitrogen containing compounds. Electrosynthesis of Bioactive materials Introduction, simple Kolbe oxidation: application to synthesis of (+) - α onxerin and (+) - pentacyclosqualene, Kolbe cyclisation and Tandem cyclization.

UNIT V	SPECIAL TOPIC IN	ELECTRO ORGANIC S	YNTHESIS	15				
Paired electro	organic synthesis, simp	ole examples – electrogenera	ated reagents Horr	nogeneous				
redox catalyst	s – General aspects	of indirect electron exchai	nges, pure redox	catalysis				
(general case) - use of indirect electrochemical reactions in sythesis, oxidations, reductions -								
Electrogenarate	ed superoxides. Elect	rochemical partial fluorina	tion: Introduction	n, Anodic				
fluorination of	aromatic compounds,	olefins, carbonyl compound	ls, heterocyclic co	mpounds.				
Electro enzym	atics synthesis: Introd	uction, principles of redox	catalytic enzyme	activation				
and co-factor r	egeneration – electroer	nzymatic reductions and oxid	lation (simple exa	mples				
only).								
LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL				
60	15	-	-	75				
TEXT BOOK	S							
1. Organic electrochemistry by Henning Lund & Ole Hammerich, , 4th edition, Publisher:								
Marcel Dekker	, Inc, New York							
2. S. Warren, I	Designing Organic Syn	thesis: The Disconnection A	pproach; 2nd Ed.,					

Wiley, New York, 2008. REFERENCES

1. N. C. Price and L. Stevens, Fundamental of Electrochemistry; Oxford UniversityPress, UK, (1999)

2. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry: Part-A and Part-B; 5th Ed., Springer, Germany, (2008).

3. H. B. Kagan, Asymmetric Synthesis; Thieme Medical Publishers, Germany, (2009)

COUI	RSE CODE	COURSE NAME		L	Т	P	С	
YCY3	805	ANALYTICAL CHEMISTR	Y	4	1	0	5	
DDFD	FOLISITES	NII		-	-	Ŭ		
PKER	EQUISITES	NIL		L	Т	Р	Н	
C:P:A	L	4.4:0:0.6		4	1	0	5	
COUI	RSE OUTCOMES		Domain	Leve	el	11		
CO1	<i>Describe</i> the basic methods	principle of instrumental	Cognitive	Rem Unde	embe erstar	er, Id		
CO2 <i>Classify</i> the various types of analytical error and show their significance. Cognitive			Cognitive	Rem Und	embe erstar	er, nd		
CO3	<i>Inspect</i> the application chromatography.	ation of various techniques in	Cognitive Affective	Analyze Receive Understand, Analyze				
CO4	<i>Illustrate</i> the princ thermoanalytical a	ciples and instrumentation of nd fluorescence techniques.	Cognitive	Und Ana	L I P H 4 1 0 5 Advector 5 Analyze 2 Analyze 2 Analyze 15 S) – surface 15 Gistributions, the describing data, neertainty, robust 15 distributions, the describing data, neertainty, robust 15			
CO5	<i>Examine</i> the conc techniques.	ept of electroanalytical	Cognitive Affective	Ana	yze, I	Resp	ond	
UNIT	I: INSTRUMENT	AL METHODS OF ANALYS	IS	ż			15	
Prince	iples and application	ns of extended X-ray absorption	fine structure (EXA	(FS) –	surfa	nce		
extend	led X-ray absorption	n (SEXAFS) – atomic absorption	n spectroscopy (AA	S) – f	lame			
emissi	on spectroscopy (Fl	ES) – turbidimetry – theory and	applications.					
	II: DATA AND E		C C	1.	•1 4	•	15	
variot	is types of error –	accuracy, precision, significant	ngures – frequence	cy aisi	ribut	ions,	, the data	
popula	ation and sample. n	nean, variance, standard deviation	on, way of quoting	uncer	taint	v. ro	bust	
estima	tors, repeatability a	nd reproducibility of measureme	ents.			, 10	0000	
Hypot	hesis testing, levels	of confidence and significance	e, test for an outlier	r, testi	ing va	ariar	ices,	
means	t-Test, paired t-Tes	t – analysis of variance (ANOV)	A) $-$ correlation and	l regre	ession	l .		
Curve	fitting, fitting of li	near equations, simple linear c	ases, weighted line	ar cas	e, and	alysi	s of	
fit r	and its abuse mult	inle linear regression analysis	g transformations, e	xpone	ential	Tunc	tion	
UNIT	III: CHROMATC	GRAPHY	iementary aspects.				15	
Solver	r = r = r = r = r	ciples of ion exchange paper t	hin-layer and colu	nn ch	romat	ogr	anhv	
techni	ques – columns, ad	sorbents, methods, Rf values, N	IcReynold's consta	nts an	d the	ir us	ses –	
HPTL	C, HPLC technique	s – adsorbents, columns, detection	on methods, estimat	ions,	prepa	rativ	ve	
colum	n-GC-MS techniq	ues – methods, principles and us	ses.					
UNIT IV: THERMOANALYTICAL METHODS AND FLUORESCENCE 1						15		
SPEC	TROSCOPY							
Princip Therm titratic Basic cytom	Principles – instrumentations and applications of thermogravimetry analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning - Calorimetry (DSC) –thermometric titrations – types – advantages. Basic aspects of synchronous fluorescence spectroscopy – spectral hole burning – flow cytometry – fluorometers (quantization) – instrumentation – applications.							

UNIT V: ELECTROANALYTICAL TECHNIQUES

 $Electrochemical \ sensors, \ ion-sensitive \ electrodes, \ glass - membrane \ electrodes, \ solid-liquid membrane \ electrodes - \ ion-selective \ field \ effect \ transistors \ (ISFETs) - sensors \ for \ the \ analysis \ of \ gases \ in \ solution.$

15

Po larography – principles and instrumentation – dropping mercury electrode – advantages – Ilkovic equation – applications of polarography – polarographic maxima – oscillographic polarography, AC polarography – cyclic voltammetry – advantages over polarographic techniques – chronopotentiometry – advantages – controlled potential coulometry –

amperometric titrations: principles – techniques – applications – estimation of lead.

LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOT
				AL
60	15	-	-	75

TEXT BOOKS

1. D. B. Hibbert and J. J. Gooding, Data Analysis for Chemistry; Oxford UniversityPress, UK, 2006.

2. J. Topping, Errors of Observation and Their Treatment; 4th Ed., Chapman Hall, London, (1984).

3. A. Braithwaite and J. F. Smith, Chromatographic Methods; 5th Ed., Springer, Germany; (1995).

4. V. K. Srivastava and K. K. Srivastava, Introduction to Chromatography; 2nd Ed., Holden Day,

New York, (1985).

5. H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, Instrumental Methods of Analysis; 6th

Ed., CBS Publishers and Distributors, Chennai, (1986).

- 6. D. A. Skoog, D. M. West and D. J. Holler, Fundamentals of Analytical Chemistry, 7th Ed., Harcourt College Publishers, Singapore, (2004).
- 7. A. Sharma, S. G. Schulman, Introduction to Fluorescence Spectroscopy; Wiley- Interscience, New York, (1999).

REFERENCES

1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy; 4th Ed., Tata McGraw-Hill, New Delhi, (1994).

2. A. I. Vogel, Text Book of Quantitative Inorganic Analysis; 6th Ed., Longman, New Delhi, (2000).

3. D. C. Harris, Quantitative Chemical Analysis; 4th Ed., W. H. Freeman Publications, New York,

(1995).

4. S. C. Gupta, Fundamentals of Statistics; 6th Ed., Himalaya Publications, Delhi, (2006).

SEMESTER IV						
COURSE CODE	COURSE NAME		L	Т	С	
YCY401	PHYSICAL METHODS IN CH	IEMISTRY-II	4	1	5	
			L	Т	Η	
C:P:A	3.75:0.75:0.5		4	1	5	
COURSE OUTCOM completion of the cour	DOMAIN		LEVE	Ĺ		
CO1 <i>Recall</i> an	d <i>Explain</i> the electronic	Cognitive	Rem	ember		
spectroscopy		Und	erstanc	1		
		Psychomotor	Set			
CO2 <i>Interpret</i> the	e IR and Raman spectra of	Cognitive	Und	Remember Understand Set Understand Respond Understand Apply Respond Analyze		
inorganic co	mpounds	Affective	Resp	ond		
CO3 <i>Identify</i> the	chemical environment of NMR	Cognitive	Understand Apply		1	
compounds	present in the inorganic	Affective	Resp	ond		
CO4 Analyze EPI	R, and magnetic properties the	Cognitive	Ana	lyze		
mechanism of	of metal complexes.	Psychomotor	Perc	ception	1	
CO5 Compare the	e Mossbauer spectra of iron and	Cognitive	Ana	lyze		
tin compoun	ids.	Psychomotor	Perc	ceptior	1	
SYLLABUS:						
UNIT I ELECTR	ONIC SPECTROSCOPY					
Microstates, terms and	energy levels for $d^1 - d^9$ ions in d^3	cubic and square fields	s- inte	ensity		
of bands - group theo	pretical approach to selection rule	s - effect of distortio	n and	spin-	15	
orbit coupling on spec	tra - evaluation of 10Dq and β for	or octahedral complex	es of c	cobalt	13	
and nickel - application	ions to simple coordination comp	ounds - charge trans	fer sp	ectra.		
Optical rotatory dispe	ersion and circular dichroism and	1 magnetic circular d	lichroi	sm -		

applications to metal complexes.

UNIT II INFRARED AND RAMAN SPECTROSCOPY

Vibrations in simple molecules (H₂O, CO₂) and their symmetry notation for molecular vibrations - group vibrations and the limitations - combined uses of IR and Raman spectroscopy in the structural elucidation of simple molecules like N₂O, ClF₃, NO₃⁻, ClO₄⁻ effect of coordination on ligand vibrations - uses of groups vibrations in the structural elucidation of metal complexes of urea, thiourea, cyanide, thiocyanate and dimethyl sulfoxide. Effect of isotopic substitution on the vibrational spectra of molecules - vibrational spectra of metal carbonyls with reference to the nature of bonding -geometry and number of C-O stretching vibrations (group theoretical treatment) - applications of Raman spectroscopy - resonance Raman spectroscopy. SERS

UNIT III | NMR SPECTROSCOPY

Examples for different spin systems - chemical shifts and coupling constants (spin-spin coupling) involving different nuclei (1H, 19F, 31P, 13C) interpretation and applications to inorganic compounds - Effect of quadrupolar nuclei (2H,10B, 11B) on the 1H NMR spectra. Systems with chemical exchange - evaluation of thermodynamic parameters in simple systems - study of fluxional behavior of molecules - NMR of paramagnetic molecules - isotropic shifts contact and pseudo-contact interactions lanthanide shift reagents.

UNIT IV | EPR SPECTROSCOPY AND MAGNETIC PROPERTIES

Theory of EPR spectroscopy - spin densities and McConnell relationship factors affecting the magnitude of g and A tensors in metal species - zero-field splitting and Kramers degeneracy - spectra of V(II), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) complexes applications of EPR to a few biological molecules containing Cu(II) and Fe(III) ions. Magnetic properties - types of magnetism - dia-, para-, ferro- and anti ferromagnetismmagnetic properties of free ions - first-order Zeeman effect - second-order Zeeman effect - states KT - states<<<KT - determination of magnetic moments and their applications to the elucidation of structures of inorganic compounds - temperature independent paramagnetism - magnetic properties of lanthanides and actinides - spin crossover in coordination compounds.

UNIT V MOSSBAUER AND OTHER SPECTROSCOPIC TECHNIQUES

Isomer shifts - quadrupole splitting - magnetic interactions - applications to iron and tin compounds. NQR spectroscopy - characteristics of quadrupolar nucleus - effects of field gradient and magnetic field upon quadrupolar energy levels - NQR transitions applications of NQR spectroscopy. SPS, Auger electron spectroscopy

REFERENCE BOOKS:

- 1. R. S. Drago, Physical Methods in Inorganic Chemistry; Affiliated East-West Press Pvt. Ltd., New Delhi, 2012.
- 2. R. S. Drago, Physical Methods in Chemistry; Saunders College Publications, Philadelphia, 1992.
- 3. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 6th Ed., Wiley-Eastern Company, New Delhi, 1999.
- 4. P. J. Wheatley, The Determination of Molecular Structure; 2nd Ed., Dover Publications, Mineola, 1981.
- 5. G. J. Leigh, N. Winterton, Modern Coordination Chemistry; Royal Society of Chemistry, UK, 2002.
- 6. E. A. V. Ebsworth, Structural Methods in Inorganic Chemistry; 3rd Ed., ELBS, Great Britain, 1987.
- 7. W. Kemp, Organic Spectroscopy; 3rd Ed., Palgrave, New York, 2011.
- 8. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, PHI Learning, New Delhi, 2009.
- 9. Y. R. Sharma, Elementary Organic Spectroscopy Principles and Chemical Applications; S. Chand and Co., New Delhi, 1992.
- 10. P. S. Kalsi, Spectroscopy of Organic Compounds; 6th Ed., New Age International Publishers,

COUF	RSE CODE	COURSE	NAME	L T P C				
YCY4	02	ORGANIO PRACTIC	C CHEMISTRY CAL-II	0	0	6	3	
				L	Т	Р	Н	
C:P:A		1.8: 0.8:0.4	1	0	0	6		
COUF	RSE OUTCOMES			D	OMAIN	1	LEVEL	
CO1	<i>Identify</i> the variou mixture of two con	s functional g	groups present in a	Cognit Psycho	tive omotor		Remember Perception	
CO2	<i>Predict</i> the organic by pilot separation	component , bulk separat	present in the mixture	Cogni Psycho	Understand Set			
CO3	<i>Experiments with</i> components.	various reage	ents and identify the	Cognit Psycho Affect	tive omotor ive		Apply Set Receiving	
Ne	w Delhi, 2004.							
	L	ECTURE	TUTORIAL	SELF- STUDY	Г	OTAL	HOURS	
	Hours	60	15	-		7	75	

ORG	ANIC CHEMISTRY PRACTICAL-II
1.	Quantitative analysis of organic compounds:
	Estimation of phenol, aniline, ketone, glucose, nitrobenzene, saponification value of an oil and
	Iodine value of an oil.
2.	Preparation of organic compounds (Double stage)
	1. p-bromo acetanilide from aniline (acetylation and bromination).
	2. acetyl salicylic acid from methyl salicylate (hydrolysis and acetylation).
	3. 1,3,5-tribromobenzene from aniline (bromination, diazotization and hydrolysation).
	4. p-nitroaniline from acetanilide (nitration and hydrolysis).
	5. benzillic acid from benzoin (rearrangement).
	6. p-amino benzoic acid from p-nitro toluene (oxidation and reduction).
	7. benzanilide from benzophenone (rearrangement).
	8. p-bromoaniline from acetanilide (bromination and hydrolysis).
	9. m-nitroaniline from nitrobenzene (nitration and reduction).
	10. 1,2,4-triacetoxy benzene from hydroquinone (oxidation and acylation).

COURSE CODECOURSE NAMEL				Τ	С		
YEC403	A	GREEN CHEMISTRY		4	1	5	
				L	Т	Η	
C:P:A		3.75:0.75:0.5		4	1	5	
COURSI the cours	COURSE OUTCOMES: On the successful completion of the course, students will be able toDOMAINLEVE						L
CO1	Recall and	Explain the concepts of green	Cogniti	ive	Re	member	ſ
	chemistry and	their principles.		Understand			d
			Psycho	motor	Set	t	
CO2	Summarize	and Report the addition and	Cogniti	ve	Un	derstan	d
	condensation reactions along with their Affective Real applications.				Re	spond	
CO3	<i>Explain</i> the ox	didation-reduction reactions and	Cognit	ve	Understand		
	<i>Identify</i> the me	echanism of these chemical			Apply		
	reactions.		Affecti	ve	Re	spond	
CO4	Categorize the	various types of the polymers	Cogniti	ve	An Dc	alyze	n
CO5	Framina the r	rinciples of nuclear chemistry	Cogniti		Δn	alvze	1
005	Examine the p	incipies of nuclear chemistry	Psycho	motor	Pe	erception	1
SYLLABUS:							
UNIT I Introduction to Green Chemistry							
Introduct	ion to green ch	emistry - twelve principles of green	n chemis	try -	plan	ning a	
green syr	thesis in a che	mical laboratory - evaluating the ty	pe of re	action	invo	lved -	15
rearrange	ment, addition.	substitution, elimination and pericvc	lic react	ions. S	elect	tion of	15
appropria	te solvent - ad	queous phase reaction - reactions in	n ionic	iquids	- 0	organic	
synthesis	in solid state -	solid supported organic synthesis -	selection	n of star	rting		

	LECTURE	TUTORIAL	PRACTICAL	TOTAL		
HOURS	0	0	90	90		
TEXT BOOKS						
1. J. Mohan, Organic Analytical Cl	nemistry: Theo	ry and Practice;	Narosa, (2003).			
2. V. K. Ahluwalia, P. Bhagat, and	R. Agarwal, L	aboratory Techr	iques in Organic	Chemistry; I. K.		
International, (2005).						
3. N. S. Gnanaprakasam and G. Ra	mamurthy, Org	ganic Chemistry	Lab Manual; S.V	.Printers,		
(1987).						
4. A. I. Vogel, A. R. Tatchell, B. S	. Furniss, A. J.	Hannaford and	P. W. G. Smith, V	ogel's Textbook		
of Practical Organic Chemistry;	5th Ed., Prenti	ce Hall, (1989).		-		

materials - use of protecting group - use of catalyst - use of microwaves and sonication.

011140110	ar organie chemistry, sur Ed., rrendee man, (1969).	
UNIT II	Addition and Condensation Reactions	

· · · · · · · · · · · · · · · · · · ·				
Addition read reactions in a with nitroall condensation	ctions - Michael addition in [aqueous medium and solid state] -Diels-Alder aqueous phase. Condensation reactions - Aldol condensation of aldehydes kanes and nitriles - Aldol condensation in solid phase - benzoin under catalytic conditions - applications.	15		
UNIT III	Oxidation and Reduction Reactions			
Oxidation re enzymatic Ba mechanism -	actions - Baeyer-Villiger oxidation in aqueous phase and solid state - neyer-Villiger oxidation. Reduction reactions - Clemmensen reduction - limitations - applications	15		
UNIT IV	Phase-Transfer Catalyst Reactions			
Phase-transfe of toluene to - Williamsor	er catalyst reactions - Heck reaction - Michael addition reaction -oxidation benzoic acid - Reimer-Tiemann reaction Baker – Venkataraman synthesis a ether synthesis - Dozen reaction.	15		
UNIT V	Sonication Reactions			
Sonication reaction - Str reaction.	eactions - Barbier reaction - Reformatsky reaction - Simmons-Smith recker synthesis - Ullmann coupling reaction - Wurtz reaction - Bouveault	15		
REFERENC	CE BOOKS:	1		
 V. K. Ah P. T. An Press, Ne V. K. Ah 	luwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016. astas and J. C. Warner, Green chemistry Theory and Practice; Oxford Universe w York, 2005.	sity		

3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.

	LECTURE	TUTORIAL	SELF-STUDY	TOTAL
				HOURS
Hours	60	15	-	75

COURSE	E CODE	COURSE NAME	LT		Т	С
YEC403B		INDUSTRIAL CHEMISTRY		4	1	5
				L	Т	H
C:P:A		3.75:0.75:0.5		4	1	5
COURSE	E OUTCOMES	: On the successful completion of	DON	IAIN	L	EVEL
the cours	e, students will	be able to				
CO1	<i>Illustrate</i> the b	asic ideas of an industry and	Cognit	ive	Rem	ember
	industrial wast	es.			Unde	erstand
			Psycho	motor	Set	
CO2	Rephrase and	d <i>Report</i> the preparation and	Cognitive		Understand	
	properties of p	etroleum and petrochemicals.	Affecti	ve	Resp	ond
CO3			Cognit	ive	Unde	erstand
	<i>Identify</i> the rol	e and functions of portland cement.	Apply		y	
			Affecti	ve	Resp	ond
CO4	List the vario	us process involved in the paper	Cognit	ive	Anal	yze
	industry		Psycho	motor	Perc	eption
CO5	Outline the pre	eparation and mode of action of	Cognitive		Anal	yze
	soaps, deterger	nts and perfumes.	Psychomotor Perception			eption
SYLLAB	SUS:					
TINIT'T T	Decis I-les	and Industrial Wester				
UNITI	Basic Idea	s and industrial wastes				

Basics idea about unit operation – now chart – chemical conversion – batch versus continuous processing – chemical process selection – design – chemical process control Types of industrial wastes – treatment of wastes or effluent with organic impurities – treatment of wastes or effluent with inorganic impurities – treatment of some importan chemical wastes.					tch versus ss control. purities – important	5
UNIT II	Petroleu	m and Petrochemi	cals			
Introduction – saturated hydrocarbons from natural gas – uses of saturated hydrocarbons – unsaturated hydrocarbons – acetylene, ethylene, propylene, butylene – aromatic hydrocarbons – toluene and xylene. Preparation of rectified spirit from beat – methylated spirit – preparation of absolute alcohol from rectified spirit – petrochemicals in India.					aromatic nethylated India.	5
UNIT III	Manufac	cture of Cement				
Introduction – types of cement – high alumina cement, water proof cement, slag cement, acid resisting cement, white cement, coloured cement, Pozzolana cement. Setting of cement – properties of cement – testing of cement – uses of cement –concrete – cement industries in India.					setting of - cement 15	5
UNIT IV	Pulp and	l Paper and Manuf	facture of Paper			
Introduction – manufacture of pulp – types of pulp – sulphate or craft pulp, soda pulp, Rag pulp – beating, refining, filling, sizing and colouring. Calendaring – uses – paper industries in India.					soda pulp, es – paper 15	5
UNIT V	Soaps, D	etergents and Perf	lumes			
Introduction – types of soaps – hard and soft soaps – manufacture of soap (hot and continuous process only) – cleansing action of soap – detergents – surface active agents – biodegradability of surfactants, amphoteric detergents. Introduction – production of natural perfumes – flower perfumes – jasmine, rose and lily – production of synthetic perfumes – muscone and nitro-musks.					and /e agents se and lily	5
REFERENCE BOOKS:						
 B. K. Sharma, Industrial Chemistry; 8th Ed., Goel Publishing House, New Delhi, 1997. R. N. Shreve, and J. A. Brink Jr. Chemical Process Industries; 4th Ed., McGraw Hill, Toronto, 1977. A. C. S. Brain, Production and Properties of Industrial Chemicals; Reinhold, New York, 1989. 						
		LECTURE	TUTORIAL	SELF- STUDY	TOTAL HOURS	
Hour	S	60	15	-	75	

COURS	E CODE	COURSE NAME		L	Τ	С
YEC404	Α	SELECTED TOPICS IN CHEM	ISTRY	4	1	5
				L	Т	H
C:P:A		4.5:0.5:0.5		4	1	5
COURS the cours	E OUTCOME se, students will	S: On the successful completion of leader to	DOMA	AIN		LEVEL
CO1	<i>Rephrase</i> the chemical bone	quantum chemical approach to ding.	tum chemical approach to Cognitive Psychomotor		we Remember motor Understand Set	
CO2	<i>Compare</i> the organic synthe	role of various reagents used in esis.	Cognitive Affective		Understand Respond	
CO3	<i>Apply</i> the retr synthesis of c	o-synthetic approach in the omplex organic molecules.	Cognitiv Affectiv	re e	Une App Res	derstand ply spond
CO4	Categorize the	e types of polymer reactions.	Cognitive Psychomotor		Ana Pe	alyze rception
CO5	<i>Illustrate</i> the	principles of nuclear chemistry.	Cognitive Affective			derstand ply spond

UNIT I	Quantum Chemical Approach to Chemical Bonding and Molecular Structure:			
Diatomic mole	cules: Born-Oppenheimer approximation-MO theory (H_2 and H_2^+), VB	15		
theory (H_2 and	H_2^+) - comparison. HMO calculations - evaluation of coefficients and			
eigenvalues for	simple molecules - electron density - bond order and free valence index.			
Extended HMC	O theory - applications to simple systems - hybridization schemes.			
UNIT II	NAMED REACTIONS AND APPLICATIONS IN ORGANIC SYNTHESIS			
Bamford-Steve	ens reaction - Barton-McCombie reaction (Barton Deoxygenation) -			
Baylis-Hillman	reaction - Biginelli reaction - Corey-Chaykovsky reaction - Enamines	15		
and selective n	nono- and dialkylation via enamine reactions, Henry reaction - Hosomi-			
Mitsupobu rea	off - Hullsdiecker reaction - Juna ofermationalid its modifications -			
olefination -	Prevost reaction - Prins reaction - Staudinger reaction Ugi reaction -			
Weinreb keto	ne synthesis - Wittig reaction and its modifications - Yamaguchi			
macrolactoniza	tion - Palladium based reactions: Fukuyama coupling -Heck reaction -			
Hiyama coupli	ng - Sonogashira coupling - Stille coupling - Suzuki coupling - Tsuji-			
Trost Reaction				
UNIT III	SYNTHETIC METHODOLOGY			
Introduction to	disconnections - synthons and synthetic equivalents - synthon			
approach - elec	ctron donors (nucleophiles) - electron acceptors (electrophiles)	15		
Introduction of	f functional groups - umpolung reactions - one group disconnections:			
alcohols, olefir	ns, ketones, acids - two group disconnections: 1, 2-, 1,3-, 1,4- and 1,5-			
difunctional co	ompounds - convergent syntheses. Functional group interconversion -			
functional grou	ip addition - carbon-heteroatom bonds - methods for 3- and 4-membered			
rings - synthes	is of mono- and difunctional open chain molecules - mono and bicyclic			
UNIT IV	POLYMER CHEMISTRY			
Introduction -	structure - classification of polymers - polymerisation methods -			
importance of	polymers. Molecular weight of polymers - number average and weight			
average - dete	rmination of molecular weight by osmometry - light scattering, viscosity			
and sedimentation methods. Kinetics of polymerisation reactions, polycondensation 1				
reactions, ioni	c and free radical polymerisation, copolymerisation - coordination			
polymers, cond	lucting polymers,Ziegler-Natta catalyst.			
UNIT V	FUNDAMENTAL OF NUCLEAR CHEMISTRY			

The nucleus - subatomic particles and their properties - nuclear binding energy-nuclear structure - Liquid-drop model and nuclear-shell model - n/p ratio - nuclear forces modes of radioactive decay - alpha, beta and gamma particles - orbital electron capture - nuclear isomerism - internal conversion. Q-Values of nuclear reaction, coloumbic barrier, nuclear cross section, threshold energy and excitation function - different types of nuclear reactions with accelerated particles. Projectile capture and particles emission, spallation, fragmentation, nuclear fission, nuclear fusion - proportional counter, Geiger-Muller counter, scintillation counter and Cherenkov counter - linear accelerator, cyclotron and synchrotron.

REFERENCE BOOKS:

- 1. R. K. Prasad, Quantum Chemistry; 4th Ed., New Age International Publishers, New Delhi, 2009.
- 2. A. K. Chandra, Introductory Quantum Chemistry; 4th Ed., Tata McGraw Hill, New Delhi, 1994.
- 3. D. A. Mcquarrie, Quantum Chemistry; University Science Books, 2nd Ed., 2007.
- 4. I. N. Levine, Quantum Chemistry; 7th Ed., Prentice Hall, New Jersey, 2013.
- 5. L. Kurti and B. Czako, Strategic Applications of Named Reactions in Organic Synthesis; Elsevier, 2005.
- 6. A. Hassner and C. Stumer, Organic Synthesis Based on Named and Unnamed Reactions; Elsevier Science Ltd., UK, 1994.
- 7. G. Brahmachari, Organic Name Reactions: A Unified Approach; Alpha Science Intl. Ltd, UK, 2006.
- 8. S. Warren, Designing Organic Synthesis: The Disconnection Approach; 2nd Ed., Wiley, New York, 2008.
- 9. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Parts A and B, 5th Ed., Springer, Germany, 2007.
- 10. W. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, 4th Ed., Cambridge University Press, Cambridge, 2004

	LECTURE	TUTORIAL	SELF-STUDY	TOTAL HOURS
Hours	60	15	-	75

COURS	COURSE CODE COURSE NAME				Τ	С
YEC404B CHEMISTRY OF NANOSCIENCE AND NANOTECHNOLOGY			4	1	5	
				L	Т	H
C:P:A		4.4:0:0.6		4	1	5
COURSE OUTCOMES: On the successful completion ofDOMAIN				LEV	VEL	
the cours	e, students wi	ll be able to				
CO1	Outline the s	synthetic methods of nanomaterials.	Cognitive	Rei	nemt	ber
		-	Un	dersta	and	
Psychomotor			Set			
CO2 <i>Compare</i> the properties and characterization of Cognitive			Understand			
	nanomaterials. Affective			Res	spond	

CO3	<i>Predict</i> the reactions of nanoparticles	Cognitive	Understand			
		A ffe etime	Apply			
<u> </u>	Classify the applications of carbon clusters and	Cognitivo	Apolyzo			
04	nanostructures	Psychomotor	Perception			
CO5	<i>List</i> the role and significance of nanoparticles in	Cognitive	Analyze			
000	nanodevice. Psychomotor Perceptio					
SYLLABUS:						
UNIT I	Synthetic Methods					
Definition of nanodimensional materials – historical milestones – unique properties due to nanosize, quantum dots, classification of nanomaterials.General methods of synthesis of nanomaterials – hydrothermal synthesis, solvothermal synthesis – microwave irradiation– sol-gel and precipitation technologies – combustion flame – chemical vapour condensation process – gas-phase condensation synthesis – reverse micelle synthesis – polymer-mediated synthesis–protein microtubule-mediated synthesis – synthesis of nanomaterials using microorganisms and other biological agents – sonochemical synthesis – hydrodynamic cavitation. Inorganic nanomaterials – typical examples – nano TiO ₂ /ZnO/CdO/CdS, organic nanomaterials – examples – rotaxanes and catenanes						
UNIT II	Characterisation of Nanoscale Materials					
Principles of Atomic Force Microscopy (AFM) – Transmission Electron Microscopy(TEM) Resolution and Scanning Transmission Electron Microscopy (STEM) – Scanning Tunneling Microscopy (STM) – Scanning Nearfield Optical Microscopy (SNOM).Scanning ion conductance microscope, scanning thermal microscope, scanning probe microscopes and surface plasmon spectroscopy.						
UNIT III	Reactions in Nanoparticles					
Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucurbiturils, zeolites, M.O.Fs, porous silicon, nanocatalysis.						
UNIT IV	Carbon Clusters and Nanostructures					
Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes.Carbon nanotubes – synthesis – single walled carbon nanotubes – structure and characterization – mechanism of formation – chemically modified carbon nanotubes – doping – functionalizing nanotubes – applications of carbon nanotubes. Nanowires –synthetic strategies – gas phase and solution phase growth – growth control – properties.UNIT VNanotechnology and Nanodevices						
•						

DNA as a nanomaterial – DNA – knots and junctions, DNA – nanomechanical device designed by Seeman. Force measurements in simple protein molecules and polymerase – DNA complexes–molecular recognition and DNA based sensor. Protein nanoarray, nanopipettes, molecular diodes, self-assembled nanotransistors, nanoparticle mediated transfection.

REFERENCE BOOKS:

- 1. C. N. R. Rao, A. Muller and A. K. Cheetham (Eds), The Chemistry of Nanomaterials: Vol. 1 and 2; Wiley-VCH;Germany, Weinheim, 2004.
- 2. C. P. Poole, Jr: and F. J. Owens, Introduction to Nanotechnology; Wiley Interscience, New Jersey, 2003.
- 3. K. J. Klabunde (Ed), Nanoscale Materials in Chemistry; 2nd Ed., Wiley-Interscience, New York, 2009.
- 4. T. Pradeep, Nano: The Essentials in Understanding Nanoscience and Nanotechnology; 1st Ed., Tata McGraw Hill, New York, 2007.
- 5. H. Fujita (Ed.), Micromachines as Tools in Nanotechnology; Springer-Verlag, Berlin, 2003.
- 6. Bengt Nolting, Methods in Modern Biophysics; 3rd Ed., Springer-Verlarg, Berlin, 2009.
- 7. H. Gleiter, Nanostructured Materials: Basic Concepts, Microstructure and Properties, Elsevier, Chennai, 2000.
- 8. W. Kain and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John-Wiley R Sons, New York, 2013.

	LECTURE	TUTORIAL	SELF- STUDY	TOTAL HOURS
Hours	60	15	-	75