FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT DEPARTMENT OF CHEMISTRY

Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT

DEPARTMENT OF CHEMISTRY

CURRICULUM & SYLLABUS (I-VI SEMESTER)

B.Sc. CHEMISTRY (FULL TIME-3 Years)

REGULATION 2018 PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT

DEPARTMENT OF CHEMISTRY

Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

CURRICULUM & SYLLABUS (I to VI SEMESTER) FOR B.Sc CHEMISTRY

FULL TIME-3 Years

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & **TECHNOLOGY**

CURRICULUM AND SYLLABUS FOR BACHELOR OF SCIENCE **B.Sc** (Chemistry) – (THREE YEARS - FULL TIME)

REGULATION 2018

(Applicable to the students admitted from the academic year 2018-2019 onwards)

CURRICULUM AND SYLLABUS FOR B.Sc. (Chemistry) - BACHELOR OF SCIENCE (THREE YEAR - FULL TIME) REGULATION - 2017

(Applicable to the students admitted from the academic year 2017-2018 onwards)

		SEMESTER I						
Type	Course Code	Course Title	L	Т	P	SS	Н	С
AECC 1	XGL101	Communication Skills in English	2	0	0	2	4	2
LAN 1	XGL102A / XGL102B	Ariviyal Tamil/Comprehensive English	3	0	0	0	3	3
CC 1	XMG103	Algebra, Trigonometry and Transform	4	1	0	0	5	5
CC 2 (DSC 2A)	XCY104	Fundamental Concepts of Chemistry	3	1	0	0	4	4
CC 3 (DSC 3A)	XCY105	Inorganic Chemistry I	3	1	0	0	4	4
UMAN 1	XUM106	Human Ethics, Values, Rights and Gender Equality	0	0	0	3	3	0
CC 2 Lab	XCY107	Volumetric Analysis, Practical -I	0	0	4	0	4	2
		Total	15	3	4	5	27	21

		SEMESTER II						
Туре	Course Code	Course Title	L	Т	P	SS	Н	C
AECC 2	XGL201	English for Effective Communication	2	0	0	2	4	2
AECC 3	XES202	Environmental Studies	2	0	0	1	3	2
CC4	XMG203	Calculus and Differential Equations	4	1	0	0	5	5
CC 5 (DSC 2B)	XCY204	Organic Chemistry I	3	1	0	0	4	4
CC 6 (DSC 3B)	XCY205	Physical Chemistry I	3	1	0	0	4	4
CC 5 Lab	XCY206	Volumetric Analysis Practical- II	0	0	4	0	4	2
		Total	14	3	4	3	24	19

		SEMESTER III						
Type	Course Code	Course Title	L	Т	P	SS	Н	С
SEC 1	XCY301	Water Quality Analysis	1	0	2	1	4	2
CC7	XCY302	Fundamental Physics	3	1	0	0	4	4
CC 8 (DSC 2C)	XCY303	Inorganic Chemistry II	3	1	0	0	4	4
CC 9 (DSC 3C)	XCY304	Organic Chemistry II	3	1	0	0	4	4
GE 1		*Open Elective - To be chosen by student	3	0	0	0	3	3
CC7 lab	XPG 305	Fundamental Physics Practical	0	0	4	0	4	2
UMAN 2	XUM306	Disaster Management	0	0	0	3	3	0
CC 8 Lab	XCY307	Semi Micro Inorganic Qualitative Analysis Practical III	0	0	4	0	4	2
Minor course 1 *Extra credit		Office Automation (15 Hours)						1*
		Total	13	3	10	4	30	21+1*

		SEMESTER IV						
Type	Course Code	Course Title	L	Т	P	SS	Н	С
SEC 2	XCY401	Pharmaceutical Chemistry	1	0	2	1	4	2
CC10	XCY402	Modern Physics	3	1	0	0	4	4
CC 11 (DSC 2D)	XCY403	Physical Chemistry II	3	1	0	0	4	4
CC 12 (DSC 3D)	XCY404	Inorganic Chemistry III	3	1	0	0	4	4
GE 2		*Open Elective - To be chosen by student	3	0	0	0	3	3
CC10 lab	XPH405	Modern Physics Practical	0	0	4	0	4	2
CC11 Lab	XCY406	Inorganic Quantitative Analysis Practical IV	0	0	4	0	4	2
Minor course 2 *Extra credit		Animation Software I (15 Hours)						1*
		Total	13	3	10	1	27	21+ 1*

		SEMESTER V						
Туре	Course Code	Course Title	L	Т	P	SS	Н	C
SEC 3	XCY501	Clinical Chemistry	1	0	2	1	4	2
DSE 1A	XCY502A	Phyto Chemistry	3	1	0	0	4	4
DSE IA	XCY502B	Forensic Science	3	1	U		4	4
DSE 2A	XCY503A	Analytical Methods in Chemistry	3	1	0	0	4	4
DSE ZA	XCY503B	Agricultural Chemistry	3	1	U		4	4
DSE 3A	XCY504A	Computer Applications in Chemistry	3	1	0	0	4	4
DSE 3A	XCY504B	Programming in C	3	1	U		4	4
GE 3		*Open Elective - To be chosen by student	3	0	0	0	3	3
DSE 1A Lab	XCY505	Organic Qualitative Analysis Practical	0	0	4	0	4	2
		VA						
CC lab	XCY506	Physical Chemistry Practical VB	0	0	4	0	4	2
Minor								
course 3		Animation Software II (15 Hours)						1*
*Extra		Animation Software II (13 Hours)						1
credit								
* Extra	_	IPT (21 days)						2*
credit	_	11 1 (21 days)						
		Total	13	3	10	1	27	21+3*

	SEMESTER VI										
Type	Course Code	Course Title	L	T	P	SS	Н	C			
SEC 4	XCY601	Renewable Energy	1	0	2	1	4	2			
DSE 1B	XCY602A	Industrial Chemistry	3	1	0	0	4	4			
DSE 1B	XCY602B	Material Chemistry	3	1	U		4	4			
DSE 2B	XCY603A	Food Chemistry	3	1	0	0	4	4			
DSE 2B	XCY603B	Polymer Chemistry	3	1	U		4	4			
DSE2B lab	XCY604	Organic Qualitative Analysis Practical VI	0	0	4	0	4	2			
CC lab	XCY605	Physical Chemistry Practical VIA	0	0	4	0	4	2			
DSE 3B	XCY606	Project	0	0	0	0	8	6			
		NSS/NCC/RRC									
		Total	7	2	10	1	28	20			

DSC: Department Specific Core SEC: Skill Enhancement course

DSE: Discipline Specific Elective AECC: Ability Enhancement Compulsory Course

*Extra Credit

GE: Generic Elective

UMAN: University Mandatory

L - Lecture T- Tutorial

SS - Self Study P - Practical

C-Credit

Summary

Semester	S1	S2	S3	S4	S5	S6	P1	P2	Others
I	AECC1	LAN1	CC1	CC2 (DSC2A)	CC3 (DSC3A)	UMAN1	CC2 Lab		
II	AECC2	AECC3	CC4	CC5 (DSC2B)	CC6 (DSC3B)			CC5 Lab	
III	SEC1	CC7	CC8 (DSC2C)	CC9 (DSC3C)	GE1	UMAN2	CC7 Lab	CC8 Lab	*Minor Course
IV	SEC2	CC10	CC11 (DSC2D)	CC12 (DSC3D)	GE2		CC10 Lab	CC11 Lab	*Minor Course
V	SEC3	DSE1A	DSE 2A	DSE3A	GE3		CC Lab	CC lab	IPT* *Minor Course
VI	SEC4	DSE1B	DSE 2B	DSE3B (PROJECT)			CC Lab	CC lab	NSS/ NCC

^{*} Extra Credit

Total Number of Courses proposed with the credits is given below:

S. No.	Type of Course	Numbers	Total Credit	Credits As per UGC norms
1	AECC (Theory & Lab)	03	06	04
2	Core Course (Theory & Lab)	12	66	72
3	DSE (Theory & Lab)	06	30	36
4	SEC	04	08	08
5	GE	03	09	-
6	UMAN	02	00	-
7	LAN	01	03	
	IPT & Minor Courses /NSS/NCC	4*	4*	-
	Total	31 + 4*	122 + 4*	120

*Extra credit

Branch	Total Credit	Core DSC (%)	DSE (%)	SEC (%)	AECC (%)	GE (%)	UMAN (%)	IPT& NSS/NCC
B.Sc.(Chemistry)	122+4*	66 (54.1%)	30 (24.6%)	8 (6.6%)	6 (4.9%)	9 (7.4%)	0 (0%)	4* (Extra Credit)

* Extra Credit

DSC: Department Specific Core SEC: Skill Enhancement course DSE: Discipline Specific Elective

AECC: Ability Enhancement Compulsory Course

GE: Generic Elective UMAN: University Mandatory

COU	OURSE XGL101 L T P SS H											Н	(C														
COU	RSE		C	CO	MN	MU	ΝI	CA	TI	ON	N S	KII	LL	S I	IN I	ENG	LISE	[2	()	0	2		4	,	2	
C:P:A			3:	3:0:	0															1	!		1					
COU	RSE	OUTC	CON	ME	S:														D	om	ai	n		Ι	Level			
CO1	Exp	<i>lain</i> th	he p	oro	cess	s of	co	mn	nun	ica	tio	n ar	and :	its	typ	es			Co	gn	itiv	ve	Une	de	rstanding			
CO2												emb	erir	ng														
CO3	Org	anise	me	eeti	ng	eve	nts	an	d re	eco	rdi	ing i	it c	con	ıstru	ctive	ely		Co	gn	itiv	ve	A	Aр	ply	ing		
CO4	Ada	<i>pt</i> met	etho	ds	of i	fran	nin	g q	ues	stio	ns	and	d us	sing	ıg pı	ınctu	ation	S	Co	ogn:	itiv	ve		_	eati			
CO5		<i>nonstra</i> sentatio			e ba	sic	sk	ills	at t	the	tin	ne c	of i	inte	ervi	ew a	nd		Co	ogn	itiv	ve	Une	de	rsta	ndiı	ng	
SYLL	1 -																		1						Н	OU.	RS	
UNIT	Ί.	The F	Pro	ce	SS O	of C	on	nm	uni	cat	tioı	n																
		ation- tl mmunic		-		ss o	of c	om	mu	nic	cati	on -	- ba	arr	riers	of co	ommı	ınica	tion -	- di	ffe	rent				9		
UNIT	'II	Phone	netio	cs																								
Pronu	nciati	on – V	Vow	vels	_ (Con	ISO	nan	nts -	- T	ran	nscr	ripti	tion	n of	Wor	ds an	d Se	ntenc	es.						9		
UNIT	III	Repo	ort V	Wı	itii	ng																						
		succes				ting	g, C)ne	to	one	e m	neet	ting	g, e	editi	ng, c	riteri	a for	succe	essf	ùl					9		
		memo,			ls.																							
UNIT		Gram											2.2									~						
Article and E		Questio	on T	l'ag	–P	unc	ctua	atio	n –	- Ty	ype	es of	of So	Sent	tenc	es –	Туре	s of (Quest	ion	ıs,	Cau	se			9		
UNIT	V	Prese	enta	ati	on i	Ski	lls																					
		n skills,	s, In	mp	orta	ance	of	f bo	ody	lan	ngu	ıage	e in	n pr	rese	ntatio	ons, V	/erba	ıl and	No	on	Ver	bal			9		
comm	unica	tion.																										
																					Γο	tal I	Hours	8		45		
1. 2. 3.	San Sun	ghita Senant. <i>Te</i>	Tech:	inic	cal.	Eng	glis	h.V	/ija	y N	Vic	ole :	Im	npri	ints,	Che	nnai,	201	1		ien	ınai,	2015					

COUR	RSE CODE	XMG 103	L	T	P	SS	C		
COUR	RSE NAME	ALGEBRA, TRIGONOMETRY AND TRANSFORM	4	1	0	0	5		
PRER	EQUISITES	BASIC CONCEPTS OF MATRICES, DIFFERENTIATION AND INTEGRATION	L	T	P	SS	Н		
C:P:A		5:0:0	4		0	0	5		
	SE OUTCOMES			DOMA		LEVEI			
CO1	coefficients. Ex	of the polynomials equations with real plain the transformation of equation and to ocal equation using Newton's method.		Cogniti	ve	Remem Underst Applyin	anding		
CO2	Find eigen valu Apply Cayley H matrix.	Cogniti	ve	Remem Applyin	bering				
CO3	hyperbolic functions.	onometric functions, hyperbolic and inverse tions and to <i>find</i> the series of trigonometric	;	Cogniti	ve	Remem Underst	anding		
CO4	-	te transforms and inverse Laplace transforms etions and to <i>find</i> the Laplace transforms of erivatives.		Cogniti	ve	Remembering			
CO5		ransforms to <i>solve</i> the differential equations and order and to <i>find</i> Fourier series of a	S	Cogniti	ve	Remembering Applying			
IINIT		OF EQUATIONS				1	15		
Polyno roots - Equation	omial Equations – Transformatior	with real coefficients irrational roots, com of equations by increasing or decreasing nethod to find a root approximately.				netric func ant – Rec	ction of		
Eigen compu	Values and eigntation of inverse.	en vectors, Cayley-Hamilton theorem (v	with	out prod	of) –	Verificati	on and		
Expans		Expansion of $\cos^n\theta$, $\sin^n\theta$, in a series of coand $\sin n\theta$ in powers of sines and cosines				multiples			
		TRANSFORMS					15		
Definit	tion – Laplace T	ransform of Standard functions – Linearity / t and derivatives – Inverse Laplace transfo	_			hifting the			
		IONS OF LAPLACE TRANSFORMS A					15		
	cations of Laplac r series of function	e transforms of differential equations of foots.	irst a	and seco	nd or	der – Find	ling the		

LECTURE TUTORIAL PRACTICAL SELF STUDY TOTAL HOURS 45 30 0 75 0 TEXT BOOKS

1. Kandasamy. P, Thilagavathi. K, Allied Mathematics, Volume I and II, S.Chand and Company Ltd, New Delhi, 2004.

REFERENCES

- 1. T.K. Manichavasagam Pillai and S.Narayanan, Trigonometry, Viswanathan Publishers and Printers Pvt. Ltd.
- 2. S. Narayan and T.K. Manicavachagam Pillay, Ancillary Mathematics, Viswanathan Publishers and Printers Pvt. Ltd.

WEBSITE:

1. WWW. NPTEL .ac.in

COURSE CODE	XCY104	L	T	P	SS	С
COURSE NAME	FUNDAMENTAL CONCEPTS OF CHEMISTRY	3	1	0	0	4
C: P: A	3.2:0:0.8	L	T	P	SS	H
		3	1	0	0	4

COUI	RSE OUTCOMES:	Domain	Level
CO1	Explain the principle of atomic structure and basics of quantum mechanism	Cognitive	Understand
CO2	Describe the periodic properties of various elements	Cognitive	Remember
CO3	Interpret IUPAC nomenclature of compounds.	Cognitive Affective	Apply Receiving
CO4	Describe the physical properties of dipole moment,	Cognitive	Remember
	polarizability and magnetic properties.	Affective	Responding
CO5	Apply and Identify the various analytical methods for	Cognitive	Remember
	quantitative analysis.		Apply

UNIT - I ATOMIC STRUCTURE AND BASIC QUANTUM MECHANICS

10+3

Atom, constituents of an atom – Bohr's postulates – Bohr's atom model – limitations of the Bohr's atom model - Sommerfeld atom model. Particle and wave character of electron – de-Broglie's equation and its derivation – The Davisson and Germer experiment – Heisenberg's uncertainity principle. Photoelectric effect - Einstein photoelectric equation – Compton effect. Quantum theory – postulates of quantum mechanics – The Schrodinger wave equation-Quantum numbers. Aufbau principle – Hund's

rule of maximum spin multiplicity – Pauli's exclusion principle – n + l rule – electronic configurations of

elements.

UNIT - II PERIODIC TABLE

6+3

Modern periodic law – modern periodic table – classification of elements based on electronic configuration. Fundamental properties like atomic size, valency, ionization energy, ionic radius, electron affinity, electronegativity, metallic and nonmetallic character - variation of the above fundamental properties – explanation for the periodic variation of the fundamental properties – diagonal relationship.

UNIT - III FUNDAMENTALS OF ORGANIC CHEMISTRY

9+3

IUPAC Nomenclature of organic compounds Molecular weight determination of simple organic acid and bases – Silver salt and platonic chloride methods. Calculation of empirical and molecular formula using percentage composition of elements and molecular weight. Fundamental concepts - Homolytic fission and Heterolytic fission of carbon-carbon bonds - Reaction intermediates: Formation and stability of Free radicals, carbonium ions and carbanions – nucleophilic and electrophilic reagents. Types of reactions-Substitution, addition, elimination, rearrangement and polymerization with suitable examples.Inductive effect and electromeric effect: explanation with suitable examples.

UNIT -IV PHYSICAL PROPERTIES AND CHEMICAL CONSTITUTIONS.

10+3

Dipole moment: Definition – Experimental determination - Calculation of percentage of ionic character of HF and HCl –Dipole moment and molecular structure: CO2, H₂O,NH3 and CH4.

Polarizability: Definition – polarization of a molecule – molar polarization – Clausius-Mosotti equation. Magnetic properties: Paramagnetic, diamagnetic and ferromagnetic substances and their characteristics – magnetic permeability – magnetic susceptibility – specific and molar magnetic susceptibilities – determination of magnetic susceptibility by Gouy's method.

UNIT -V ANALYTICAL METHODS

10+3

Qualitative Inorganic Analysis – Dry Test, flame test, cobalt nitrate test—wet confirmatory test for acid radicals, interfering acid radicals – elimination of interfering acid radicals. Solubility product, common ion effect, complexation, oxidation reduction reactions involved in identification of anions and cations – separation of cations into groups – Volumetric analysis – preparation of standard solutions –normality, molarity and molality by titrimetric reactions – acid base, redox, precipitation and complex metric titrations –indicators – effect of change in pH – selection of suitable indicators.

LECTURE	TUTORIALS	PRACTICALS	SELF STUDY	TOTAL
45	15	0	0	60

TEXT BOOKS

- **1.** Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry, (23rd edition), New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 2. Lee J.D., Concise Inorganic Chemistry, UK, Black well science (2006).
- 3. Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd.

REFERENCES

- 1. Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., (1976).
- 2. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (1997).
- 3. Frank J. Welcher and Richard B. Hahn, Semi micro Qualitative Analysis, New Delhi, Affiliated East-west Press Pvt. Ltd. (1969).
- 4. G.D. Tuli, R.D. Madan, S.K. Basu, Satya Prakash, Advanced Inorganic Chemistry, Volume 1, (5th edition), New Delhi, S. Chand & Company Ltd, (2014

E RESOURCES

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/3001/Chemistry-I
- 4. http://freevideolectures.com/Course/3167/Chemistry-II

COURSE CODE	XCY105	L	T	P	SS	C
COURSE NAME	INORGANIC CHEMISTRY I	3	1	0	0	4
C: P: A	2.8:0.4:0.8	L	T	P	SS	Н
		3	1	0	0	4

COUI	RSE OUTCOMES:	Domain	Level
CO1	Recall and Explain the basic concepts of ionic bonding; Display the shapes of simple inorganic molecules using VSEPR theory	Cognitive Psychomotor	Remember Understand Set
CO2	Summarize and Report extraction, properties and uses	Cognitive	Understand
	of I A and IIA group s-block elements.	Affective	Responding
CO3	Explain the extraction and purification process of various metals and Interpret their physical and chemical properties.	Cognitive Affective	Understand Apply Responding
CO4	Describe the concept of acids and bases and the application of various concepts.	Cognitive Psychomotor	Analysis Perception
CO5	<i>Identify</i> the various radioactive process and their consequences	Cognitive	Remember

UNIT - I CHEMICAL BONDING

10+3

lonic bond – Lattice Energy – Born – Haber Cycle – Pauling and Muliken's scales of electro negativity – Polarizing power and Polarisability – partial ionic character from electro negativity –

Transitions from ionic to covalent character and vice versa - Fajan's rule. VSEPR Theory - Shapes of simple inorganic molecules (BeCl₂, SiCl₄, PCl₅, SF₆,IF₇, NH₃, XeF₆, BF₃,H₂O) - VB Theory - Principles of hybridization - BeCl₂ - MO Theory - Bonding and antibonding orbitals - Application of MO Theory to H₂,He₂,N₂,O₂,HF and CO - Comparison of VB and MO theories.

UNIT - II CHEMISTRY OF S-BLOCK ELEMENTS

6+3

Position of Hydrogen in the Periodic Table, atomic hydrogen, nascent hydrogen, occluded hydrogen and uses of hydrogen. General characteristics of s-block elements – General characteristics of Group IA – diagonal relationship between Li and Mg – Physical and Chemical properties – Uses – Preparation of NaOH, Na₂CO₃, NaHCO₃ (Laboratory and Industrial methods) – Properties – Uses. General characteristics of Elements of Group II A – diagonal relationship between Be and Al —Physical and Chemical properties – Uses – Preparation and uses of Mg: MgCO₃, MgSO₄.

UNIT - III BASIC PRINCIPLES OF METALLLURGY

9+3

Ores and minerals – concentrating the ore by gravity separation, froth flotation and magnetic separation – Types of furnaces -Roasting– Calcination – Smelting – Flux – Purification by electrolytic refining, zone refining and Van-Arkel vapour phase refining with suitable examples– Alumino thermic process. Group–IA: Extraction of lithium and its uses – Diagonal relationship of Lithium with Magnesium Group–IIA: Extraction of Beryllium and its uses –Diagonal relationship of Beryllium with Aluminium Group–IB: Extraction of copper and its uses – Extraction of silver and its uses. Group-VA: Nitrogen: Ammonia – manufacture, properties, uses and structure.

Nitric Acid: Manufacture of Nitric acid – Action of nitric acid on metals

UNIT -IV ACIDS AND BASES

10+3

Lewis concept – Classification of Lewis acids – Lux-Flood concept – Hard-Soft acid base concept and its applications. Non- aqueous solvents- Classification of solvents- Neutralization reaction and solvolysis in liquid ammonia- Metal- ammonia solutions. Neutralisation, solvolysis and redox reactions.

UNIT -V NUCLEAR CHEMISTRY

10+3

Constitution of nuclei - stability of nuclei and (n-p) ratio - magic number- mass defect and binding

energy – mass – energy relationship. Radioactivity: Natural radioactivity — Soddy's group displacement law – Radioactivity equilibrium – Rate of radioactive disintegration – half life period and average life period – radioactive disintegration series. Nuclear fission: Theory – applications – principle of atom bomb. Nuclear fusion: Theory – Solar and Stellar energy – principle of hydrogen bomb Applications of radioactivity: medicine – agriculture – industry – structural elucidations – carbon dating – cyclotron.

45 15 0 0 60	LECTURE	TUTORIALS	PRACTICALS	SELFSTUDY	TOTAL
	45	15	0	0	60

TEXT BOOKS

- 1. Lee J.D., Concise Inorganic Chemistry, UK, Black well science (2006).
- 2. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (2007).

REFERENCES

1. Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry, (23rd edition), New Delhi, Shoban Lal

Nagin Chand & Co., (2003).

2. Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (23rd edition), New Delhi, Shoban Lal

Nagin Chand & Co., (2005).

- 3. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd.
- 4. Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., (2003).

COURSE CODE XUM 106			\mathbf{L}	T	P	SS	C	
COURSE NAME		HUMAN ETHICS, VALUES, RIGH	ITS AND GENDER	1	0	0	2	1
		EQUALITY						
C:P:A	L	2.7:0:0.3		L	T	P	SS	H
				1	0	0	2	3
COUF	RSE OUTCON	MES	Domain	Le	vel			
CO1	Relate and I	nterpret the human ethics and human	Cognitive		mem			
COI	relationships		Cognitive		Understand			
CO2	Explain and	Apply gender issues, equality and	Cognitive		Understand,			
violence against		nst women	Cognitive	Apply				
CO3	Classify and	Develop the identify of women issues	Cognitive &	Analyze				
and challenges		es	Affective	Red	ceive			
CO4 Classify and Dissect human rights and report on		Cognitive	Lin	Undonstand Ana			170	
violations.		Cognitive	Understand, Analyz				/ZC	
	List and respond to family values, universal Cognitive &		Remember, Respond				nd	
CO5 brotherhood, fight against corruption by comm			IVE	пеш	DEI, I	kespo	IIU	
	man and good governance. Affective							
UNIT	I - HUMAN E	ETHICS AND VALUES			-		7	

Human Ethics and values - Understanding of oneself and others- motives and needs- Social service, Social Justice, Dignity and worth, Harmony in human relationship: Family and Society, Integrity and Competence, Caring and Sharing, Honesty and Courage, WHO's holistic development - Valuing Time, Co-operation, Commitment, Sympathy and Empathy, Self respect, Self-Confidence, character building and Personality.

UNIT II - GENDER EQUALITY

9

Gender Equality - Gender Vs Sex, Concepts, definition, Gender equity, equality, and empowerment. Status of Women in India Social, Economical, Education, Health, Employment, HDI, GDI, GEM. Contributions of Dr.B.R. Ambethkar, Thanthai Periyar and Phule to Women Empowerment.

UNIT III - WOMEN ISSUES AND CHALLENGES

9

Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures – Acts related to women: Political Right, Property Rights, and Rights to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act.

UNIT IV - HUMAN RIGHTS

9

Human Rights Movement in India – The preamble to the Constitution of India, Human Rights and Duties, Universal Declaration of Human Rights (UDHR), Civil, Political, Economical, Social and Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights and protection of children and elderly. National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness. - Intellectual Property Rights (IPR). National Policy on occupational safety, occupational health and working environment.

UNIT V - GOOD GOVERNANCE AND ADDRESSING SOCIAL ISSUES

11

Good Governance - Democracy, People's Participation, Transparency in governance and audit, Corruption, Impact of corruption on society, whom to make corruption complaints, fight against corruption and related issues, Fairness in criminal justice administration, Government system of Redressal. Creation of People friendly environment and universal brotherhood.

·	LECTURE	SELF STUDY	TOTAL
	15	30	45

REFERENCES

- 1. Aftab A, (Ed.), Human Rights in India: Issues and Challenges, (New Delhi: Raj Publications, 2012).
- 2. Bajwa, G.S. and Bajwa, D.K. Human Rights in India: Implementation and Violations (New Delhi: D.K. Publications, 1996).
- 3. Chatrath, K. J. S., (ed.), Education for Human Rights and Democracy (Shimala: Indian Institute of Advanced Studies, 1998).
- 4. Jagadeesan. P. Marriage and Social legislations in Tamil Nadu, Chennai: Elachiapen Publications, 1990)
- 5. Kaushal, Rachna, Women and Human Rights in India (New Delhi: Kaveri Books, 2000)
- 6. Mani. V. S., Human Rights in India: An Overview (New Delhi: Institute for the World Congress on Human Rights, 1998).
- 7. Singh, B. P. Sehgal, (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep, 1999).
- 8. Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)
- 9. Veeramani, K. (ed) Periyar Feminism, (Periyar Maniammai University, Vallam, Thanjavur: 2010).
- 10. Planning Commission report on Occupational Health and Safety

E RESOURCES

- 1. http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.p
- 2. Central Vigilance Commission (Gov. of India) website: http://cvc.nic.in/welcome.html.
- 3. Weblink of Transparency International: https://www.transparency.org/
- 4. Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

COU	JRSE CODE	XCY107	L	T	T P		С		
COU	JRSE NAME	Volumetric Analysis Practical I	0	0	0 4		2		
C:P:	A	1: 0.8:0.2	L	T	P	SS	Н		
			0	0	4	0	4		
COUR	SE OUTCOME	ES	-	DC	MAIN	LE	EVEL		
CO1	<i>Identify</i> the v	arious Metals in the solution.		Cogniti	ive	Remember			
				Psycho	motor	Perception			
CO2	Estimate the	amount of acids using volumetric metho	od.	Cognitive		Understand			
		_		Psychomotor		Set			
CO3	Estimate the	amount of bases using volumetric method	od.	Cognitive		Apply			
		-		Psychomotor S		Set			
				Affective Receivin			ing		
TOTAL	A TEMPOTO A NIA	VOLUMETRIC ANALYZICIAR 1							

VOLUMETRIC ANALYSIS LAB-1

- 2 hours each exp
- 1. Estimation of HCl by NaOH using a standard oxalic acid solution
- 2. Estimation of Na₂CO₃ by HCl using a standard Na₂CO₃ solution
- 3. Estimation of oxalic acid by KMnO₄ using a standard oxalic acid solution
- 4. Estimation of Iron (II) sulphate by KMnO₄ using a standard Mohr's salt solution.
- 5. Estimation of Ca (II) by KMnO₄ using a standard oxalic acid solution.
- 6. Estimation of KMnO₄ by thio using a standard K₂Cr₂O₇ solution.
- 7. Estimation of hydrogen peroxide
- **8.** Estimation of Iodine

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
	0	30	0	0	30
HOURS					

TEXT BOOKS

- 1. B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G Smith and A.R. Tatchell., "Vogel's Textbook of practical Organic Chemistry", (ELBS), 5th edn., 2009.
- 2. J. Bassett, R.C. Denney, G. H Jeffery and J. Mendham, "Vogel's text book of Quantitative Inorganic Analysis (revised)", (ELBS), 6th edn., 2007.

REFERENCES

- 1. J.B. Yadav, "Advanced Practical Physical Chemistry", (Goel Publishing House), 20th edn., 2001.
- 2. J.N. Gurtu and R. Kapoor, "Advanced Experimental Chemistry", Vol. I-Physical, (S. Chand & Co), 1st edn., 2000.
- 3. Sundaram, Krishnan, Raghavan, "Practical Chemistry (Part II)", S. Viswanathan Co. Pvt., 1996.

E RESOURCES

- 1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques
- 2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011
- 3.http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques

	SEMESTER II							
COURSE CODE		XGL201	L	T	P	SS	С	
COU	RSE NAME	ENGLISH FOR EFFECTIVE	2	0	0	0	2	
		COMMUNICATION						
C:P:A	1	1:0.6:0.4	L	T	P	SS	H	
			2	0	0	0	4	
COU	RSE OUTCOMI	ES	DOM	AIN	L	EVE	Ĺ	
CO1	Define and Des	cribe how to make effective speeches	Cognit	ive	R	emem	ber	
	academically ar	nd in social situations						
CO2	<i>Identify</i> the for	ms of language used in different	Psycho	omotor				
	speeches and ho	ow to listen actively and critically.						
CO3	Produce the pro	oper tone of language required in	Cognit	ive	Remember		ıber	
	writing and spea	aking in Business communication						
CO4	Initializing Valu	ues, Display knowledge on grammar	Affective					
	and other lingui	stic features in writing various forms						
	of business com	munication.						
CO5	Comprehend as	nd prepare how to write business	Cognitive		Apply		•	
	reports, minutes	s, Proposals etc.						

UNIT I - PUBLIC SPEECH

9

Introduction to public speaking; functions of oral communication; skills and competencies needed for successful speech making; importance of public speaking skills in everyday life and in the area of business, social, political and all other places of group work.

UNIT II - TYPES OF SPEECH

9

Various types of Speeches: manuscript, impromptu, rememorized and extemporaneous speeches; analyzing the audience and occasion; Developing ideas; finding and using supporting materials; Developing speech out line; Organization of Speech; introduction, development and conclusion; language used in various types of speeches; Adapting the speech structures to the Audience; paralinguistic features

UNIT III - BUSINESS COMMUNICATION

9

Introduction to business communication; modern developments in the style of writing letters memos and reports: block letters, semi block letters, full block letters, simplified letters etc.

UNIT IV - USE OF LANGUAGE

Q

The language used in memos/minutes/telephone memos/ letters/assignments; art of writing E-mail etc.

UNIT V - USE OF GRAMMAR

9

The use of active and passive voice; the use of grammar, propriety, accuracy, exactness, the tone & other elements of language used in these writings; The format of various types of Reports/ projects etc.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	0	0	0	45

TEXT BOOKS

- 1. Strengthen Your Writing by V.R. Narayanaswamy (Orient Longman)
- 2. A course in written English: by Ghosh, R N; Inthira, S R [Author]; Moody, K W [Author].1978
- 3. Writing With A Purpose, Jaya Sasikumar, Champa Tickoo, Published by Oxford University Press, Paper Back, Language English
- 4. Freeman, Sarah: Study Strategies. New Delhi: Oxford University Press, 1979. 13.

5. Reading for Meaning, Paul Gunashekar M.L. Tickoo, Published by S. Chand & Company Ltd. Sultan Chand & Company

REFERENCES

- **1.** John Sealy, Writing and Speaking Author:, Oxford University Press, New Delhi Third Edition 2009.
- **2.** Williams K S, Communicating in Business (8th Edition) Engage Learning India Pvt. Ltd.: 2012
- **3.** John Sealy, Writing and Speaking, Oxford University Press, New Delhi Third Edition 2009.

COU	RSE CODE	XES 202	\mathbf{L}	L T SS		P	C	
COUF	RSE NAME	ENVIRONMENTAL STUDIES	2 0 1			0	2	
C:P:A	\	1.4: 0.3 : 0.3	L	L T SS			P	H
			2		0	1	0	3
COU	RSE OUTCO	MES		DC)MA	IN	LEVE	L
CO1	Describe the anthropogen	significance of natural resources and <i>explain</i> c impacts.		Co	gniti	ve	Remen Unders	
								
CO2	CO2 <i>Illustrate</i> the significance of ecosystem, biodiversity and natural geo bio chemical cycles for maintaining ecological				gniti	ve	Unders	tand
	balance.	to element cycles for manitaning ecological						
CO3	0.0	facts, consequences, preventive measures of ma	ijor	Co	gniti	ve	Remen	nber
	pollutions an	nd <i>recognize</i> the disaster phenomenon		Aff	fecti	ve	Receive	e
CO4	Explain the	socio-economic, policy dynamics and practice	c, policy dynamics and <i>practice</i> the Cognitive					tand
	control measures of global issues for sustainable development.						Apply	
CO5	O5 Recognize the impact of population and the concept of various Cognitive				Unders	tand		
						Analys	is	
	environment	al protection.						
TINIT	I INTDOD	LICTION TO ENVIDONMENTAL STUDIE	C A	VID.	UNIL	DCI	7	1

UNIT - I INTRODUCTION TO ENVIRONMENTAL STUDIES AND ENERGY

1 2

Definition, scope and importance – Need for public awareness – Forest resources: Use and over-exploitation, deforestation, case studies – Water resources: Use and over-utilization of surface and ground water, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: renewable and non-renewable energy sources – Land resources: Land as a resource, land degradation, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT – II ECOSYSTEMS AND BIODIVERSITY

| 7

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT - III ENVIRONMENTAL POLLUTION

1 0

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT -IV SOCIAL ISSUES AND THE ENVIRONMENT

1 0

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT -V HUMAN POPULATION AND THE ENVIRONMENT

6

Population growth, variation among nations – Population explosion– Environment and human health – HIV / AIDS– Role of Information Technology in Environment and human health. Population growth, variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education - HIV / AIDS – Women and Child welfare programme– Role of Information Technology in Environment and human health – Case studies.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOT
					\mathbf{AL}
HOURS	30	0	0	15	45

TEXT BOOKS

- 1. Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co, USA, 2000.
- 1. Townsend C., Harper J and Michael Begon, Essentials of Ecology, Blackwell Science, UK, 2003
- 2. Trivedi R.K and P.K.Goel, Introduction to Air pollution, Techno Science Publications, India, 2003.
- 3. Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.
- 4. Introduction to International disaster management, Butterworth Heinemann, 2006.
- 5. Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson Education Pvt., Ltd., Second Edition, New Delhi, 2004.

REFERENCE BOOKS

- 1. Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol. I and II, Enviro Media, India, 2009.
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publ., House, Mumbai, 2001.
- 3. S.K.Dhameja, Environmental Engineering and Management, S.K.Kataria and Sons, New Delhi, 2012.
- 4. Sahni, Disaster Risk Reduction in South Asia, PHI Learning, New Delhi, 2003.
- 5. Sundar, Disaster Management, Sarup & Sons, New Delhi, 2007.
- 6. G.K.Ghosh, Disaster Management, A.P.H.Publishers, New Delhi, 2006.

E RESOURCES

1. http://www.e-booksdirectory.com/details.php?ebook=10526

- 2. https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook
- 6. http://www.e-booksdirectory.com/details.php?ebook=8557
- 7. http://www.e-booksdirectory.com/details.php?ebook=6804
- 8. http://bookboon.com/en/atmospheric-pollution-ebook
- 9. http://www.e-booksdirectory.com/details.php?ebook=3749
- 10. http://www.e-booksdirectory.com/details.php?ebook=2604
- 11. http://www.e-booksdirectory.com/details.php?ebook=2116
- 12. http://www.e-booksdirectory.com/details.php?ebook=1026
- 13. http://www.faadooengineers.com/threads/7894-Environmental-Science

COURSE CODE	XMG203		L	T	P	C	
COURSE NAME	CALCULUS AND DIFFERI	ENTIAL	3	1	0	4	
	EQUATIONS						
PREREQUISITE	BASIC CONCEPTS OF MATRIC	L	T	P	H		
	NUMBERS, DIFFERENTIATION	N AND					
	INTEGRATION						
C:P:A	4:0:0	3	2	0	5		
COURSE OUTCO	Leve	el					
After the completion	of the course, students will be able to)					
CO1: Compute radio	us of curvature, centre of	Cognitive	Und	erstan	ding		
curvature and	circle of curvature. Change the		App	lying	_		
order of integ							
integral. Appl							
curves.	•						
CO2. Use Beta and Gamma function computing the Cognitive					Understanding		
multiple integ	rals and explain the relation		Applying				
between them.	•			_			
CO3.Solve the linea	r homogeneous and non-	Cognitive	App	lying			
homogeneous	differential equation with			_			
constant and va	ariable coefficients.						
CO4:Define general	, complete and particular solutions	Cognitive	Und	erstan	ding		
	andard forms of partial differential		App	lying	_		
equations.	-			_			
CO5: Compute grad	lient, divergence and curl of vectors.	Cognitive	Remembering				
Apply theoren	n to evaluate line, surface and		Understanding				
volume integral.					Applying		
UNIT I		•				15	
Curvature – Radius	of curvature – center of curvature –	circle of curv	ature –	Evalu	ıatioı	ı of	
double integrals - cl	nange of order of integration in doub	ole integrals- A	Applicat	tion o	f doi	ıble	

Curvature – Radius of curvature – center of curvature – circle of curvature – Evaluation of double integrals - change of order of integration in double integrals- Application of double integral to find the area between curves.

UNIT II

Evaluation of triple integrals – Beta and Gamma functions – relations between them – Evaluation of multiple integrals using Beta and Gamma functions.

UNIT III

Solving second order linear differential equations with constant coefficients whose R.H.S is of the form ve^{mx} , where v is any function of x - Linear equations with variable coefficients.

UNIT IV 15

Formation of partial differential equations by elimination of arbitrary constants and functions -Definitions of general, particular and complete solutions-solving standard forms f(p,q) = 0, f(x,p,q) = 0, f(y,p,q) = 0, f(z,p,q) = 0, f(x,p) = f(y,q), z = px + qy + f(p,q) - Lagrange's Differential equations Pp+Qq = R.

UNIT V

Scalar and vector fields –Differentiation of vectors – Gradient, Divergence and Curl – Integration of vectors – line integral – surface integral – Green's theorem in the plane – Gauss divergence theorem – Stokes theorem – (Statements only).

	LECTURE	TUTORIA	PRACTICA	SELF STUDY	TOTAL
		${f L}$	${f L}$		
HOURS	45	30	0	0	75

TEXT BOOKS

1. Kandasamy. P, Thilagavathi. K "Mathematics for B.Sc. Branch I", Volume II, III and IV, S.Chand and Company Ltd, New Delhi, 2004.

REFERENCE

1. Narayan .S and Manicavachagam Pillay T.K. "Ancillary Mathematics", Viswanathan Publishers and Printers, 2004.

E REFERENCES

www.nptel.ac.in

1. Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

COURSE CODE		XCY204	L	T	P	SS	C
COURSE NAME		ORGANIC CHEMISTRY I	3	1	0	0	4
C:P:A	1	2.8:0.4:0.8	L	T	P	SS	Н
			3	1	0	0	4
COURSE OUTCOMES				DOM	AIN	LEVEL	,
				Cogn	tive	Understa	and
CO2	CO2 Describe the preparation with mechanism, properties and applications of alkocols, ethers and their derivatives. Estimate hydroxy and alkoxy groups.					Remember	
CO3	, , , , , ,				tive tive	Apply Receivin	ng
CO4	Describe the constructure of hyb	oncepts of covalent bonding and <i>explain</i> oridization.	the	Cogn	tive	Rememb Respond	
CO5	5 Apply and Identify the various stereo chemical concepts.				tive	Apply Rememb	oer

UNIT I - COVALENT BONDING AND STRUCTURE

9+3

Covalent bonding – Concept of hybridization – Structure of organic molecules based on sp³, sp² and sp hybridization – Covalent bond properties of organic molecules: bond length, bond angle, bond energy, bond polarity, dipolemoment, inductive, mesomeric, electromeric, resonance and hyperconjugative effects.

UNIT II - ALIPHATIC HYDROCARBONS AND ALKYL HALIDES

9+3

Alkenes: Ozonolysis, Hydroboration and polymerization with suitable examples. Dienes: Classification – preparation, properties and uses of Butadiene Alkynes: Acidity of alkynes Alkyl halides: S_N1 and S_N2 Mechanism – E_1 and E_2 Mechanism – Hofmann and Saytzeff's rule. Poly halogen derivatives: Halogen derivatives of unsaturated hydrocarbons: Preparation and uses of vinyl chloride, allyl chloride and allyl iodide. Synthetic applications of Grignard reagents.

UNIT III - CHEMISTRY OF CYCLOALKANES AND STREO ISOMERISM

10+3

Alicyclic compounds – general methods of preparation of cycloalkanes – Baeyer's strain theory and its modifications. Conformational analysis: differences between configuration and conformation Fischer and Sawhorse and Newman projection formulae – conformational analysis of ethane, n-butane and 1,2-dichloro ethane Geometrical isomerism – maleic acid and fumaric acid – aldoximes and ketoximes E-Z notations. Optical isomerism: definition: optical activity and optical isomerism – optical isomerism of compounds containing asymmetric carbon atom – tartaric acid – enantiomers and diastereoisomers – racemic and meso forms – racemisation – resolution of racemic mixture – Walden inversion – asymmetric synthesis – chirality – specifications of absolute configurations by R and S notations.

UNIT IV - ALIPHATIC ALCOHOLS

7+3

Definition: Rectified spirit – Absolute alcohol – Methylated spirit – Power alcohol. Preparation, properties and uses of allyl alcohol. Polyhydric alcohol: Estimation of number of hydroxyl groups in a polyhydric alcohol. Ethers: Estimation of alkoxy groups – Zeisel's method – preparation of chlorex and vinyl ether. Thioalcohols and thioethers: Preparation and uses of ethyl mercaptan, diethyl ether, sulphonal and mustard gas. Phosphorous ylides – preparation and properties – Wittig reaction.

UNIT V - ALDEHYDES, KETONES AND CARBOXYLIC ACID

10+3

Preparation of aldehydes and ketones from fatty acids – Rosenmund reduction – Stephen's method – Mechanism of nucleophilic addition to Carbonyl compounds – Hemiacetal and Acetal formations – Cyanohydrin formation – Meerwein-Pondorf-Varleyreduction – Oppaenaur idation – preparation of Acrolein, Crotonaldehyde, Chloral , Hydroxy acetone and Acetylacetone Carboxylic acids and their derivatives: Structure of carboxylic acids – acidity of carboxylic acids – effect of subsituents on acidity – preparation of acrylic acid and crotonic acid. Halogensubstituted acids: Preparation of Malonic acid and Malonic ester – Synthetic applications of diethyl malonate – Action of heat on dicarboxylic acids

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- a. Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., (1976).
- b. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (1997).
- c. Organic Chemistry Volume I", I.L.Finar

- d. Organic Chemistry Volume II", I.L.Finar
- e. Organic Chemistry J.Clayden
- f. Organic Chemistry Jerry March
- g. Organic Chemistry Mc muray
- h. Organic Chemistry", P.L.Soni
- i. Advanced Organic Chemistry", B.S.Bahl and Arun Bahl
- j. Organic Chemistry", R.T.Morrison and R.W.Boyd

REFERENCES

- 1. Organic Chemistry, Paula, Yurkanis and Bruice
- 2. Mukul C. RayReaction Mechanisms in Organic Chemistry
- 3. P.L. Kalsi, Organic Reactions and Their Mechanisms

E RESOURCES

https://www.mooc-list.com/course/organic-chemistry-i-saylororg

https://www.canvas.net/courses/exploring-chemistry

https://www.youtube.com/watch?v=nB9yqj-ZcAk

http://freevideolectures.com/Course/3001/Chemistry-I/3

https://ocw.mit.edu/courses/chemistry/5-12-organic-chemistry-i-spring-2005/

http://freevideolectures.com/Course/3001/Chemistry-I

http://freevideolectures.com/Course/2384/Freshman-Organic-Chemistry

COUR	SE CODE	XCY205	L	T	P	SS	С	
COURS	SE NAME	PHYSICAL CHEMISTRY I	3	1	0	0	4	
C:P:A		2.8:0.4:0.8	L	T	P	SS	Н	
			3	1	0	0	4	
COURSE OUTCOMES					IAIN	LEVE	L	
CO1 Classify the types of Molecular velocity of gases and kinetic theory of gases; Derive vanderwalls equation of real gases.					itive	Under	stand	
CO2	Apply and Identify the structure and properties of solid state.				itive		Remember Apply	
CO3	Apply and Ide crystals and c	<i>ntify</i> the structure and properties of liquoloids	uid		Cognitive Affective		Remember Apply	
CO4	Describe the types of Emuls	concepts of colloidal state and <i>explain</i> sions.	the	Cogn	itive	Remei		
CO5	<i>Identify</i> the principles of chemical equlibrium and <i>explain</i> the theory behind the catalysis.			6		Remei Receiv		
UNIT I - GASEOUS STATE								

Kinetic theory of gases – equation of kinetic theory of gases – derivation of gas laws from the equation of kinetic theory of gases. Ideal gases and real gases – deviations of real gases from ideal behaviour – Van der waal's equation (Derivation) – Significances of van der Waal's constants. P-V isotherms – Andrew's experiment—critical states of gases – Definition and determination of the critical constants - relation between van der Waal's constants and critical constants, Kinetic theory of gases: Mean free path – collision frequency – Definition and problems involving RMS velocity, Most probable velocity and Average velocity – Boltzman distribution of molecular velocities (No derivation)

UNIT II - SOLID STATE

Crystallography — Definition: unit cell, crystal lattice and interfacial angle Crystallographic systems: Bravis lattices – simple, cubic, face-centered cubic and body-centered cubic systems. Types of crystals: Ionic crystal – Structure of NaCl – Molecular crystals: Structure of Ice – Covalent crystals: structure of diamond and graphite – metallic crystals.Bonding in crystals – electrical properties - Conductors, semiconductors and insulators – super conductors – simple explanation with examples – Defects in crystals.

UNIT III - LIQUID STATE, LIQUID CRYSTALS -AND ADSORPTION

9+3

Theory of liquids – free volume of liquids – Vapour pressure – Surface ension, effect of temperature on surface tension, parachor – Viscosity, effect of temperature on viscosity – hole theory – Reynolds number – structure of liquids. Trouton's rule and its significance

Classification of Liquid crystals – Transformation into the mesomorphic states –

Definitions – Adsorbate, adsorbent and interface – Distinction between physisorption and chemisorption – Surfactants.Adsorption of gases on solids – Freundlich, Langmuir and BET adsorption isotherms Applications of adsorptions.

UNIT IV - COLLOIDAL STATE

10+3

types of colloids – sols – Lyophilic sols and lyophobic sols – properties of colloids – optical property (Tyndall effect) – kinetic property (Brownian movement) – Electrical properties like electrical double layer, zeta potential, electrophoresis and electro-osmosis – stability of colloids – Coagulation – protective colloids – Gold number – flocculation values – Hofmeister series.

GELS: Elastic and non-elastic gels – imbibition – syneresis – thixotropyEmulsions: Definition – types of emulsions – emulsifiers – Bancroft's rule HLB – number. Applications of colloids: Cottrel precipitator – Sewage disposals – detergent action of soaps – artificial rain – formation of delta – smoke screens.

UNIT V - CHEMICAL EQUILIBRIUM

8+3

Reversible and irreversible reactions – statement of law of mass action – Derivation of law of mass action from kinetic theory – Relationship between Kp and Kc (derivation). Applications of Law of mass action to the equilibria involving the formation of NH₃, dissociation of CaCO₃ and the dehydration of CuSO₄.5H₂O. Lechatelier's principle: statement – application to the formation of NH₃.

CATALYSIS: Homogeneous and heterogeneous catalysis – promoters and catalytic poisons – auto catalysis – Acid-base catalysis – Enzyme catalysis – Kinetics of enzymed catalysed reaction.

_	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- 1. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd.
- 2. Principles of Physical Chemistry", B.R.Puri and L.R.Sharma
- 3. Principles of Physical Chemistry", B.R.Puri, L.R.Sharma and M.S.Pathania
- 4. Physical Chemistry", N.Kundu and SN.Jain
- 5. Physical Chemistry", Peter Atkins Julio de paula

REFERENCES

- 1. Physical Chemistry: A Molecular Approach Donald A. McQuarrie
- 2.Physical Chemistry.G.W.Ball
- 3. Solid state and its applications, Anthony. R. West.
- 4. Physical Chemistry Volume-1, A. K. Nag.

E RESOURCES

- 1. https://www.youtube.com/watch?v=A1p4j aHdbw
- 2.<u>https://www.youtube.com/watch?v=gvq2QZ38n9U</u>
- 3.https://www.mooc-list.com/course/Physical-chemistry-i-saylororg

COURSE CODE		XCY 206	L	T	P	C	
COU	RSE NAME	Volumetric Analysis Practical-II	0	0	4	2	
C:P:A	_	1: 0.8:0.2	L	T	P	Н	
			0	0	4	4	
COU	RSE OUTCOM	DOM	IAIN	LEV	EL		
CO1	CO1 <i>Identify</i> the various Metals in the solution.			itive	Remember		
			Psych	Psychomotor		ption	
CO2	Estimate the a	mount of metal ions using volumetric	Cogn	Cognitive		Understand Set	
	method by u	sing various internal and external	Psych	Psychomotor			
	indicators.						
CO3	Estimate the	amount of metal ions in terms of	Cogn	itive	Apply	y	
	complex by complexometric titrations using Psychomotor Set						
	volumetric met	hod.	Affective Re		Recei	Receiving	
VOL	IMETDIC ANA	I VCIC I AD II			2	houng oook over	

VOLUMETRIC ANALYSIS LAB-II

3 hours each exp

I. Acidimetry and Alkalimetry

II. Permanganimetry.

- 1. Estimation of Ferrous iron in Mohr's salt.
- 2. Estimation of Ferrous and Ferric iron in a mixture.
- 3. Estimation of Oxalic acid.
- 4. Estimation of Calcium.

III. Dichrometry

- 5. Estimation of Ferrous Iron.
- 6. Estimation of Ferric Iron by using both internal and external indicators.

IV. Iodo and Iodimetry.

- 7. Estimation of Copper.
- 8. Estimation of Potassium Dichromate.
- 9. Estimation of Arsenious Oxide.

V. Argentometry.

10. Estimation of Chloride (in neutral and acid media)

VI. Complexometric Titrations.

11. Estimation of Zn, Mg and Ca ions using EDTA.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	0	0	30	30

TEXT BOOKS

- 1. B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G Smith and A.R. Tatchell., "Vogel's Textbook of practical Organic Chemistry", (ELBS), 5th edn., 2009.
- 2. J. Bassett, R.C. Denney, G. H Jeffery and J. Mendham, "Vogel's text book of Quantitative Inorganic Analysis (revised)", (ELBS), 6th edn., 2007.

REFERENCES

- 4. J.B. Yadav, "Advanced Practical Physical Chemistry" (Goel Publishing House), 20th edn. 2001.
- 5. J.N. Gurtu and R. Kapoor, "Advanced Experimental Chemistry", Vol. I-Physical, (S. Chand & Co), 1st edn., 2000.
- 6. Sundaram, Krishnan, Raghavan, "Practical Chemistry (Part II)", S. Viswanathan Co. Pvt. 1996

E RESOURCES

- 1. http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques
- 2. https://www.youtube.com/watch?
- 3. https://www.youtube.com/watch?

	SEMESTER III								
COURSE CODE		XCY301	L	T	P	SS	С		
COURS	E NAME	WATER QUALITY ANALYSIS	1	0	2	1	2		
C:P:A		1:0.8:0.2	L	T	P	SS	H		
			1	0	2	1	4		
COURS	E OUTCOM	ES	DOMAI	N	LEV	LEVEL			
CO1	Ensure the quantity and quality of water with			itive	Un	derstar	nding		
respect to standar		andards and their relation to public	Psychomotor		Manipulation				
	health.			Affective		Responding			
CO2	<i>Identify</i> the	sources of water and illustrate the	Cogn	Understanding					
	water transpo	ort and distribution		Applying					
CO3	Classify the	cycles of decomposition of sewage	Cogn	itive	Un	derstar	ding		
	and <i>Examin</i>	e the characteristics of sewage	Psycho	motor	M	anipula	ition		
CO4	Describe the	e function and principles of various	Cogn	itive	Un	derstar	nding		
	water and wa	aste water treatment units.	Affec	tive	R	espond	ing		
CO5	Select the	disposal methods for sewage and	d Cognitive Understa			derstar	nding		
	classify the c	lifferent treatment methods for sludge.							

UNIT I - WATER TECHNOLOGY

6

Hardness of Water: types and estimation of hardness (problems) - internal treatment, external treatment – demineralization process – desalination using reverse osmosis.

UNIT II - SOURCES AND TRANSMISSION OF WATER

6

Public water supply schemes, Forms and properties of water –per capita demand - population forecasts - variation in demand pattern – water quality – BIS and ISO specifications– water borne diseases – planning of public water supplies.

UNIT III - WATER TREATMENT

6

Layout of Treatment plants for conventional water treatment plant. Principles and Functions of Screen, Flash Mixer, Flocculator, Sedimentation Tank, Slow and Rapid Sand Filters, and Disinfection Process-advanced water treatment techniques.

UNIT IV - WASTE WATER TREATMENT

6

oxidation Characteristics and composition of sewage - cycles of decomposition of organic wastes - D.O, BOD and COD and their significance. Treatment methods - Layout of waste water treatment plant- Activated sludge process and its modifications; Tricking filters and Rotating biological pond.

UNIT V - DISPOSAL OPTIONS

6

Land disposal - sewage farming practice - dilution - discharge into rivers, - oxygen sag - self-purification - eutrophication. - sludge treatment - properties and characteristics of sludge - sludge digestion and drying beds.

Any five experiments decided by the course teacher

- 1. Determination of pH, turbidity and conductivity.
- 2. Determination of the available chlorine in bleaching powder and estimation of the residual chlorine.
- 3. Determination of optimum dosage of coagulant
- 4. Determination of Iron and Fluoride.

- 5. Determination of Phosphorous
- 6. Determination of hardness of water.
- 7. Determination of Total Solids and Suspended solids.
- 8. Determination of Biochemical Oxygen Demand.
- 9. Determination of Chemical Oxygen Demand.
- 10. Determination of Ammonia Nitrogen.

Demonstration of Bacteriological analysis of water.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	15	0	30	15	60

TEXT BOOKS

- 1. Gurucharan Singh," Water supply and Sanitary Engineering", Standard Publishers Distributors, 2009
- 2. Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi 2007
- 3. S.K. Garg, Wastewater Engineering, Khanna Publishers, New Delhi, 2007
- 4. CPHEEO Manual on Water Supply And Treatment, 1999
- 5. CPHEEO Manual on Sewerage And Sewage Treatment, 1993

REFERENCES

- 1. Karia G L & Christian R A, "Wastewater Treatment", Prentice Hall of India, New Delhi, 2013.
- 2. Rangwala, "Water Supply and Sanitary Engineering PB,24/e, Charotar Publishing house Pvt. Ltd.-Anand, 2011.
- 3. B.C. Punmia, Wastewater Engineering, Volume II, Laxmi Publication 2008.
- 4. LinvilG.Rich, Unit operations of Sanitary Engineering, Tata Mcgraw Hill, New Delhi, 2007.
- 5. Standard methods for the Examination of Water and wastewater, 17thEdition, WPCF, APHA and AWWA,USA,1989.

COURSE CODE		XP	G302	L	T	P	SS	C	
COUR	SE NAME	FUNDAMEN	TAL PHYSICS	3	1	0	0	4	
C:P:A		3:0:0		L	T	P	SS	Н	
				3	1	0	0	4	
COUR	SE OUTCO	MES		DOM	AIN		LEVEL		
CO1 Recall and Explain the basic principle simple harmonic motion and circular motion.					itive	U	Remember , Understand, Analyze		
CO2	CO2 <i>Understand</i> the properties of sound, reverberation time and methods of production of ultrasonic waves.						Remember, Analyze		
CO3	modulus, v		ing's modulus,rigidity surface tension and	Cogniti	ve	U	Analyze , Understand, Application		
CO4						R	Remember , Analyze, Application		
CO5	bad conductor and solar constant. Acquire knowledge on interference, diffraction; be able to determine wavelength of mercury source; understand LASER action and production; propagation of fibre optics.			Cogniti	ve		ndersta valuati		

UNIT I - Simple Harmonic Motion and Circular Motion

9+3

Time period - Amplitude - Phase - Spring mass system - Simple pendulum - Composition of two simple harmonic motions along a straight line and at right angles - Lissajous figures - Damping force - Damped harmonic oscillator - Uniform circular motion - Acceleration of a particle in a circle - Centripetal and centrifugal forces - Banking on curved tracks - Motion of a bicycle and a car around a circle.

UNIT II - Sound Uniform circular motion

9+3

Classification of sound - Characteristics of musical sound - Loudness - Weber Fechner law - Decibel - Absorption co-efficient - Reverberation - Reverberation time - Ultrasonic waves - Properties - Production : Magnetostriction and Piezo-electric method and uses.

UNIT III - Properties of Matter

9+3

Elasticity - Elastic constants - Bending of beams - Young's modulus by non-uniform bending - Torsion in a wire - Determination of rigidity modulus of torsional pendulum - Viscosity - Coefficient of viscosity by Poiseuelle's method - Stoke's law - Terminal velocity - Surface Tension - Molecular theory of surface tension - Excess pressure inside a drop and bubble - Surface tension by drop weight method.

UNIT IV - Thermal Physics

9+3

Kinetic theory of gases - Basic postulates - Ideal gas equation - Vanderwaal's equation of states - Laws of thermodynamics - Entropy - Change of entropy in reversible and irreversible processes - Lee's disc method for conductivity of bad conductor - Stefan's law of radiation - Solar Constant - temperature of the sun.

UNIT V - Optics 9+3

Interference in thin films - Air wedge - Diffraction - Theory of plane transmission grating (normal incidence only) - LASER - Population inversion - Pumping - Laser action - Nd-YAG laser - CO_2 laser - Fibre optics - Principle and propagation of light in optic fibres - Numerical aperture and acceptance angle.

TENENT TEN					
HOURS	45	15	0	0	60
	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL

TEXT

- 1. Allied Physics I A Sundaravelusamy Priya Publications, 2009.
- 2. I B.Sc. Ancillary Physics R. Murugesan, S. Chand & Co., 2010.

REFERENCES

- 1. Sound Saigal S. Chand & Co., Delhi.
- 2. Elements of properties of matter Brijlal and Subramanian, S. Chand Limited, 1974.
- 3. Heat and Thermodynamics by Brijlal and Subramanian, S. Chand Limited.
- 4. Optics Brijlal and Subramanian, S. Chand Limited.

COUF	RSE CODE	XCY303	L	T	P		SS	C
COUF	RSE NAME	INORGANIC CHEMISTRY II	3 1 0				0	4
C:P:A	<u>.</u>	3.2:0:0.8	L	T	P		SS	H
			3	1	0		0	4
COUF	RSE OUTCOME	ES	DOMAIN LEVE			EVEL		
CO1 Explain the various compounds of halogens and			Cogn	itive		Un	dersta	nding
CO2	Describe the p	properties structure of peracids.	Cognitive			Remember		
CO3	Recognize the	general characteristics and properties	Cognitive			Apply		
	of transition ele	ments.	Affec	ctive		Re	ceivin	ıg
CO4	Identify the ge	neral characteristics and properties of	Cogn	itive		Re	memb	er
	Lanthanides and Actinides.			ctive		Responding		
CO5	Apply and Identify the various properties and bonding			Cognitive		Apply		
	of organo metal	lic compounds.				Re	memb	er

UNIT I - HALOGENS, CARBON AND NOBLE GAS COMPOUNDS

10+3

Halogens -General trends in the properties of halogens – deviation of fluorine from other elements of the group. Preparation of fluorine – properties of fluorine – hydrogen fluoride – oxides of halogens – preparation properties and uses of hydrogen halides, oxy acids of halogens – freons. Interhalogen Compounds: XY, XY₃, XY₅ and XY₇ types and their structure. Pseudohalogens and pseudohalides definition with exmples.

Inorganic Carbon Compounds: Types of **c**arbides - Covalent, ionic and interstitial carbides with suitable examples - oxides of carbon - oxy acids of carbon - carbonates - fullerenes.

Noble gas compounds: preparation and properties of xenon fluorides and oxyfluoride and kryptonfluoride.

UNIT II - PERACIDS AND PERSALTS

6+3

preparation, properties and structure of permonosulphuric acid, perdisulphuric acid and potassium perdisulphate. Preparation and properties of permonocarbonic acid, perdicarbonic acid and perdicarbonates.

UNIT III - TRANSITION ELEMENTS - GROUP STUDY

9+3

Transition elements-position in the periodic table General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu. Chemistry of titanium dioxide, titanium tetrachloride, vanadium penta oxide-ammonium vanadate, ammonium molybdate, molybdenum blue, tungsten oxide, tungsten bronze, zirconium halide.

UNIT IV - LANTHANIDES AND ACTINIDES

10+3

Position of lanthanides actinides in the periodic table – Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction – actinide contraction.

Occurrence and general methods of extraction of lanthanides by reducing the trihalides, ion exchange and valence exchange methods. Isolation of thorium from monazite – Preparation properties and uses of oxides, oxy acids, hydrides and halides of cerium and lanthanum.

Organometallic compounds of lanthanoides – optical properties – magnetic properties of lanthanides - Applications of lanthanides and actinides.

UNIT V - ORGANO METALLIC COMPOUNDS

10+3

Definition and Classification with appropriate examples based on nature of metal-carbon bond (ionic, s, p and multicentre bonds). Structures of methyl lithium, Zeiss salt and ferrocene. EAN rule as applied to carbonyls. Preparation, structure, bonding and properties of mononuclear and

polynuclear carbonyls of 3d metals. p-acceptor behaviour of carbon monoxide. Synergic effects (VB approach)- (MO diagram of CO can be referred to for synergic effect to IR frequencies).

	LECTURE TUTORIAL		PRACTICAL	SELF STUDY	TOTAL		
HOURS	45	15	0	0	60		

TEXT BOOKS

- 1. "Inorganic Chemistry", P.L.Soni
- 2. "Inorganic Chemistry", Puri and Sharma
- 3. "Advanced Inorganic Chemistry", R.D.Madan

REFERENCES

- 1. "Basic Inorganic Chemistry", F.A. Cotton and Wilkinosn
- 2. "In-organic Chemistry", Shriver and Atkins
- 3. "Inorganic Chemistry", James E. Huheey
- 4. "Concise Inorganic Chemistry", J.D.Lee
- 5. "Fundamentals of Inorganic Chemistry", Gilreath

COU	RSE CODE	XCY304			L	T	P	SS	C	
COU	RSE NAME	ORGANIC CHEM	IISTRY	' II	3	1	0	0	4	
C:P:A		3.2:0:0.8			L	T	P	SS	H	
					3	1	0	0	4	
COU	COURSE OUTCOMES						LEV	LEVEL		
CO1 <i>Explain</i> the principle of atomic structure and and its substitution reaction.					Cogn	itive	Unde	Understanding		
CO2	Describe the phenol, ethers and aryl halides reacrtions with some naming reactions.					itive	Remember			
CO3	<i>Identify</i> the consalts.	npounds of amines and d	iazoniur	n	Cogn Affec		Apply Receiving			
CO4					Cogn	itive	Understanding Responding			
CO5	Describe the general properties of carbohydrates.				Cogn	itive	Remember			
UNIT	I - AROMATION	_		•	9+3	}				

Aromatic compounds: Aromatic hydrocarbons – aromaticity and Huckel's rule – Simple applications Aromatic substitution: Electrophilic substitution with suitable examples –

applications. Aromatic substitution: Electrophilic substitution with suitable examples – Mechanism of Halogenation, Nitration, Sulphonation and Friedel-Craft's reactions – nucleophilic and free radical substitution with suitable examples.

Directive influence of substituents: Orientation – Effect of substituents – activating and deactivating groups – Rules of disubstitution and trisubstitution in benzene – steric hinderance.

UNIT II - PHENOLS, ETHERS AND ARYL HALIDES

10+3

(Phenol case) Preparation: Cumene hydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. ReimerTiemann Reaction, Gattermann-Koch Reaction, Houben-Hoesch Condensation, Schotten – Baumann Reaction. Ethers (aromatic): Cleavage of ethers with HI.

Aryl Halides Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions. Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH₂/NH₃ (or NaNH₂/NH₃). Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides. preparation and uses of DDT.

UNIT III - AMINES AND DIAZONIUM SALTS

9+3

Amines (Aliphatic and Aromatic): (Upto 5 carbons) Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide reaction. Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO₂. Electrophilic substitution (case aniline): nitration, bromination, sulphonation. Diazonium salts: Preparation: from aromatic amines. Reactions: conversion to benzene, phenol, dyes. Derivatives of phthalic acid: preparation and properties of phthalic anhydride and phthalimide. Preparation of the following compounds and their uses – phenylacetic acid, mandelic acid, cinnamic acid, aspirin and methyl salicylate.

UNIT IV - AMINO ACIDS, PEPTIDES AND PROTEINS

9+3

Amino Acids, Peptides and Proteins: Preparation of Amino Acids: Strecker synthesis using Gabriel's phthalimide synthesis. Zwitterion, Isoelectric point and Electrophoresis. Reactions of Amino acids: ester of –COOH group, acetylation of –NH2 group, complexation with Cu²⁺ ions, ninhydrin test. Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins. Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C activating groups and Merrifield solid-phase synthesis.

UNIT V - CARBOHYDRATES

8+3

Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation. Oils and fats: definition – determination and application – saponification value – iodine value – Reichert-Meissel value – acid value.

	LECTURE TUTORIAL		PRACTICAL	SELF STUDY	TOTAL		
HOURS	45	15	0	0	60		

TEXT BOOKS

- 1. "Organic Chemistry", P.L.Soni
- 2. "Advanced Organic Chemistry", B.S.Bahl and Arun Bahl
- 3. "Organic Chemistry", R.T.Morrison and R.W.Boyd

REFERENCES

- 1. "Organic Chemistry Volume I", I.L.Finar
- 2. "Organic Chemistry Volume II", I.L.Finar
- 3. "Reaction Mechanism of Organic Compounds" Jerry March
- 4. "Organic Chemistry" J. Clayden
- 5. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry, Cengage Learning India Pvt. Ltd.: New Delhi (2009).
- 6. Mahan, B.H. University Chemistry, 3rd Ed. Narosa (1998).
- 7. Petrucci, R.H. General Chemistry, 5th Ed., Macmillan Publishing Co.: New York (1985).
- 8. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed.,
- 9.W. H. Freeman. Berg, J.M., Tymoczko, J.L.& Stryer, L. Biochemistry, W.H. Freeman, 2002.

COU	RSE CODE	XPG 305	L	T	P	SS	C
COUI	RSE NAME	FUNDAMENTAL PHYSICS PRACTICAL	0	0	4	0	2
C:P:A		0.4:1:0.6	L	T	P	SS	H
			0	0	4	0	4
COUI	RSE OUTCOM	ES	DOM	AIN	LEVEL		
CO1		ge of laboratory instruments and	Cognitive Understand			nd	
	<i>measure</i> the Young's modulus of Non – uniform Psychomotor				Mechanism		
pending							
CO2	Explain and de	emonstrate the behavior of rigidity	Psychon	notor	Set		
	modulus of a w	rire	Affectiv	ve .	Valuing		
CO3	Manipulate an	d <i>measure</i> the thickness of a thin wire	Cogniti	ve	App	oly	
	using Air wedg	ge	Psychon	notor	Me	chanis	m
CO4	Compare and	explain the Calibration of voltmeter	Affectiv	/e	Org	anizat	ion
				notor	Set		
CO5	5 Describe the Band gap of the semiconductor			Psychomotor			n
			Affective Organizat				
FUND	DAMENTAL PH	HYSICS PRACTICAL		3 hours	s for	each	

FUNDAMENTAL PHYSICS PRACTICAL

3 hours for each experiment

- 1. Non-uniform Bending Pin and Microscope Method.
- 2. Torsional pendulum Determination of rigidity modulus of a wire
- 3. Co-efficient of viscosity of Liquid using graduated burette.
- 4. Spectrometer Refractive index of solid prism (A, D and μ)
- 5. Post Office Box Determination of Band gap of a semi-conductor.
- 6. Air wedge determination of thickness of thin wire.
- 7. Potentiometer Calibration of voltmeter
- 8. LASER grating Determination of wavelength of LASER and size of the micro-particle.

	LECTURE	TUTORIAL PRACTICAL		SELF STUDY	TOTAL
HOURS	0	0 30		0	30

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- 3. A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- 5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCE BOOKS

- 1. Squires G. L., Practical Physics, 4th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COU	RSE CODE	X	UM306	L	T	P	SS	C	
COUF	RSE NAME	DISASTER	MANAGEMENT	3	0	0	0	3	
C:P:A		3:0:0		L	T	P	SS	H	
				3	0	0	0	3	
COURSE OUTCOMES					AIN	LEVEL			
CO1					ve	Apply			
of disaster preparedness									
CO2	<i>Infer</i> the end of	conditions & Disc	cuss the failures due	Cogniti	ve	Analyse			
	to disaster.								
CO3	understanding	of importance	of seismic waves	Cogniti	ve	Ana	lyse		
	occurring globa	ılly							
CO4	Estimate Disaster and mitigation problems.			Cogniti	Apply				
CO5	Keen knowledg	Cogniti	ive	App	ly	•			
IINIT	INIT I - INTRODUCTION						Q		

Introduction – Disaster preparedness – Goals and objectives of ISDR Programme- Risk identification – Risk sharing – Disaster and development: Development plans and disaster management–Alternative to dominant approach – disaster – development linkages - Principle of risk partnership.

UNIT II - APPLICATION OF TECHNOLOGY IN DISASTER RISK REDUCTION

9

Application of various technologies: Data bases – RDBMS – Management Information systems – Decision support system and other systems – Geographic information systems – Intranets and extranets – video teleconferencing. Trigger mechanism – Remote sensing-an insight – contribution of remote sensing and GIS - Case study.

UNIT III - AWARENESS OF RISK REDUCTION

9

Trigger mechanism – constitution of trigger mechanism – risk reduction by education – disaster information network – risk reduction by public awareness.

UNIT IV - DEVELOPMENT PLANNING ON DISASTER

9

Implication of development planning – Financial arrangements – Areas of improvement – Disaster preparedness – Community based disaster management – Emergency response.

UNIT V - SEISMICITY

9

 $Seismic\ waves-Earthquakes\ and\ faults-measures\ of\ an\ earthquake,\ magnitude\ and\ intensity-ground\ damage-Tsunamis\ and\ earthquakes.$

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	0	0	0	45

TEXT BOOKS

1. Siddhartha Gautam and K Leelakrisha Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012

Arun Kumar, "Global Disaster Management", SBS Publishers, 2008

REFERENCES

1. Encyclopaedia Of Disaster Management, Neha Publishers & Distributors, 2008

- 2. Pardeep Sahni, Madhavi malalgoda and ariyabandu, "Disaster risk reduction in south asia", PHI, 2002
- 3. Amita sinvhal, "Understanding earthquake disasters" TMH, 2010.
- 4. Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000

COU	RSE CODE	XCY307	L	T	P	SS	C	
COU	RSE NAME	SEMI MICRO INORGANIC	0	0	4	0	2	
		QUALITATIVE ANALYSIS –						
	PRACTICAL-III							
C:P:A	_	1.0: 0.8:0.2	L	T	P	SS	Н	
			0	0	4	0	4	
COU	COURSE OUTCOMES			IAIN	LEVEL			
CO1	Ability to <i>Identify</i> the ions in a given Inorganic mixture				Remember			
		Psych	omot	Perc	eption			
			or					
CO2	Analyse the inc	lividual cations and anions present in a	Cogn	itive	Understand			
	given mixture	and <i>explain</i> the characteristic properties	Psych	omot	Analyse			
	of cations.		or		Perc	eption		
			Affec	tive	Receive			
CO3	Use the princip	le behind the analysis of ions.	Cogn	itive	App	ly		
SEMI	MICRO INOR	GANIC QUALITATIVE ANALYSIS	•	3 hou	ırs for	each		
PRAC	PRACTICAL-III experiment							

Semi-micro qualitative analysis using H_2S of mixtures - not more than four ionic species (two anions and two cations and excluding insoluble salts) out of the following:

 $Cations: NH_{4} \ ^{+} \ , \ Pb^{2+,} \ Ag^{+} \ , \ Bi^{3+,} \ Cu^{2+,} \ Cd^{2+,} \ Sn^{2+,} \ Fe^{3+} \ , \ Al^{3+} \ , \ Co^{2+} \ , \ Cr^{3+} \ , \ Ni^{2+} \ , \ Mn^{2+,} \ Zn^{2+} \ , \ Ba^{2+} \ , \ Sr^{2+,} \ Ca^{2+,} \ K^{+}$

Anions : CO_3^{2-} , S^{2-} , SO_3^{2-} , $S_2O_3^{2-}$, NO_3^- , CH_3COO^- , Cl^- , B^{r-} , l^- , NO_3^- , SO_4^{2-} , PO_4^{3-} , BO_3^{3-} , $C2O4^{2-}$, F^- (Spot tests should be carried out wherever feasible)

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	0	0	30	0	30

TEXT BOOKS

- **1.** Venkateswaran V. Veerasamy R. Kulandaivelu A.R., Basic principles of Practical Chemistry, 2nd edition, New Delhi, Sultan Chand & sons (1997)
- **2.** Frank J. Welcher and Richard B. Hahn, Semi micro Qualitative Analysis, New Delhi, Affiliated East-west Press Pvt. Ltd. (1969).

			SEMES	STER	IV							
COUI	RSE CODE		XCY401			L	T	P	SS	C		
COUI	RSE NAME	PHARMACE	UTICAL (CHEM	IISTRY	1	0	2	1	2		
C:P:A	C:P:A 0.6:0.8:0.6				L	T	P	SS	H			
								2	1	4		
COUI	COURSE OUTCOMES						IAIN	LE	LEVEL			
CO1 Explain the basic concepts and aims of pharmaceutical					Cogn	itive	Un	Understanding				
	chemistry											
CO2	<i>Identify</i> the ro	ole of drugs and its	s preparation	n.		Cogn	itive	Ap	Apply Receiving			
						Affec	tive	Re	Responding			
CO3	Describe the a	antibiotics role pha	armaceutica	ls in o	ur life.	Cogn	itive					
CO4	Recognise	fermentation	Aerobic	and	anaerobic	Cogn	itive	Un	derstan	ding		
fermentation in daily process.						Affec	tive					
CO5						Cogn	itive	Re	Remember			
								Un	derstan	ding		

UNIT I - BASIC CONCEPTS OF PHARMACEUTICAL CHEMISTRY

6

Basic concepts and aims of pharmaceutical chemistry- Terms and Definitions -drug, pharmacophore, pharmacology, pharmacopoeia, chemotherapy — Biological activities and examples -bacteria, virus, and vaccine

UNIT II - DRUGS 6

Classification of drugs, Drug discovery, design and development; Basic Retrosynthetic approach. Synthesis of the representative drugs of the following classes: analgesics agents, antipyretic agents, antiinflammatory agents (Aspirin, paracetamol, lbuprofen

Practical

- 1. Preparation of Aspirin and its analysis.
- 2. Preparation of magnesium bisilicate (Antacid).
- 3. Preparation of Acetanilide

UNIT III - PHARMACEUTICALS

6

Antibiotics (Chloramphenicol); antibacterial and antifungal agents (Sulphonamides; Sulphanethoxazol, Sulphacetamide, Trimethoprim); antiviral agents (Acyclovir), Central Nervous System agents (Phenobarbital, Diazepam), Cardiovascular (Glyceryl trinitrate), antilaprosy (Dapsone), HIV-AIDS related drugs (AZT- Zidovudine). **Practical:** Preparation of nitro benzene.

UNIT IV - FERMENTATION

6

Aerobic and anaerobic fermentation. Production of (i) Ethyl alcohol and citric acid, (ii) Antibiotics; Penicillin, Cephalosporin, Chloromycetin and Streptomycin, (iii) Lysine, Glutamic acid, Vitamin B2, Vitamin B12 and Vitamin C.

Practical: Separation of Amino Acids **Fermentation**

Aerobic and anaerobic fermentation. Production of (i) Ethyl alcohol and citric acid, (ii) Antibiotics; Penicillin, Cephalosporin, Chloromycetin and Streptomycin, (iii) Lysine, Glutamic acid, Vitamin B2, Vitamin B12 and Vitamin C.

Practical: Separation of Amino Acids

UNIT V - MEDICINAL PLANTS

6

Medicinal plants origin, function and uses-Tulasi, Neem, Kizhanelli, Alovera, Semparuthi, Nilavembu, Adadodai and Thoothyelai.

Anticancer plants: harmine- taxol-colchicines.

Practical: separation of plant pigments

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	15	0	30	15	60

TEXT BOOKS

- 1. G.L. Patrick: Introduction to Medicinal Chemistry, Oxford University Press, UK.
- 2. Hakishan, V.K. Kapoor: Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan, Pitampura, New Delhi.

REFERENCES

1. William O. Foye, Thomas L., Lemke, David A. William: Principles of Medicinal Chemistry, B.I. Waverly Pvt. Ltd. New Delhi.

COURSE CODE	XCY402	L	T	P	SS	C	
COURSE NAME	MODERN PHYSICS	3	1	0	0	4	
C:P:A	2.8:0.4:0.8	L	T	P	SS	H	
PREREQUISITE:	Basic Physics at School level	3	1	0	0	4	
COLIDGE OLITICOL	MEG						

COURSE OUTCOMES				
On the s	uccessful completion of the course, students will be able to	DOMAIN	LEVEL	
CO1	Define, explain Atom models and demonstrate Franck and Hertz method; discuss the phenomenon of Excitation and ionization potentials.	Cognitive Psychomo tor	Remember Understand Mechanism	
CO2	Acquire solid knowledge of crystal <i>Analyze</i> number of atoms, atomic radius coordination number in crystal structure and determine d spacing in cubic lattice <i>using</i> Miller indices.	Cognitive	Analyze Apply	
CO3	<i>Understand</i> elementary particle, <i>explain</i> radioactive decay and fission, fusion.	Cognitive Affective	Understand Receive	
CO4	<i>Identify</i> the basics of electric field, magnetic field, <i>explain</i> Ampere's circuital law and Faraday's law.	Cognitive	Remember	
CO5	<i>Understand</i> the fundamental phenomena in electronics and <i>describe</i> the working principle and application of IC's.	Cognitive Affective	Understand Receive	

UNIT - I ATOMIC PHYSICS

7+3

Atom models - Sommerfield and Vector atom models - Electron, spin quantum numbers - Pauli's exclusion principle - Excitation and ionization potentials - Experimental determination - Franck and Hertz method.

UNIT -II CRYSTAL PHYSICS

8 + 3

Lattice - Unit cell - Bravais lattice - Lattice planes - Miller indices - 'd' spacing in a cubic lattice - Calculation of number of atoms per unit cell - Atomic radius - Coordination number - Packing factor for SC, BCC, FCC and HCP structures.

UNIT -III NUCLEAR PHYSICS

10 + 3

Nucleus - Nuclear size - Charge - Nuclear energy - Mass defect - Binding energy - Radioactivity - Alpha, Beta, Gamma radiation - Law of radioactive decay - Decay constant - Half life - Mean life - Fission and Fusion - Elementary particles and their classifications.

UNIT -IV ELECTRICITY AND MAGNETISM

10 + 3

Kirchoff's laws - Wheatstone network - Condition for bridge balance - potentiometer - internal resistance of a cell and thermo emf measurement - Magnetic field due to a current carrying conductor - Biot Savart's law - field along the axis of a coil - Force on a current carrying conductor in a magnetic field - Ampere's circuital law - Faraday's law - Maxwell equations in free space.

UNIT- IV ELECTRONICS

10+3

Basic electronics - Junction diode - Voltage regulation - Zener diode - Junction transistor (PNP) - Digital electronics - AND, OR, NOT gates - NAND and NOR universal gates - Boolean algebra - De Morgan's theorem - verification - Elementary ideas of IC's.

TEXT BOOKS

- 1. Allied Physics I A Sundaravelusamy, Priya Publications, 2009.
- 2. I B.Sc. Ancillary Physics R Murugesan, S. Chand & Co., 2010.

REFERENCE BOOKS

- 1. Introduction to Solid State Physics C Kittel 8th edition, Wiley Eastern Ltd., 2005.
- 2. Electricity and Magnetism Narayanamoorthy and Nagarathinam
- 3. Modern Physics by R Murugesan, S. Chand & Co., 2004
- 4. Digital principles and their applications Malvino and Leach, Tata Mc Graw Hill, 2010.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

COU	RSE CODE	XC	Y403	L	T	P	SS	C
COUF	RSE NAME	PHYSICAL O	CHEMISTRY II	3	1	0	0	4
C:P:A		3.6:0:0.4		L	T	P	SS	H
				3	1	0	0	4
COURSE OUTCOMES				DOM	AIN	LEVEL		
CO1	Explain the pr	inciple thermodyn	amics and its laws	Cogni	tive	Und	erstand	ding
	applications.							
CO2	CO2 Apply the rate and its half life for the chemical			Cognitive		Apply		
	reactions			Affective		Receiving		
CO3	Describe the	various concepts an	d laws of solutions.	Cognitive		Understanding		ding
CO4	<i>Identify</i> the	various componen	t system and its	Cogni	tive	unde	erstand	ing
	equilibrium.			Affec	tive			
CO5	Describe the ba	asic concepts in ele	ectro chemistry and	Cogni	tive	Apply		
	application of conductance and for finding the emf of					Remember		•
	the cell							
UNIT	I - THERMOD	YNAMICS						

Chemical Energetics -Review of thermodynamics and the Laws of Thermodynamics. Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature – Kirchhoff's equation. Statement of Third Law of thermodynamics and calculation of absolute entropies of substances.

UNIT II - CHEMICAL KINETICS

Rate of reactions – rate constant – order and molecularity of reactions – first order and pseudo

unimolecular reactions (definition and examples) – derivation of rate constant for the inversion of cane sugar. Second order reactions – definition – examples – derivation of rate constant (same concentration and different concentration) and half life period – application to saponification of ester.

Third order reactions: definition and examples. Methods of determination of order of reactions. Zero order reactions – definition and examples – derivation of rate constant. Theory of reaction rates – collision theory of bimolecular reactions – unimolecular reactions – Lindemann's hypothesis – theory of absolute reaction rates.

UNIT III - SOLUTIONS

8 + 3

Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions. Vapour pressure-composition and temperature, composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes. Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications, solvent extraction.

UNIT IV - IONIC EQUILIBRIUM AND PHASE EQUILIBRIUM

9+3

Ionic Equilibria: Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, Solubility and Solubility product-common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions.

Phase Equilibrium Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver only).

UNIT V - ELECTROCHEMISTRY AND CONDUCTANCE

9+3

Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential. Electrochemical series. Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG , ΔH and ΔS from EMF data. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. Potentiometric titrations

Conductance Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte. Conductometric titrations (only acid base).

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- 1. "Principles of Physical Chemistry", B.R.Puri and L.R.Sharma
- 2. "Principles of Physical Chemistry", B.R.Puri, L.R.Sharma and M.S.Pathania
- 3. "Physical Chemistry", N.Kundu and SN.Jain

REFERENCES

- 1. "Textbook of Physical Chemistry", S.Glasstone
- 2. "Physical Chemistry", G.M.Barrow
- 3. "Advanced Physical Chemistry", P.W. Atkins

- 4. "Chemical Kinetics", K.J.Laidler
- 5. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd
- 6. Barrow, G.M. Physical Chemistry Tata McGraw-Hill (2007).
- 7. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 8. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning India Pvt. Ltd., New Delhi (2009).
- 9. Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
- 10. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York (1985).
- 11. Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley.
- 12. Shriver, D.F. & Atkins, P.W. Inorganic Chemistry, Oxford University Press.
- 13. Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt. Ltd.

COUL	RSE CODE	XCY404		L	T	P	SS	C	
COU	RSE NAME	INORGANIC CHEMISTRY I	II	3	1	0	0	4	
C:P:A	1	3.6:0:0.4		L	T	P	SS	H	
				3	1	0	0	4	
COURSE OUTCOMES				DOM	AIN	LEVI	LEVEL		
CO1	101 Identify the stability of complexes and its			Cognit	ive	Under	rstandi	ing	
	isomerism.					_			
CO2	CO2 Describe the various bonding and theroies of			Cognit	ive	Understanding			
	metal and lig	gands.		Affect	ive	Receiving			
CO3	Apply the co	oncept of stability in metal carbonyl	S	Cognit	ive	Apply			
	and understa	and the principle of complexometric	;	Affect	ive	Receiving			
	titrations.								
CO4	<i>Identify</i> the	e role of alkali, alkaline earth a	nd	Cognit		Under	Understanding		
	transition me	etals in bio inorganic chemistry.		Affective					
CO5		ne properties and applications	of	Cognitive Apply					
	silicones and				Reme	mber			
LINIT	I - CO-ORI			·	·	9+3			

UNIT I - CO-ORDINATION CHEMISTRY

9+3

Ligands, classification of ligands, IUPAC nomenclature of coordination compounds, Coordination number, Sidgwick's electronic interpretation of coordination compounds and the concept of effective atomic number (EAN).

Isomerism – geometric isomerism in coordination number 4 and 6 compounds, optical isomerism and conditions for optical isomerism, optical isomerism in coordination number 4 and 6 compounds.

Stability of complexes – definition of labile and inert complexes – factors affecting stability of complexes. Postulates- sp³, dsp² & sp³d² hybridisation with example and limitation.

UNIT II - THEORIES OF METAL – LIGAND BONDING IN COMPLEXES

10+3

Werner's coordination theory, limitations of Werner's theory.

Valence bond theory (VBT) – formation of inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). – application of VBT to octahedral complexes, square planar and tetrahedral complexes, limitations of VBT.

crystal field theory (CFT) – crystal field splitting in tetrahedral, square planar and octahedral complexes, strong and weak ligands, spectrochemical series – high – spin and

low – spin complexes, magnetic properties of octahedral and tetrahedral complexes, crystal field stabilization energy (CFSE) and its uses Comparison of CFSE for Oh and Td complexes, limitations of CFT - comparison of VBT and CFT. Ligand field theory – application of LFT to octahedral and tetrahedral complexes – metal ligand π – bonding. Tetragonal distortion of octahedral geometry. Jahn-Teller distortion, Square planar coordination.

UNIT III - METAL CARBONYLS, COMPLEXOMETRIC TITRATIONS AND CLUSTER COMPOUNDS

8+3

Metal carbonyls – classification with suitable examples – metal carbonyls and EAN rule – stability of metal carbonyls – applications.

Chelates – application of chelates.

Applications of co- ordination compounds in qualitative and quantitative analysis:

Separation of silver and mercury ions, copper and cadmium ions, identification of aluminium, chromium, nickel, zinc, manganese and potassium, Complexometric titrations – principle and applications – quantitative estimation of nickel using DMG, aluminium using oxine – structure of EDTA complexes.

Cluster compounds: Boranes – carbaboranes – carbonyl clusters.

UNIT IV - BIO – INORGANIC CHEMISTRY

9+3

Essentiality (significance) of metal and metal ions in biological systems. Role of alkaline and alkaline earth metal ions in biological systems. Na/K pump.

Role of iron in biological systems – structure of haemoglobin (structural elucidation not required) – oxygen transportation by haemoglobin (elementary study) Structure of chlorophyll – photosynthesis. Role of zinc in biological systems. Role of Ca²⁺ in blood clotting, stabilization of protein structures and structural role (bones). Hydrogenase- Metal poisoning – cadmium and mercury poisoning.

UNIT V - SILICONES (POLYSILOXANES) AND SILICATES

9+3

Types of silicones – structure of silicones – versatile properties of silicones.

Preparation and properties of dimethyl, methylphenyl and diphenyl siliconesanes.

Applications of silicones – desired properties – sealants and adhesives – rubber – paints and coatings – health care – Automotive – aerospace – household – defoaming drycleaning electronics lubricants personalcare – construction.

Zeolites – types of zeolites - uses like ion- exchangers water softeners, molecular sieves dehydrating agents, adsorbents and catalysts.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- 1. "Inorganic Chemistry", P.L.Soni
- 2. "Advanced Inorganic Chemistry", R.D.Madan
- 3. "Inorganic Chemistry", Puri and Sharma

REFERENCES

- 1. "Basic Inorganic Chemistry", F.A. Cotton and Wilkinosn
- 2. "A Textbook of quantitative Inorganic Analysis", Arthur.I.Vogel
- 3. "Inorganic Chemistry", James E.Huheey
- 4. "Concise Inorganic Chemistry", J.D.Lee
- 5. "Fundamentals of Inorganic Chemistry", Gilreath
- 6. "Engineering Chemistry", B.C.Jain and Monica Jain
- 7. "In-organic Chemistry", Shriver and Atkins

COU	RSE CODE	XPH405	L	T	P	SS	C
COU	RSE NAME	MODERN PHYSICS	0	0	4	0	2
		PRACTICAL					
C:P:A		0.4:1:0.6	L	T	P	SS	H
			0	0	4	0	4
COU	COURSE OUTCOMES			N	LE	VEL	
CO1 Recall the usage of laboratory instruments and			Cognitiv	e	Uno	derstand	d
<i>measure</i> the young's modules of uniform bending.			Psychon	Mechanism			
CO2	CO2 Explain and demonstrate the thermal conductivity of			otor	Set		
	bad conductor.		Affective		Valuing		
CO3	Manipulate an	nd <i>measure</i> resistance and specific	Cognitive		Apply		
	resistance of a v	vire.	Psychon	otor	Me	chanisn	n
CO4	Compare and ex	xplain the calibration of ammeter.	Affective	e	Org	anizati	on
			Psychon	otor	Set		
CO5	Describe the c	characteristics of the semi conductor			Per	ception	
	diode.		Affective Organization			anizati	on
MOD	ERN PHYSICS	PRACTICAL			3 hours each		
					exp	erimer	nt

- 1. Uniform Bending Pin and Microscope Method.
- 2. Lee's Disc Thermal Conductivity of Bad Conductor.
- 3. Spectrometer Grating- Normal incidence method.
- 4. Spectrometer id curve.
- 5. AND, OR and NOT logic gates verification of truth table.
- 6. Potentiometer Calibration of ammeter.
- 7. Semiconductor Diode Forward and Reverse bias characteristics.
- 8. Metre Bridge Determination of resistance and specific resistance of a wire.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOUR	0	0	30	0	30
S					

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- 3. A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- 5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCE BOOKS

- 1. Squires G. L., Practical Physics, 4th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COU	RSE CODE	XCY406	L	T	P	SS	C	
COUI	RSE NAME	INORGANIC QUANTITATIVE	0	0	4	0	2	
		ANALYSIS PRACTICAL IV						
C:P:A	_	1.0: 0.8:0.2	L	T	P	SS	H	
			0	0	4	0	4	
COURSE OUTCOMES			DOMAIN LEVEL					
CO1	O1 Ability to <i>Identify</i> the various inorganic complexes			Cognitive		Remember		
				Psychomotor				
CO2	Analyse the qu	antity of individual metal present in a	Cognitive		Understand			
	given mixture a	nd <i>explain</i> the characteristic properties	Psychomotor		Analyse			
	of the complexe	es.	Affective		Per	ception		
	_				Rec	eive		
CO3	<i>Use</i> the principl	e behind the gravimetric analysis.	Cognitiv	e	App	oly		
Inorga	anic Quantitativ	ve Analysis Practical IV	•		2 hours each			

- 1. Estimation of Lead as lead chromate.
- 2. Estimation of Barium as barium chromate.
- 3. Estimation of Nickel as Nickel DMG complex.
- 4. Estimation of Copper as copper (I) thiocyanate
- 5. Estimation of Magnesium as magnesium oxinate
- 6. Estimation Calcium as calcium oxalate monohydrate
- 7. Estimation of Barium as barium sulphate.
- 8. Estimation of Iron as Iron (III) oxide.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOUR	0	0	30	0	30
S					

TEXT BOOKS

Venkateswaran V. Veerasamy R. Kulandaivelu A.R., Basic principles of Practical Chemistry, 2nd edition, New Delhi, Sultan Chand & sons (1997).

		SEMESTER V					
COURS	SE CODE	XCY501	L	T	P	SS	C
COURS	SE NAME	CLINICAL CHEMISTRY	1	0	2	1	2
C:P:A			L	T	P	SS	H
			1	0	2	1 4	
COURS	SE OUTCOMI	ESS	DOM	IAIN		LEVI	EL
CO1	CO1 Identify the mechanism of different types of metabolism. Cognitive Rem					Reme	mber
CO2	CO2 Explain the important concepts of various techniques used in clinical chemistry.					Understand	
CO3	Analyse the vand nutrition v	various molecular entities known as vitamins values.	Cognitive Analyze				rze
CO4	_	methods of testing of various organs of body ostic roles of related enzymes.	Cognitive Understand				rstand
CO5	Illustrate the and cholestere	various methods for cardiac profile, glucose ol estimation.	Cognitive Analyze				ze
UNIT I	- METABOL	ISM				3-	+3

Distribution of fluids in the body, ECF & ICF, water metabolism, de hydration, mineral metabolism, macronutrients (principal mineral elements) & trace elements. Carbohydrate metabolism, Protein metabolism, Lipid metabolism, Bile pigment metabolism.

UNIT II - TECHNIQUES USED IN CLINICAL CHEMISTRY

3+3

Photometry- Definition, laws of photometry, absorbance, transmittance, absorption maxima, instruments, parts of photometer, types of photometry-colorimetry, spectrophotometry, flame photometry, choice of appropriate filter, measurements of solution, calculation of formula, applications.

UNIT III - VITAMINS AND NUTRITION

2+3

Classification of vitamins, Chemistry, properties, biological importance and deficiency manifestations of fat soluble vitamins. Chemistry, properties, biological importance, deficiency manifestations and coenzyme functions of water soluble vitamins.

UNIT IV - ORGAN FUNCTION TESTS AND DIAGNOSTIC ENZYMES

5+3

Organ function tests: Evaluation of organ function tests: Assessment and clinical manifestations of renal, pancreatic, gastric and intestinal functions. Clinical importance of bilirubin.

Enzyme tests in determination of myocardial infarction. Enzymes of pancreatic origin and biliary tract.

UNIT V - APPLICATIONS OF CLINICAL CHEMISTRY

2+3

Cardiac Profile - In brief Hypertension, Angina, Myocardial Infarction, Pattern of Cardiac Enzymes in heart diseases, Different methods of Glucose Estimation and Cholesterol Estimation, Principle advantage and disadvantage of different methods.

PRACTICALS 30 hrs

- 1. Estimation of glucose using Fehling's solution
- 2. Estimation of cholesterol using ferric chloride
- 3. Estimation of ferric ion by colorimetric method
- 4. Iodometric determination of vitamin C
- 5. Estimation of carbohydrate in mixture by qualitative method.

	LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL
HOURS	15	0	15	30	60

TEXT BOOKS

- 1. Lehninger Principles of Biochemistry 4th Ed By David L. Nelson and Michael M. Cox, WH Freeman and Company.
- 2. Principles of Biochemistry (Hardcover) By Geoffrey Zubay. Publisher: McGraw Hill College.
- 3. Harper's Biochemistry (Lange Medical Books) (Paperback) By Robert K. Murray, Daryl
- 4. K. Granner, Peter A. Mayes and Victor W. Rodwell. Publisher: Appelton and Lange.
- 5. Bioenergetics By David G. Nicholls and Stuart J. Ferguson. Academic Press.
- **6.** Bioenergetics at a Glance: An Illustrated Introduction (At a Glance) By D.A. Harris. Publisher: Wiley Blackwell

REFERENCES

- 1. Biochemistry By Lubert Stryer. WH Freeman and Co.
- 2. Principles of Biochemistry By Robert Horton, Laurence A Moran, Gray Scrimgeour, Marc Perry and David Rawn. Pearson Education.
- 3. Harper's Biochemistry By RK Murray, DK Granner, PA Mayes and VW Rodwell. Appelton and Lange, Stanford.

COURS	E CODE	Ŋ	KCY502A		L	T	P	SS	C
COURS	E NAME	PHYTO	CHEMIS'	ΓRY	3	1	0	0	4
C:P:A					L	T	P	SS	Н
					3	1	0	0	4
COURS	COURSE OUTCOMES				DOM	AIN	LEVEL		
					Cogni	tive	Remember		
					Cogni	tive	Understand		d
e	•	arious molecula various spectral		-	Cogni	tive	Ana	lyze	
	nterpret the more comber bals.	ode of action of	various drug	gs extracted	Cognitive Understand			d	
		ructure- functio ttempt to cure c			Cogni	Cognitive Analyze			

UNIT I - NATURAL PRODUCTS

9+3

Natural products – importance-phytochemicals- classification- diversity of structures-preliminary phytochemical screening- bioassay- in vitro and in vivo studies- antimicrobial activity- pharmacological studies like anti-inflammatory, anti-diabetic, analgesic and hepato protective.

UNIT II - PHYTOCHEMICAL ISOLATION TECHNIQUES

9+3

Phytochemical isolation techniques- solvent extraction- qualitative chemical examination-detection of phyto constituents- use of chromatographic techniques- TLC, HPLC and GC-detection of volatile oils by hydrodistillation methods.

UNIT III - PHYTOCHEMICAL IMPORTANCE OF DRUGS

7+3

Sources, chemical structures (structure only), chemical test for identification, phytochemical and pharmacological importance - nicotine, caffeine, theophilline, theobromine and cocaine-Flavonoids -quercetin and kaempferol.

UNIT IV - TERPINOIDS ,STEROIDS AND ANTI-CANCER PLANTS

11+3

Sources, chemical structures (structure only), chemical test for identification, - Terpinoids menthol, camphor, citral, limonene - carotenoids lycopene and beta carotene - Steroids stigmosterol and cholesterol - anti-cancer plants - cytostatics- harmine, taxol and colchicines.

UNIT V - SPECTROSCOPIC TECHNIQUES

9+3

Structural elucidation of the compounds by spectroscopic techniques like UV, IR, MS, NMR (¹H, ¹³C) for simple organic compounds.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- 1. Kalsi, P.S., Spectroscopy of organic compounds, New age publishers, New Delhi, 2000.
- 2. Lindsey, K., Transgenic Plant Research, Harwood Acad. Pub. 1997.
- 3. D. L. Pavia, G. M. Lampmann, G. S. Kriz, Introduction to Spectroscopy, Thomson, 3rd edition, 2001.
- 4. Silverstein and Webster, Spectrometric Identification of Organic Compounds, Sixth Edition, Wiley, 1998.

REFERENCES

- 1. W C Evans, Pharmacognosy, 15th edition, 2002.
- 2. Gunnar Samuelsson ,A Textbook of Pharmacognosy, English edition, Swedish Pharmaceutical Press, Stockholm,1992.
- 3. Gupta, P.K., Cytogenetics, Rastogi and Company, Meerut. 1995.
- 4. Swanson, C.P., Cytology and Cytogenetics. Macm illan India Ltd. New Delhi, 1972.
- 5. Gupta, P.K. Elements of Biotechnology, Rastogi, Meerut, 1972.

E RESOURCES

- 1. http://freevideolectures.com/Course/3218/Advance-Analytical-Course
- 2. http://freevideolectures.com/Course/2908/Green-Chemistry-An-Interdisciplinary-Approach-to-Sustainability.

COUI	RSE CODE	y	KCY502B		L	T	P	SS	C
COUI	RSE NAME	FOREN	NSIC SCIE	ENCE	3	1	0	0	4
C:P:A	1				L	T	P	SS	H
					3	1	0	0	4
COUI	RSE OUTCOMI	ES			DOM	IAIN LEVEL			
CO1 <i>Identify</i> the methods of analyzing trace amounts of			Cogni	tive	Ren	nember			
	petroleum prod	acts in crime sce	ene evidenc	ee.					
CO2 Explain the method of searching, collecting, preserving and analyzing arson evidence				Cognitive Understand			d		
CO3 Analyse the various types of explosives, including the synthesis and characterization of representative analogs and the techniques of locating hidden explosives.				ative	Cogni	tive	Ana	alyze	
CO4 Interpret the importance of chromatographic and spectroscopic techniques in processing crime scene evidence.			Cogni	tive	Uno	derstand	d		
CO5					Cogni	tive	Ana	alyze	

UNIT I - PETROLEUM AND PETROLEUM PRODUCTS

9+3

Distillation and fractionation of petroleum. Commercial uses of different petroleum fractions. Analysis of petroleum products. Analysis of traces of petroleum products in forensic exhibits. Comparison of petroleum products. Adulteration of petroleum products.

UNIT II - CASES INVOLVING ARSON

9+3

Chemistry of fire. Conditions for fire. Fire scene patterns. Location of point of ignition. Recognition of type of fire. Searching the fire scene. Collection and preservation of arson evidence. Analysis of fire debris. Analysis of ignitable liquid residue. Post-flashover burning. Scientific investigation and evaluation of clue materials. Information from smoke staining.

UNIT III - EXPLOSIVES

7+3

Classification of explosives —low explosives and high explosives. Homemade explosives. Military explosives. Blasting agents. Synthesis and characteristics of TNT, PETN and RDX. Explosion process. Blast waves. Bomb scene management. Searching the scene of explosion. Mechanism of explosion. Post blast residue collection and analysis. Blast injuries. Detection of hidden explosives.

UNIT IV - INSTRUMENTATION

15+3

Sample preparation for chromatographic and spectroscopic evidence. Chromatographic methods. Fundamental principles and forensic applications of thin layer chromatography, gas chromatography and liquid chromatography. Spectroscopic methods. Fundamental principles and forensic applications of Ultraviolet-visible spectroscopy, infrared spectroscopy, atomic absorption spectroscopy, atomic emission spectroscopy and mass spectroscopy. X-ray spectrometry. Colorimetric analysis and Lambert-Beer law. Electrophoresis –fundamental principles and forensic applications. Neutron activation analysis – fundamental principles and forensic applications.

UNIT V - MICROSCOPY

5+3

Fundamental principles. Different types of microscopes. Electron microscope. Comparison Microscope. Forensic applications of microscopy.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	0	15	0	60

TEXT BOOKS

- 1. D.A. Skoog, D.M. West and F.J. Holler, Fundamentals of Analytical Chemistry, 6th Edition, Saunders College Publishing, Fort Worth (1992).
- 2. W. Kemp, Organic Spectroscopy, 3rd Edition, Macmillan, Hampshire (1991).
- 3. J.D. DeHaan, Kirk's Fire Investigation, 3rd Edition, Prentice Hall, New Jersey (1991).
- 4. W.J. Tilstone, M.L. Hastrup and C. Hald, Fisher's, Techniques of Crime Scene Investigation, CRC Press, Boca Raton (2013).
- 5. S. Ballou, M. Houck, J.A. Siegel, C.A. Crouse, J.J. Lentini and S. Palenik in Forensic Science, D.H. Ubelaker (Ed.), Wiley-Blackwell, Chichester (2013)

REFERENCES

- 1. J.W. Robinson, Undergraduate Instrumental Analysis, 5th Edition, Marcel Dekker, Inc., New York (1995)
- 2. A.A. Moenssens, J. Starrs, C.E. Henderson and F.E. Inbau, Scientific Evidence in Civil and Criminal Cases, 4th Edition, The Foundation Press, Inc., New York (1995).
- 3. R. Saferstein, Criminalistics, 8th Edition, Prentice Hall, New Jersey (2004).

E RESOURCES

- 1. https://www.mooc-list.com/course/introduction-forensic-science-futurelearn
- 2. https://www.mooc-list.com/course/forensic-engineering-learning-failures-edx

COUF	RSE CODE	XCY503A	L T		P	SS	C
COUF	RSE NAME	ANALYTICAL METHODS IN	3	1	0	0	4
		CHEMISTRY					
C:P:A	<u> </u>		L	T	P	SS	H
			3 1 0 0		4		
COUF	RSE OUTCOMI	ES	DOM	AIN	LEV	EL	
CO1	<i>Identify</i> the cor	ncepts of qualitative and quantitative	Cogni	itive	Rem	ember	
analysis and also to find out the errors, accuracy and			_				
	precision in dat	a analysis.					
CO2	Explain the p	principles and methods of analyzing	Cognitive		Understand		<u>1</u>
	chemical com	pounds with the help of various					
	spectroscopies.						
CO3	Analysa the yer	ious types of thermal methods of	Cogni	itive	Anal	yze	
	•	ng TGA, DTA, DSC etc.					
		lig TOA, DTA, DSC etc.					
CO4	<i>Interpret</i> the in	nportance of electroanalytical	Cogni	itive	Unde	erstanc	1
	techniques in an	nalysis of different parameters of					
	chemical compo	ounds and solutions					
CO5	<i>Illustrate</i> the si	gnificance of separation techniques in	Cognitive Analyze				
	visualizing trac	e elements and comparing it with					
	control samples	·					
UNIT	I - QUALITAT	IVE AND QUANTITATIVE ASPECT	S OF			5+3	

ANALYSIS

Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.

UNIT II - OPTICAL METHODS OF ANALYSIS

15+3

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law.

UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument;

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques. Structural illustration through interpretation of data, Effect and importance of isotope substitution.

Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.

UNIT III - THERMAL METHODS OF ANALYSIS

5+3

Theory of thermogravimetry (TG), basic principle of instrumentation. Principles, instrumentation and applications of TGA, DTA, DSC. Techniques for quantitative estimation of Ca and Mg from their mixture.

UNIT IV - ELECTROANALYTICAL METHODS

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values.

UNIT V - SEPARATION TECHNIQUES

15+3

Solvent extraction: Classification, principle and efficiency of the technique. Mechanism of extraction: extraction by solvation and chelation. Technique of extraction: batch, continuous and counter current extractions. Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media.

Chromatography: Classification, principle and efficiency of the technique. Mechanism of separation: adsorption, partition & ion exchange. Paper, column, Thin layer chromatography and HPLC.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- 1. Jeffery, G.H., Bassett, J., Mendham, J. & Denney, R.C. *Vogel's Textbook of Quantitative Chemical Analysis*, John Wiley & Sons, 1989.
- 2. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. *Instrumental Methods of Analysis*, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988.
- 3. Christian, G.D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
- 4. Harris, D. C. Exploring Chemical Analysis, Ed. New York, W.H. Freeman, 2001.

REFERENCES

- 1. Khopkar, S.M. *Basic Concepts of Analytical Chemistry*. New Age, International Publisher, 2009.
- 2. Skoog, D.A. Holler F.J. & Nieman, T.A. *Principles of Instrumental Analysis*, Cengage Learning India Ed.
- 3. Mikes, O. *Laboratory Hand Book of Chromatographic & Allied Methods*, Elles Harwood Series on Analytical Chemistry, John Wiley & Sons, 1979.

E RESOURCES

- 1. https://www.mooc-list.com/course/basic-analytical-chemistry-edx
- 2. https://www.mooc-list.com/course/analytical-chemistry-instrumental-analysis-coursera
- 3. https://www.mooc-list.com/course/analytical-chemistry-saylororg

COUI	RSE CODE	XCY503B	L	T	P	C	
COUI	RSE NAME	AGRICULTURAL CHEMISTRY	3	1	0	4	
C:P:A		Nil	L	T	P	Н	
	3 1		0	4			
COUI	RSE OUTCOM	IES	DOMA	IN	LEVE	Ĺ	
CO1 <i>Identify</i> the chemical composition and soils of the earth's crust.			Cognit	ive	Remem	Remember	
CO2	O2 Explain the concept of soil fertility, soil productivity and application of various types of fertilizers			Cognitive Understand		tand	
Analyse the various types of radioisotopes in soil and plants.			Cognit	ive	Analyz	e	
CO4	Interpret the importance of remote sensing and GIS techniques in agriculture.			ive	Unders	tand	

CO5	<i>Illustrate</i> the significance of Analysis of soil extracts,	Cognitive	Analyze
	nutrients, plants extracts and irrigation waters and		
	interpretation of results.		

UNIT I - SOIL CHEMISTRY

7 + 3

Chemical (elemental) composition of the earth's crust and soils. Elements of equilibrium thermodynamics, chemical equilibria, electrochemistry and chemical kinetics. Soil organic matter – classification, fractionation of soil organic matter and different fractions, genesis and nature of soil organic matter and humus formation, humus decomposition, separation of humus from soil particles, clay-organic interactions.

UNIT II - SOIL FERTILITY AND FERTILIZER USE

8+3

Soil fertility and soil productivity; nutrient sources – fertilizers and manures; essential plant nutrients - functions and deficiency symptoms. Law of soil fertility soil and fertilizer nitrogen – sources, forms, immobilization and mineralization, nitrification, denitrification; biological nitrogen fixation; nitrogenous fertilizers and their fate in soils; management of nitrogenous fertilizers.

UNIT III - RADIOISOTOPES IN SOIL AND PLANT STUDIES

7+3

Principles and use of radiation monitoring instruments - proportional, Geiger Muller counter, solid and liquid scintillation counters; neutron moisture meter. Isotopic dilution techniques used in soil and plant research; use of stable isotopes; application of isotopes in studies on organic matter, nutrient transformations, ion transport, rooting pattern and fertilizer use efficiency; carbon dating.

UNIT IV - TECHNIQUES FOR SOIL, WATER AND CROP STUDIES

8+3

Introduction and history of remote sensing; sources, propagation of radiations in atmosphere; interactions with matter. Sensor systems - camera, microwave radiometers and scanners; fundamentals of aerial photographs and image processing and interpretations. Application of remote sensing techniques - land use soil surveys, crop stress and yield forecasting, prioritization in watershed and drought management, land identification and management.

UNIT V - ANALYTICAL TECHNIQUES IN SOIL AND PLANT ANALYSIS

15+3

Preparation of solutions for standard curves, analytical and qualitative reagents, indicators and standard solutions for acid-base, oxidation-reduction titration; soil, water and plant sampling techniques their processing and handling. Nutrient potentials and potential buffering capacities of soils. Determination of lime and gypsum requirement of soil.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	45	0	15	60

TEXT BOOKS

- 1. Agricultural Chemistry V.V Publications.
- 2. Soil anlaysis. Beckmann
- 3. Bear RE. 1964. Chemistry of the Soil. Oxford and IBH.
- 4. Bolt GH & Bruggenwert MGM. 1978. Soil Chemistry. Elsevier.
- Comer CL. 1955. Radioisotopes in Biology and Agriculture: Principles and Practice. Tata McGraw Hill. Elangovan K. 2006. GIS Fundamentals, Applications and Implementations. New India Publ. Agency. Lillesand TM & Kiefer RW. 1994. Remote Sensing and Image Interpretation. 3rd Ed. Wiley
- 6. Hesse P. 1971. Textbook of Soil Chemical Analysis. William Clowes & Sons.
- 7. Jackson, M.L. 1967. Soil Chemical Analysis. Prentice Hall of India.

REFERENCES

- 1. Greenland DJ & Hayes MHB. 1981. Chemistry of Soil Processes. John Wiley & Sons
- 2. Glasstone S. 1967. Source Book on Atomic Energy. East West Press.
- 3. Michael FL & Annunziata. 2003. Handbook of Radioactivity Analysis. Academic Press.
- 4. Kenneth Helrich 1990. Official Methods of Analysis. Association of Official Analytical Chemists.
- 5. Page, A.L., Miller RH & Keeney DR. 1982. Methods of Soil Analysis. Part II. SSSA, Madison.
- 6. Piper CS. Soil and Plant Analysis. Hans Publ.

E RESOURCES

1. http://nptel.ac.in/courses/126104002/

COUI	RSE CODE	XCY504A	L	T	P	SS	C
COU	RSE NAME	COMPUTER APPLICATIONS IN	3	1	0	0	4
		CHEMISTRY					
C:P:A			L	T	P	SS	H
			3	1	0	0	4
COUI	RSE OUTCOME	ES	DON	IAIN	LE	VEL	
CO1		nponents and formats of computer	Cogn	itive	Ren	nembe	r
CO2	operations. <i>Explain</i> the element	ments, operators, programming of basic	Cogn	itive	Unc	lerstan	ıd
	language.						
CO3 Analyse the various types of Numerical methods for roots of equations and simultaneous equation. Cognitive Analyza						ılyze	
CO4	techniques in ag		Cogn	ıd			
CO5	<i>Illustrate</i> the sidata handling.	gnificance of molecular modeling and	Cogn	nitive	Ana	ılyze	
		TION TO COMPUTERS APPLICAT				7+3	
	ants, variables, bi ions, inbuilt func	ts, bytes, binary and ASCII formats, arititions	hmetic	express	sions, l	hierarc	chy of
		S OF THE BASIC LANGUAGE				7+3	
Eleme	nts of the BASI ors. Strings and	IC language. BASIC keywords and congraphics. Compiled versus interpreted oncepts. Matrix addition and multiplication	langua	ages. D	ebugg	ing. S	
		F EQUATIONS AND SIMULTANEO				7+3	
		roots of equations: Quadratic formula, it					
		y bisection and Regula-Falsi.			,		
-		ddition, multiplication. Gauss-Siedal met	thod.				
UNIT	IV - DIFFEREN	NTIAL AND INTEGRAL CALCULUS	S			12+	3
Numer	rical differentiation	on, Numerical integration (Trapezoidal a	nd Sin	npson's	rule), 1	probab	ility
distrib	utions and mean	values.		-	,	-	•
		UAL BACKGROUND OF MOLECUI	LAR			12+	3
	ELLING ing of experime	ntal data. Potential energy surfaces.	Elemer	ntary id	eas o	l f mole	ecular

mechanics a	mechanics and practical MO methods.							
	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL			
HOURS	45	15	0	0	60			

TEXT BOOKS

- 1. Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- 2. Levie, R. de, How to use Excel in analytical chemistry and in general scientific data analysis, Cambridge Univ. Press (2001) 487 pages.
- 3. Noggle, J. H. Physical chemistry on a Microcomputer. Little Brown & Co. (1985).
- 4. Venit, S.M. Programming in BASIC: Problem solving with structure and style. Jaico Publishing, House: Delhi (1996).

COU	RSE CODE	XCY504B	L	T	P	SS	С
COU	RSE NAME	PROGRAMMING IN C	3	1	0	0	4
C:P:A			L	T	P	SS	H
			3 1 0 0		0	4	
COU	RSE OUTCOMI	ES	DOMAIN LEVEL				
CO1				itive	Ren	nember	•
CO2	Explain the de arrays and string	Cognitive Understand			d		
CO3		velopment and implementation C using functions and pointers	Cognitive Analyze				
CO4	Interpret the importance of structures in developing applications in C.			Cognitive Understand			
CO5	<i>Illustrate</i> the sequential and a	designing of applications using random access file processing.	Cognitive Analyze				
UNIT	I - BASICS OF	C PROGRAMMING				9+3	

Introduction to programming paradigms -Structure of C program -C programming: Data Types – Storage classes-Constants–Enumeration Constants-Keywords–Operators: Precedence and Associativity-Expressions Input/ Output statements, Assignment statements–Decision making statements-Switch statement-Looping statements – Pre-processor directives -Compilation process.

UNIT II - ARRAYS AND STRINGS

9+3

Introduction to Arrays: Declaration, Initialization – One dimensional array–Example Program: Computing Mean, Median and Mode-Two dimensional arrays – Example Program: Matrix Operations (Addition, Scaling, Determinant and Transpose) - String operations: length, compare, concatenate, copy – Selection sort, linear and binary search.

UNIT III - FUNCTIONS AND POINTERS

9+3

Introduction to functions: Function prototype, function definition, function call, Built-in functions (string

functions, math functions) – Recursion – Example Program: Computation of Sine series, Scientific calculator using built-in functions, Binary Search using recursive functions – Pointers –Pointer operators –Pointer arithmetic – Arrays and pointers –Array of pointers –Example Program: Sorting of names –Parameter passing: Pass by value, Pass by reference –Example

Program: Swapping of two numbers and changing the value of a variable using pass by reference.

UNIT IV - STRUCTURES

6+3

Structure -Nested structures -Pointer and Structures -Array of structures -Example Program using structures and pointers -Self referential structures -Dynamic memory allocation-Singly linked list.

UNIT V - FILE PROCESSING

12+3

Files –Types of file processing: Sequential access, Random access –Sequential access file – Example Program: Finding average of numbers stored in sequential access file -Random access file –Example Program: Transaction processing using random access files –Command line arguments.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- 1. Reema Thareja, —Programming in Cl, Oxford University Press, Second Edition, 2016.
- 2. Kernighan, B.W and Ritchie, D.M, —The C Programming language, Second Edition, Pearson Education, 2006

REFERENCES

- 1. Paul Deitel and Harvey Deitel, —C How to Programl, Seventh edition, Pearson Publication
- 2. Juneja, B. L and Anita Seth, —Programming in CI, CENGAGE Learning India pvt. Ltd., 2011
- 3. Pradip Dey, Manas Ghosh, —Fundamentals of Computing and Programming in Cl, First Edition, Oxford University Press, 2009.
- 4. Anita Goel and Ajay Mittal, —Computer Fundamentals and Programming in Cl, Dorling Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.
- 5. Byron S. Gottfried, "Schaum's Outline of Theory and Problems of Programming with C",McGraw-Hill Education,1996

COU	RSE CODE	XCY505	L	T	P	P SS C		
COUL	RSE NAME	ORGANIC QUALITATIVE	0	0	4	0	2	
		ANALYSIS PRACTICAL VA						
C:P:A	\		L	T	P	SS	Н	
			0	0	0 4 0 4			
COURSE OUTCOMES			DOMAIN LEVE			/EL		
CO1	11 Identify the monofunctional groups in various			Cognitive		Remember		
	types of organic compound.			Psychomotor			ı	
CO ₂	Estimate the e	extra elements in a combination of	Cogni	tive	Und	erstan	d Set	
	of two or more	e organic compounds.	Psych	omotor				
CO3	Estimate the I	R _f value by separating the mixtures	Cogni	tive	App	ly		
	of organic co	mpounds by chromatography and	Psych	omotor	Set			
	effect of differ	ent parameters on amino acids and	nd Affective Receiving					
	carbohydrates.							
Organ	nic qualitative a	analysis practical VA	•			60 l	nours	

1. Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one

derivative.

2. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements)

	LECTURE	TUTORIAL	PRACTICA	SELF	TOTAL
			L	STUDY	
HOUR	0	0	60	0	60
S					

REFERENCE BOOKS

- 1. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 2. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- 3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., *Textbook of Practical Organic Chemistry*, Prentice-Hall, 5th edition, 1996.

Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.

COU	RSE CODE	XCY506	L	T	P	SS	C	
COU	RSE NAME	PHYSICAL CHEMISTRY	0	0	4	0	2	
		PRACTICAL VB						
C:P:A	1		L	T	P	SS	Н	
			0 0 4			0	4	
COU	RSE OUTCOMI	ES	DOMAIN LEVEL			EL		
CO1	<i>Identify</i> the su	rface tension of liquid or a detergent	Cognitive			Remember		
	solution.		Psych	omote	or	Perce	ption	
CO2	Estimate the vi	scosity of liquid and its variation with	Cogni	itive		Unde	Understand	
	respect to conce	entration of a solute.	Psych	omote	or	Set		
CO3	Estimate the	kinetics of different reactions using	Cogni	itive		Appl	y	
	Initial rate meth	nod and Integrated rate method.	Psychomotor Set			Set		
		_	Affective Received				iving	
Physic	cal chemistry nr	actical VR	•			60	hours	

Physical chemistry practical VE

60 hours

- 1. Electrochemistry practicals-Estimation of ferrous ion by potentiometric titration.
- 2. Study the kinetics of the following reactions.
 - a) Initial rate method: Iodide-persulphate reaction
 - b) Integrated rate method:
 - (i) Acid hydrolysis of methyl acetate with hydrochloric acid.
 - (ii) Saponification of ethyl acetate.
- 3. Compare the strengths of HCl and H2SO4 by studying kinetics of hydrolysis of methyl Acetate.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	0	0	60	0	60

REFERENCE BOOKS

- 1. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 2. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- 3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., *Textbook of Practical Organic Chemistry*, Prentice-Hall, 5th edition, 1996.

Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.

			SEMESTER	VI		L	T	P	SS	C	
COURS	SE CODE		XCY60	1		1	0	2	1	2	
COURS	SE NAME		RENEWABLE 1	ENERGY		L	Т	P	SS	Н	
C: P: A		1.4:0:0.6)			1	0	2	1	4	
COURS	SE OUTCOM	ES			Doi	mair	1		Level	l	
6		ethodolog	renewable energy a gies / technologies for nergy sources.		Cog	Cognitive Rem				ember	
	Explain the meapplications.	thodology	to harness solar en	ergy and its	_	nitiv ectiv			ndersta Apply Receiv	7	
CO3	Examine the po	otential of	wind energy and its	s techniques.		Cognitive Affective			ndersta Receiv		
	Recognize the s	significan	ce of bio energy gen	eration.	_	Cognitive Affective			Apply Respond		
	CO5 Interpret the effective technology of various renewable energy resources. Cognitive Understan						and				
UNIT I			TO ENERGY						3+6+3		
Renewal	ble Energy Sce	nario in T	f Energy Resources amil nadu, India an ewable energy syste	d around the Wo							
UNIT II	SOLAR I	ENERGY							3+6+3	3	
Solar Ra	diation – Meas	surements	of Solar Radiation	– Flat Plate and	Concenti	rating	g Col	lector	s - Sc	olar	
			olar thermal Power (PV Power Generate				f Sola	ar Pho	to Vo	ltaic	
	II - WIND EN				77				3+6+3	3	
			n – Types of Wind or – Safety and Env			rman	ce –	Site S	election	on –	
UNIT I	V - BIO – EN	ERGY							3+6+3	3	
Biomass		tion – Bio	omass gasifiers – Bi	ogas plants – Dig	gesters –	- Eth	anol				
	_		LE ENERGY SO	URCES					3+6+3	3	
Tidal en	ergy – Wave E	nergy – C	pen and Closed OT Il Systems – Hybrid	EC Cycles – Sm	all Hydr	o-Ge	eothe				
LECTU		RIALS	SELF STUDY	PRACTIC	ALS			TOT	`AL		
		0	15	30	60						
15	TEXT BOOKS										

- 1. Rai. G.D., "Non Conventional Energy Sources", Khanna Publishers, New Delhi, (2011).
- 2. Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, (2006).

REFERENCES

- 1. Sukhatme. S.P., "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, (1997).
- 2. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., (1996).
- 3. Tiwari. G.N., Solar Energy "Fundamentals Design, Modelling & Applications", Narosa

Publishing House, New Delhi, (2002).

- 4. Freris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK, (1990).
- 5. Johnson Gary, L. "Wind Energy Systems", Prentice Hall, New York, (1985).
- 6. David M. Mousdale "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA, (2010).
- 7. Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, (2009).

COUF	RSE CODE		XCY602A	L T		P		SS	C	
COUF	RSE NAMI	4	INDUSTRIAL CHEMISTRY	3	1	(0	0	4	
PREI	REQUISIT	E	NIL	L	T]	P	SS	Н	
C:P:A	1		3.2:0:0.8	3 1 (0	0	4	
COUF	URSE OUTCOMES DOMAIN					LEVEL				
CO1	CO1 <i>Describe</i> the utilization of the raw materials in chemical industry.						Re	meml	oer	
CO2	Explain the manufacturing process of cement, ceramics, glass and fertilizers.						Understand			
CO3	Recogniz	the	e technologies used in small scale chemical industries.	Cognitive			Understand		and	
CO4	<i>Interpret</i> synthesis		various toxic chemicals used in agro industries and ugar	n agro industries and Cognitive Affective				Remember Receive		
CO5 Examine the various pollutants and gain awareness about industrial pollution. Cognitive Affective					Analyze Respond					
UNIT I RAW MATERIALS AND ENERGY FOR CHEMICAL INDUSTRY					9+3					

Raw materials – Characteristics of raw materials and their resources – methods of raw material concentrations – integral utilization of raw materials. Energy for chemical industry – Fuels – classification of fuels – coal – fuel gases and liquid fuels – petroleum – cracking – Octane number – cetane number – composition and uses of coal gas, water gas, producer gas, oil gas and gobar gas.

UNIT II CEMENT, CERAMICS, GLASS AND FERTILIZERS 9+3

Cement: Manufacture – Wet Process and Dry process. Types, Analysis of major constituents, setting of cement, reinforced concrete. Cement industries in India. Ceramics: Important clays and feldspar, glazing and verification.Glass: Types, Composition, manufacture of Optical glass, colored glasses, lead glass and neutron absorbing glass. Fertilizers: Fertilizer industries in India, Manufacture of ammonia, ammonium salts, urea, superphosphate, triple superphosphate and nitrate salts.

UNIT III | SMALL SCALE CHEMICAL INDUSTRIES 9+3

Electrothermal and electrochemical industries: electroplating – surface coating industries – oils, fats and waxes – Textiles industry-soaps and detergents – cosmetics. Match industries and fire works: manufacture of some industrially important chemicals like potassium chlorate, and red phosphorus – metal powders.

UNIT IV SUGAR AND AGRO CHEMICAL

9+3

Sugar: Cane sugar manufacture, recovery of sugar from molasses, sugar estimation, sugar industries in India. Agrochemical industries: Important categories of insecticides, fungicides, herbicides. Mode of action and synthesis of common pesticides like Gammexane, DDT, alathrin, Parathion, Malathion, Baygon, DDVP, Warfarin.

UNIT V INDUSTRIAL POLLUTION & CHEMICAL TOXICOLOGY

9+3

Introduction – causes of industrial pollution – thermal power plants – nuclear power reactors– fertilizers and chemical industry – pulp and paper industries – agro based industries – cement industry. Toxic Chemicals in the environment – biochemical effects of arsenic, cadmium, lead, mercury and cyanide.

LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
45	15	0	0	60

TEXT BOOKS

- 1. B.K Sharma Industrial chemistry Goel publishing house.
- 2. B.N.Chakrabarty, Industrial Chemistry, Oxford&IBH Publishing Co., New Delhi, (1981).
- 3. P.P.Singh, T.M.Joseph, R.G.Dhavale, College Industrial Chemistry, Himalaya Publishing House, Bombay, 4th edn., (1983).

REFERENCES

- 1. I.Mukhlyonov(ed.), Chemical Technology, Vol. 1, Mir publication, Moscow, III edn., (1979).
- 2. A.K.De., Environmental Chemistry, Wiley Eastern Ltd., 11 edn., Meerut (1989).
- 3. R.Norris Shreve and J.A.Brink, Jr. Chemical Process Industries. IV edn., McGraw Hill, Tokyo, (1977).
- 4. B.K.Sharma and H.Kaur, Environmental Chemistry, Krishna Prakashan, Meerut, 1997.
- 5. A.K. De, Envionment Chemistry, Wiley Eastern Ltd., Meerut 1994,
- 6. A.K. Mukherjee, Environmental Pollution and Health Hazards Causes and Control Galgotia Press, New Delhi 1986.

COURS	SE CODE	XCY602B		L 3		P	SS	C
COURS	SE NAME	MATERIAL CHEMISTRY			1	0	0	4
PRERE	QUISITES	Nil			T	P	SS	H
C:P:A		3.4:0:0.6		3	1	0	0	4
COUR	SE OUTCOMI	ES	DOMA	IN	I	LEVEL		
CO1	CO1 Explain the basic concept of Structure of matter and their various properties.				Ţ	Inde	rstan	d
CO2	Recall the lav	vs and rules in the diffusion and phase naterials.	Cognitive			Remember Apply		
CO3	•	e significance of mechanical and perties of materials.	Cognitive			Remember Understand		
CO4		importance of magnetic, optical and erties of materials.	Cognitive Affective			Inde Lecei	rstan ive	d
CO5	_	various techniques used in the on of materials.	Cognitive Remer Affective Apply Respon			y	r	
UNIT I	I - STRUCTUI	RE OF MATTER					9+3	

Atomic structure: Electronic configurations; ionic, covalent, metallic, and secondary bond. Space lattices and crystallographic systems; influence of radius ratio on coronation, structure of crystalline materials (metallic, semi conducting, ionic, and ceramic materials) and non-crystalline materials (amorphous, glasses, polymers materials)

Defects and dislocations: Point, line, and surface defects; Edge, and screw dislocations; Burger's vector; Grain and twin boundaries. Brief on experimental techniques, such as X-ray diffraction, SEM, TEM, etc., for determining crystalline structures and their defects.

UNIT II - BEHAVIOUR OF MATERIALS

9+3

Diffusion Behaviour

Mechanism of diffusion Fick's laws, solution to Fick's second law; surface and grain boundary diffusion; experimental determination of diffusion coefficient.

Phase behavior

Solid Solutions: Intermediate phases and intermetallic compounds, phase rule, binary phase diagrams like Cu-Ni, Pb-Sn, Cu-Zn and Fe-C, transformation in steels. Nucleation and growth phenomena, solidification including directional solidification, crystal growth, zone melting and purification.

UNIT III - MECHNICAL AND ELECTRICAL PROPERTIES OF MATERIALS

9+3

Mechanical properties

Ductility, brittleness; Work hardening: Tempering, and Annealing; Fracture toughness; Stiffness: Elastic, anelastic and viscoelastic behaviours of materials; Failure of materials due to creep, and fatigues, deformation of behaviours of polymers, and ceramics

Electrical Properties

Types of Electrical / Electronic behaviours of materials viz., Insulators, Semi-conductors, and Conductors; electronic and ionic conductivity; free electron and band theory of solids; intrinsic and extrinsic semiconductors, conduction mechanisms, junctions and devices, vizdiodes, rectifiers, transistors and solar cells; super conductivity.

Dielectric behaviours of materials

Polarization phenomena, polarizability, frequency and temperature dependence of dielectric constant.

UNIT IV - MAGNETIC, OPTICAL AND THERMAL PROPERTIES OF MATERIALS

9+3

Magnetic properties

Magnetic behaviours of materials: dia, para, ferro and ferri magnetisms, soft and hard magnetic materials ; magnetic storage materials

Optical Properties

Optical properties of materials, elementary ideas about absorption, transmissions and reflection refractive index, lasers and their application, optoelectronic devices.

Thermal properties

Thermal properties of materials, specific heat, thermal conductivity and thermal expansions

UNIT V - TECHNIQUES

9+3

Thin film deposition techniques

Introduction – CVD, PVD, Spray pyrolysis, Sputtering, Molecular beam epitaxy Electroplating and Electroless plating methods.

Materials characterization techniques

Materials characterization techniques such as XRD, ESC A, XPS, AES, FTIR and Laser Raman spectroscopy. Microscopictechniques – SEM, AFM and TEM. Thermal analysis – TG/DTA and DSC.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- 1. Shriver, D. F, and Atkins, P. W, Inorganic Chemistry, Oxford University Press
- 2. Ashcroft, N. W, and Mermin, N. D, Solid State Physics, Harcourt College Publishers
- 3. Charles Kittel, Introduction to Solid State Physics, John Wiley & Sons

REFERENCES

- 3. T.K. Manichavasagam Pillai and S.Narayanan, Trigonometry, Viswanathan Publishers and Printers Pvt. Ltd.
- 4. S. Narayan and T.K. Manicavachagam Pillay, Ancillary Mathematics, Viswanathan Publishers and Printers Pvt. Ltd.

E REFERENCES

1. WWW. NPTEL .ac.in

COURSE	E CODE	XCY603B	L	L T P		SS	C		
COURSE NAME		POLYMER CHEMISTRY	3	1	0	0	4		
PREREC	REQUISITES NIL L T P			SS	H				
C:P:A		3.4:0:0.6	3	1	0	0	4		
COURSE OUTCOMES			DOMAIN			LEVEL			
CO1	Explain	the chemistry of polymerization.	Cogn	itive	Understand				
CO2	Describe	the preparation of individual polymers	Cogn	itive	Understand				
				ctive		Respond			
CO3	Interpret	their physical properties of polymers and	Cognitive			Understand			
	explain the molecular weight and size of polymers.					App	ly		

		Affective	Respond
CO4	Recognize the polymerization techniques and Classify the uses of polymers.	Cognitive	Analyze
CO5	Summarize the processing of polymers	Cognitive	Remember Understand

UNIT I - CLASSIFICATION OF POLYMERS AND CHEMISTRY OF POLYMERISATION

10+3

Classification of Polymers, linear polymers, non-linear or branched polymers, cross – linked polymers, homo chain hetero chain, homopolymers co-polymers block polymers and graft polymers.

Chemistry of polymerization: Types of polymerization – mechanism – chain, growth, co-ordination, ring opening, metathetical, group transfer, polyaddition and polycondensation polymerizations.

UNIT II - INDIVIDUAL POLYMERS

10+3

Individual Polymers: Monomers required general methods of preparation, repeat units and uses of the following polymers and resins, polystyrene, polyacrylonitrile, polymethyl, methacrylate, Polytetra – fluoroethylene, polybutadienes and polychloroprene, polyesters, polycarbonates, polyimides, polyamides (Kevlar), polyurethanes, polyethylene, glycols, phenol – formaldehyde, urea – formaldehyde, melamine – formaldehyde and epoxy resins.

UNIT III - PROPERTIES OF POLYMERS

10+3

Intrinsic properties – processing properties – basic idea of isomerism of polymers – configuration of polymer chain – geometrical structure – syndiotatic, isotatic and attaic polymers.

Glass transition temperature: Definition – factors affecting glass transition temperature – relationships between glass transition temperature and (a) molecular weight, (b) melting point and (c) plasticizer – importance of glass transition temperature – heat distortion temperature.

Molecular weight and size of polymers: Number average, weight average, sedimentation and viscosity average molecular weights – molecular weights and degree of polymerization – poly dispersity – molecular weight distribution in polymers – size of polymer molecules – kinetics of polymerization.

UNIT IV - POLYMERISATION TECHNIQUES DEGRADATION AND USES OF POLYMERS

8+3

Polymerisation Techniques: Bulk, solution, suspension, emulsion, melt condensation and interfacial polycondensation polymerizations, Degradation: Types of degradation – thermal, mechanical, ultrasonic and photodegradation – photo stabilizers – oxidative degradation – antioxidants – hydrolytic degradation. Uses of polymers in electronics and biomedicine.

UNIT V - POLYMER PROCESSING

7+3

Polymer processing: Plastics (thermo and thermosetting), elastomers, fibres, compounding, plasticizers, colorants, flame retardants. Compression and injection moudlings – film extrusion and calendaring – die casting and rotational casting – thermofoaming – reinforcing.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

- 1. Seymour, R.B. & Carraher, C.E. Polymer Chemistry: An Introduction, Inc. New York, (1981).
- 2. Odian, G. Principles of Polymerization, 4th Ed. Wiley, (2004).
- 3. Billmeyer, F.W. Textbook of Polymer Science, 2nd Ed. Wiley Interscience, (1971)...
- 4. Ghosh, P. Polymer Science & Technology, Tata McGraw-Hill Education, (1991).
- 5. Lenz, R.W. Organic Chemistry of Synthetic High Polymers, Interscience Publishers, New York, (1967).

REFERENCES

- 1. M.P. Stevens, *Polymer Chemistry: An Introduction*, 3rd Edition, Oxford University Press, (1991).
- 2. H.R. Allcock, F.W. Lampe & J.E. Mark, *Contemporary Polymer Chemistry*, 3rd edition, (2003).
- 3. F.W. Billmeyer, *Textbook of Polymer Science*, 3rd ed. Wiley-Interscience, (1984).
- 4. J.R. Fried, *Polymer Science and Technology*, 2nd ed. Prentice-Hall (2003)
- 5. P. Munk & T.M. Aminabhavi, *Introduction to Macromolecular Science*, 2nd ed. John Wiley & Sons (2002).
- 6. L. H. Sperling, *Introduction to Physical Polymer Science*, 4th ed. John Wiley & Sons (2005).
- 7. M.P. Stevens, *Polymer Chemistry: An Introduction* 3rd ed. Oxford University Press, (2005).
- 8. Seymour/ Carraher's Polymer Chemistry, 9th ed. by Charles E. Carraher, Jr. (2013).

COURSE CODE		XCY604	L	T	P	SS	C	
COURSE NAME		ORGANIC QUALITATIVE ANALYSIS PRACTICAL VI	0	0	4	0	2	
C:P:A 1: 0.8:0.2			L	T	P	SS	Н	
		0	0	4	0	4		
COURSE OUTCOMES				DOMAIN			LEVEL	
CO1	<i>Identify</i> the various Metals in the present in the given organic mixture and analyses the respective groups.			Cognitive Psychomotor			Remember Perception	
CO2	Estimate the amount of acids using volumetric method the fundamentals of group separation and chemical reaction takes place in the confirmation test.			Cognitive Psychomotor			Understand Set	
CO3	Estimate the amount of bases using volumetric method and Interpret the results and differentiate the various groups and cations/ aniond present in the mixture.			Cognitive Psychomotor Affective			Apply Set Receiving	
Organic qualitative analysis practical VI								

each exp

I. Organic Estimation

- 1. Estimation of phenol
- 2. Estimation of aniline
- 3. Estimation of glucose

II. Organic Analysis

Substances to be analysed:

- 1. Aromatic acid (mono carboxylic acid)
- 2. Aromatic ester (mono functional group)
- 3. Aromatic aldehyde
- 4. Aromatic ketone
- 5. Phenol
- 6. Carbohydrate (Glucose only)
- 7. Aliphatic amide (urea)
- 8. Aromatic amide
- 9. Aromatic amine (Aniline)
- 10. Aromatic nitro compound

1	LECTURE	TUTORIAL	PRACTICAL	TOTAL	
HOURS	0	0	60	60	

TEXT BOOKS

- 1. B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G Smith and A.R. Tatchell., "Vogel's Textbook of practical Organic Chemistry", (ELBS), 5th edn., 2009.
- 2. J. Bassett, R.C. Denney, G. H Jeffery and J. Mendham, "Vogel's text book of Quantitative Inorganic Analysis (revised)", (ELBS), 6th edn., 2007.

E Resources - MOOCs:

- 1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques
- 2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011
- $\frac{3.\text{http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques}}{61}$

COURSE CODE		XCY605	L	Т	P	SS	C	
COURSE NAME		PHYSICAL CHEMISTRY PRACTICAL VIA	0	0	4	0	2	
C:P:A		1: 0.8:0.2	L	T	P	SS	Н	
				0	4	0	4	
COURSE OUTCOMES			DOMAIN		LEVEL			
CO1	Determine the molecular weight and critical			Cognitive			Remember	
	solution temperature.			Psychomotor			Perception	
CO2	EO2 Estimate relative strength of acids and partial			Cognitive			Understand	
	coefficient.			Psychomotor			Set	
CO3	CO3 <i>Interpret</i> the electrochemistry and thermochemistry			Cognitive			Apply	
	titrations and examine the complexometric		Psychomotor		Set			
	titration.	-	Affective			Receiving		
PHYSICAL CHEMISTRY PRACTICAL VIA				3 hours each exp				

1. Phase diagram:

- a. Simple eutectic
- b. Compound formation

2. Determination of molecular weight:

- a. Rast-macro method (using naphthalene as solvent)
- b. Transition temperature (using sodium thio sulphate penta hydrate as salt hydrate)

3. Critical solution temperature

- a. CST of phenol water system
- b. Estimation of sodium chloride by studying the CST of phenol-water system

4. Kinetics

Determination of relative strength of acids by acid catalysed hydrolysis of ester

5. Partition co-efficient

- a. Study of equilibrium KI + I₂ KI₃ by studying the partition co-efficient of iodine between water and carbon tetra chloride.
- b. Determination of association factor of benzoic acid in benzene

6. Electrochemistry

Conductometric titration between an acid and a base (HCl Vs NaOH)

b. Potentiometric method – Potentiometric titration between 1. an acid and a base (HCl Vs NaOH) and 2. KMnO₄ Vs FAS

VI. Complexometric Titrations

Estimation of Zn, Mg and Ca ions using EDTA and estimation of silver by argentometry.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	0	0	60	0	60

TEXT BOOKS

1. Venkateswaran V, Veeraswamy R., Kulandaively A.R., Basic principles of practical chemistry, 2nd edition, New Delhi, sultan chand & sons, (1997).

REFERENCE

1. J.B. Yadav; "Advanced Practical Physical Chemistry" 6th Edn., Goel Publications, Meerut, 1986.