FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT DEPARTMENT OF CHEMISTRY

Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

think ${\mbox{\circ}}$ innovate ${\mbox{\circ}}$ transform

FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT

DEPARTMENT OF CHEMISTRY

CURRICULUM AND SYLLABUS (I - IV SEMESTER)

M.Sc. CHEMISTRY (FULL TIME – 2 Years)

REGULATION 2018

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

FACULTY OF HUMANITIES, SCIENCES & MANAGEMENT DEPARTMENT OF CHEMISTRY

Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

CURRICULUM & SYLLABUS (I to IV Semester) FOR M.Sc. CHEMISTRY

(FULL TIME – 2 Years)

REGULATION 2018

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

CURRICULUM AND SYLLABUS FOR MASTER OF SCIENCE M.Sc. (Chemistry) - (TWO YEARS - FULL TIME) REGULATION - 2018

(Applicable to the students admitted from the academic year 2018-2019 onwards)

CURRICULUM -M.Sc. (Chemistry) - (TWO YEARS - FULL TIME) REGULATION - 2018

		SEMESTER I						
Туре	Course Code	Course Title	L	Т	SS	Р	Н	С
CCI	YCY101	Organic Chemistry I	4	1	0	0	5	5
CCII	YCY102	Inorganic Chemistry I	4	1	0	0	5	5
CCIII	YCY103	Physical Chemistry I	4	1	0	0	5	5
CPI	YCY104	Inorganic Practical I	0	0	0	6	6	3
CPII	YCY105	Physical Chemistry Practical I	0	0	0	6	6	3
		Total	12	3	0	12	27	21

		SEMESTER II						
Туре	Course Code	Course Title	L	Т	SS	Р	Н	С
CCIV	YCY201	Inorganic Chemistry II	4	1	0	0	5	5
CCV	YCY202	Physical Chemistry II	4	1	0	0	5	5
CPIII	YCY203	Inorganic Practical II	0	0	0	6	6	3
CPIV	YCY204	Physical Chemistry Practical II	0	0	0	6	6	3
ECIA	YCYE01/	(A) Solid State Chemistry/	4	1	0	0	5	5
ECIB	YCYE02	(B) Supramolecular Chemistry	4	1	0	0	5	5
		Total	12	3	0	12	27	21

		SEMESTER III						
Туре	Course Code	Course Title	L	Т	SS	Р	Н	С
CCVI	YCY301	Organic Chemistry II	4	1	0	0	5	5
CCVII	YCY302	Physical Methods in Chemistry-I	4	1	0	0	5	5
CPV	YCY303	Organic Chemistry Practical -I	0	0	0	6	6	3
ECIIA ECIIB	YCYE03/ YCYE04	(A) Pharmaceutical Chemistry/(B) Electro-Organic Chemistry	4	1	0	0	5	5
ECIC	YEC305	Analytical Chemistry	4	1	0	0	5	5
		Total	16	4	0	6	26	23

		SEMESTER IV						
Туре	Course Code	Course Title	L	Т	SS	Р	Н	С
CCVIII	YCY401	Physical Methods in Chemistry-II	4	1	0	0	5	5
CCVI	YCY402	Organic Chemistry Practical -II	0	0	0	6	6	3
ECIIIA	YCYE05/	(A) Green Chemistry/	4	1	0	0	5	5
ECIIIB	YCYE06	(B) Industrial Chemistry	4	1	0	0	5	5
ECIVA	YCYE07/	(A) Selected topics in Chemistry/	4	1	0	0	5	5
ECIVB	YCYE08	(B) Chemistry of nanoscience and nanotech.	4	1	0	0	5	5
Project	YCY405	Dissertation – Project work	0	0	0	12	12	6
		Total	12	3	0	18	33	24

YCY	RSE CODE	COURSE NAME	L	Т	Р	С
	101	ORGANIC CHEMISTRY- I	4	1	0	5
C:P:	A	4.0: 0.5 : 0.5				
			L	Т	P	Η
			4	1	0	5
		OMES- On the successful completion of the will be able to	DOM	AIN	LE	VEL
	CO1	<i>Recognize</i> the various basic concepts of aromaticity.	Cogni	tive	Ren	nember
CO2		<i>Identify</i> the oxidation and reducing reagents for organic synthesis.	Cogni	tive	Understand	
CO3		<i>Describe</i> and <i>give</i> examples of stereochemistry of organic compounds.	Cogni Psych	tive omotor	Unc	nember lerstand chanism
	CO4	<i>Recognize</i> the effect of light in organic reactions and <i>understand</i> the mechanism of photochemistry.	Cogni and Affect		Unc and	lerstand
	CO5	<i>Recall</i> and <i>explain</i> the mechanism of pericyclic reactions.	Cogni	tive	-	nember lerstand
	UNIT - I A	romaticity	.1			15
	antiaromatic	cupancy in MO's and aromaticity - NMR			roma	tisiter and
	and 4nπ-elect in heteroaron UNIT – II Oxidation: Swern oxida Woodward heterogeneot hydrogenatic from group I	ity, systems with 2,4,8 and 10 electrons, syste Mobius aromaticity. Bonding properties of systemore, alternant and non-alternant hydrocarbon matic molecules. Reagents in Organic Synthesis Baeyer-Villiger, Jacobsen epoxidation, Jones tion, Sommelet reaction, Oxidative coupling of modification. Reduction: palladium / platinu us catalysts for hydrogenation, Wilkinson's on – reductions using Li/Na in liquid ammor II in reductions.	/stems s (azule reage pheno m / rh catalys	with (4) ene type nt, NO ls, Prevo odium t, Noyo	1+2)π) – a Cl, C ost rea / nic ori as	electrons c-electrons romaticity 15 Cu(OAC) ₂ , action and kel based symmetric
(i) (ii)	and 4nπ-elect in heteroarou UNIT – II Oxidation: Swern oxida Woodward heterogeneou hydrogenatio from group I triacetoxybo	 Mobius aromaticity. Bonding properties of systems, alternant and non-alternant hydrocarbon natic molecules. Reagents in Organic Synthesis Baeyer-Villiger, Jacobsen epoxidation, Jones tion, Sommelet reaction, Oxidative coupling of modification. Reduction: palladium / platinu us catalysts for hydrogenation, Wilkinson's on – reductions using Li/Na in liquid ammor II in reductions. rohydride, Luche reduction, NaBH₄. 	/stems s (azule reage pheno m / rh catalys	with (4) ene type nt, NO ls, Prevo odium t, Noyo	1+2)π) – a Cl, C ost rea / nic ori as	electrons c-electrons romaticity 15 Cu(OAC) ₂ , action and kel based symmetric
(i) (ii)	and 4nπ-elect in heteroarou UNIT – II Oxidation: Swern oxida Woodward heterogeneot hydrogenatic from group I triacetoxybo stereo/enanti	Mobius aromaticity. Bonding properties of systems, alternant and non-alternant hydrocarbon matic molecules. Reagents in Organic Synthesis Baeyer-Villiger, Jacobsen epoxidation, Jones tion, Sommelet reaction, Oxidative coupling of modification. Reduction: palladium / platinu us catalysts for hydrogenation, Wilkinson's on – reductions using Li/Na in liquid ammor II in reductions.	/stems s (azule reage pheno m / rh catalys nia. Hy	with (4) ene type nt, NO ls, Prevo odium t, Noyo	1+2)π) – a Cl, C ost rea / nic ori as	electrons c-electrons romaticity 15 Cu(OAC) ₂ , action and kel based symmetric

UNI	T –IV Organic Photoc	chemistry		15
	anic photochemistry –		– energy transfer – o	
	oreactions – photoreduc	1		
: .	nes and enones – Norri	1	· 1	
	rangement – photochen			
	nane rearrangement– p			
	olytic cycloadditions a			
react		r r j i i i i		
	T – V Pericyclic React	ions		1
	certed reactions – orbi		oncerted symmetry –	Woodward a
1	fmann rules – selection			
	oach – correlation diagr			
	tier molecular orbital			
	rangements $-1,3, 1,5$			
	rangements – 1,3-dipola			1
		LECTURE	TUTORIAL	TOTA
		60	15	75
TEXT	BOOKS			.ii
1.	J. March and M. B. Sn	nith. March's Advanced	d Organic Chemistry: 1	Reactions.
1.		-	0	(cuctions,
2		icture: /th Ed Wiley [New York 2013	
,		cture; 7th Ed., Wiley, 1 emistry: Vol II, 7th Ed.		td. New Delhi
2.	I.L. Finar, Organic Ch	· · · · · · · · · · · · · · · · · · ·		td, New Delhi
	I.L. Finar, Organic Ch 2009.	emistry; Vol.II, 7th Ed	., Pearson education L	
	I.L. Finar, Organic Ch 2009. R. T. Morrison and R.	emistry; Vol.II, 7th Ed	., Pearson education L	
3.	I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011.	emistry; Vol.II, 7th Ed N. Boyd, Organic Che	., Pearson education L mistry, 7th Ed., Pearso	on, New Delhi
3.	I.L. Finar, Organic Ch 2009.R. T. Morrison and R. 2011.F. A. Carey and R. J. S	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O	., Pearson education L mistry, 7th Ed., Pearso	on, New Delhi
3. 4.	I.L. Finar, Organic Ch 2009.R. T. Morrison and R. 2011.F. A. Carey and R. J. S Ed., Springer, German	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007.	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part	on, New Delhi ts A and B, 5tl
3. 4.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part	on, New Delhi ts A and B, 5tl
3. 4. 5.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-W 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Wesley, USA, 1998.	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in O	on, New Delhi ts A and B, 5tl rganic
3. 4. 5. 6.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-W P. S. Kalsi, Stereocher 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199	on, New Delhi ts A and B, 5th rganic 93.
3. 4. 5. 6.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an	on, New Delhi ts A and B, 5tl rganic 93.
 3. 4. 5. 6. 7. 	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-W P. S. Kalsi, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inter 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Com ernational, New Delhi,	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994.	on, New Delhi ts A and B, 5th rganic 93. nd Application
 3. 4. 5. 6. 7. 	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-W P. S. Kalsi, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inter E. L. Eliel, and S. H. W 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Com ernational, New Delhi,	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994.	on, New Delhi ts A and B, 5th rganic 93. nd Applicatior
 3. 4. 5. 6. 7. 8. 	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound	on, New Delhi ts A and B, 5th rganic 93. nd Application
3. 4. 5. 6. 7. 8. 9.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-W P. S. Kalsi, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. W New York, 1994. J. D. Coyle, Organic P 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound	on, New Delhi ts A and B, 5th rganic 93. nd Application
3. 4. 5. 6. 7. 8. 9. REFE	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley,	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998.	on, New Delhi ts A and B, 5tl rganic 93. nd Application ds; John Wiley
3. 4. 5. 6. 7. 8. 9. REFE	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley,	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998.	on, New Delhi ts A and B, 5th rganic 93. nd Applicatior ds; John Wiley
3. 4. 5. 6. 7. 8. 9. REFE 1.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-W P. S. Kalsi, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. W New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Wesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida
3. 4. 5. 6. 7. 8. 9. REFE	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms Singh, Photochemistry	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida
3. 4. 5. 6. 7. 8. 9. REFE 1. 2.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya Academic Science, 20 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms Singh, Photochemistry 09.	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra y and Pericyclic Reacti	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida ons, New
3. 4. 5. 6. 7. 8. 9. REFE 1. 2.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya Academic Science, 20 J. Clayden, N. Greeves 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Com ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms Singh, Photochemistry 09. s, S. Warren, and P. We	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra y and Pericyclic Reacti	on, New Delhi ts A and B, 5tl rganic 93. nd Application ds; John Wiley aw Hill, Noida ons, New
 3. 4. 5. 6. 7. 8. 9. REFE 1. 2. 3. 	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya Academic Science, 20 J. Clayden, N. Greeves Oxford University Pre 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms . Singh, Photochemistry 09. s, S. Warren, and P. Wess, UK, 2000.	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra y and Pericyclic Reacti others, Organic Chemi	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida ons, New astry; 1st Ed.,
 3. 4. 5. 6. 7. 8. 9. REFE 1. 2. 3. 	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya Academic Science, 20 J. Clayden, N. Greeves 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms . Singh, Photochemistry 09. s, S. Warren, and P. Wess, UK, 2000.	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra y and Pericyclic Reacti others, Organic Chemi	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida ons, New astry; 1st Ed.,
 3. 4. 5. 6. 7. 8. 9. REFE 1. 2. 3. 	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya Academic Science, 20 J. Clayden, N. Greeves Oxford University Pre 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms . Singh, Photochemistry 09. s, S. Warren, and P. Wess, UK, 2000.	., Pearson education L mistry, 7th Ed., Pearso rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra y and Pericyclic Reacti others, Organic Chemi	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida ons, New astry; 1st Ed.,
3. 4. 5. 6. 7. 8. 9. REFE 1. 2. 3. 4.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V. New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya Academic Science, 20 J. Clayden, N. Greeves Oxford University Pre G. R. Chatwal, Organic 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Com ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms Singh, Photochemistry 09. s, S. Warren, and P. Wo ess, UK, 2000. ic Phtochemistry; 1st E	., Pearson education L mistry, 7th Ed., Pearson rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra y and Pericyclic Reaction others, Organic Chemi d., Himalaya Publication	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida ons, New astry; 1st Ed., ons house,
3. 4. 5. 6. 7. 8. 9. REFE 1. 2. 3. 4.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-W P. S. Kalsi, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. W New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya Academic Science, 20 J. Clayden, N. Greeves Oxford University Pre G. R. Chatwal, Organi Bangalore, 1998. 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Con ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms . Singh, Photochemistry 09. s, S. Warren, and P. We ess, UK, 2000. ic Phtochemistry; 1st E	., Pearson education L mistry, 7th Ed., Pearson rganic Chemistry; Part nism and Theory in Or mited; New Delhi, 199 npounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra y and Pericyclic Reaction others, Organic Chemi d., Himalaya Publication	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida ons, New astry; 1st Ed., ons house,
3. 4. 5. 6. 7. 8. 9. REFE 1. 2. 3. 4. 5.	 I.L. Finar, Organic Ch 2009. R. T. Morrison and R. 2011. F. A. Carey and R. J. S. Ed., Springer, German T. H. E. Lowry and K. Chemistry; Addison-V P. S. Kalsi, Stereocher D. Nasipuri, Stereocher D. Nasipuri, Stereocher 2nd Ed., New Age Inte E. L. Eliel, and S. H. V New York, 1994. J. D. Coyle, Organic P CRENCE BOOKS R. K. Bansal, Organic 2006. Jagdamba Singh, Jaya Academic Science, 20 J. Clayden, N. Greeves Oxford University Pre G. R. Chatwal, Organi Bangalore, 1998. S. Sankararaman, Period 	emistry; Vol.II, 7th Ed N. Boyd, Organic Che Sundberg, Advanced O ny, 2007. . S. Richardson, Mecha Vesley, USA, 1998. mistry; Wiley eastern li emistry of Organic Com ernational, New Delhi, Wilen, Stereochemistry Photochemistry; Wiley, Reaction Mechanisms Singh, Photochemistry 09. s, S. Warren, and P. Wo ess, UK, 2000. ic Phtochemistry; 1st E cyclic Reactions - A To New York, 2005.	., Pearson education L mistry, 7th Ed., Pearson rganic Chemistry; Part anism and Theory in Or mited; New Delhi, 199 mpounds - Principles an 1994. of Organic Compound New York, 1998. ; 11th Ed., Tata McGra y and Pericyclic Reacti others, Organic Chemi d., Himalaya Publicati extbook: Reactions, Ap	on, New Delhi ts A and B, 5th rganic 93. nd Application ds; John Wiley aw Hill, Noida ons, New astry; 1st Ed., ons house, pplications and

E RES	OURCES
1.	http://nptel.ac.in/courses/104103071/21
2.	https://www.youtube.com/watch?v=Ih7tQ7rY2Wc
3.	http://nptel.ac.in/courses/104101005/
4.	https://www.youtube.com/watch?v=12hmgzeiGo4
5.	https://www.youtube.com/watch?v=WEeFhsjn-lo

COURSE CODE	COURSE NAME	L	Т	Р	С		
YCY102	INORGANIC CHEMISTRY- I	4	1	0	5		
C:P:A	4.5: 0: 0.5						
		L	Т	Р	Η		
		4	1	0	5		
COURSE OUTCO course, students w	OMES- On the successful completion of the vill be able to	DON	IAIN	LEV	EL		
CO1	<i>Describe</i> the basic concepts of main group elements.	Cogr	nitive	Rem	ember		
CO2	compounds and <i>estimate</i> the physical constants of the reactions.		<i>Explain</i> the reactions of coordination compounds and <i>estimate</i> the physical constants		nitive	Understand Understand	
CO3	<i>Summarize</i> the theories and bonding nature of coordination compounds.	Cogr	nitive				
CO4	<i>Identify</i> and <i>understand</i> the reaction mechanism of four and six coordinated compounds.	Cogr and Affee	nitive ctive	Und Rece	erstand ive		
CO5	<i>Rewrite</i> the basic concepts of photochemistry and its applications to coordinated compounds.	Cogr	nitive	Und	erstand		
S ₂ N ₂ , S ₄ N ₄ , (S molecular sulp oxocarbon anic – high Tc supe	compounds, cyclophosphazanes and cyclophospha N)x, polythiazyl S_xN_4 compounds – S-N cations at hides such as P_4S_3 , P_4S_7 , P_4S_9 and P_4S_{10} – hom on. Ionic model – lattice energy – Born-Lande equa rconductors – solid state reactions – tarnish reaction petegraphic process – factors affecting reaction rate	nd anic ocyclic ation – on deco	ons, S-I inorga Kapust	o comp anic sy inskii (ounds stems equatio		
	otographic process – factors affecting reaction rate Principles of Coordination Chemistry	•		15			
Studies of coor stability consta (potentiometric Factors affectir	dination compounds in solution – detection of comp nts – stepwise and overall formation constants. Sime, pH metric and photometric methods) of determining stability – statistical and chelate effects – forced Theories of Metal-Ligand Bond	ple me	thods format	ion con			
	U		~		<u></u>		
splitting – C Spectrochemics complexes – si and pi-bonding	heory – splitting of d-orbitals under various geo FSE and evidences for CFSE (structural an al series – Jahn-Teller distortion – spectral a te preferences.Limitations of CFT – ligand field th in complexes – Nephelauxetic effect – the angular paction Machanism in Coordination Complexes	d ther .nd ma neory –	modyn Ignetic - MO t	amic prope heory -	effects rties c		
	eaction Mechanism in Coordination Complexes	1 inort	comp		ligan		
displacement r hydrolysis and	mechanism of reactions in solution – labile and reactions in octahedral and square planar comple anation reactions. Trans effect – theory and app rectron exchange reactions – complementary and	xes – olicatio:	acid h ns – el	ydrolys ectron	sis, bas transfe		

·····	ynthesis of macrocyclic ligands. INIT – V Inorganic Photochemistry	7		15
	Electronic transitions in metal complex		ed and charge-trans	
	arious photophysical and photochemic			
	harge-transfer photochemistry of coba			
	hotochemistry of chromium(III) comp			
	hotochemistry of organometallic com		· 1	
	netal-metal bonding – Reinecke's salt,		• •	
	ictur metur bonding - Remeeke 5 suit,	LECTURE	TUTORIAL	TOTAL
		<u>60</u>	15	75
		•••	15	15
ii	EXT BOOKS			
1.	. M. C. Day, J. Selbin and H. H. Sisle	or Theoretical Ir	organia Chamistry	v. Litarary Licansin
		er, meorenear n	lorganic Chemistry	y, Literary Litensin
	(LLC), Montana, 2012.	ei, meorencai m	lorganic Chemistry	y, Elterary Elterisin
2.	(LLC), Montana, 2012. F. A. Cotton and G. Wilkinson, C			•
2.		C. A. Murillo and	d M. Bochmann,	Advanced Inorgan
	. F. A. Cotton and G. Wilkinson, C Chemistry; 6th Ed., A Wiley - Inter-	C. A. Murillo an science Publicati	d M. Bochmann, ons, John Wiley ar	Advanced Inorgani ad Sons, USA, 1999
3.	 F. A. Cotton and G. Wilkinson, C Chemistry; 6th Ed., A Wiley - Inters J. E. Huheey, Inorganic Chemistry; 	C. A. Murillo an science Publicati 4th Ed., Harper a	d M. Bochmann, ons, John Wiley ar and Row publisher	Advanced Inorgan nd Sons, USA, 1999 , Singapore, 2006.
3.	. F. A. Cotton and G. Wilkinson, C Chemistry; 6th Ed., A Wiley - Inter-	C. A. Murillo an science Publicati 4th Ed., Harper a	d M. Bochmann, ons, John Wiley ar and Row publisher	Advanced Inorgani nd Sons, USA, 1999 , Singapore, 2006.
3. 4.	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Inters. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgan 1975. 	 C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr 	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an	Advanced Inorgan nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl
3. 4.	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Inters. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry –	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an A Coordination C	Advanced Inorgan nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New York Chemistry Approact
3. 4.	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Inters. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgan 1975. 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry –	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an A Coordination C	Advanced Inorgan nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New York Chemistry Approact
3. 4. 5.	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Inters. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry –	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an A Coordination C	Advanced Inorgani nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl Chemistry Approacl
3. 4. 5.	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Inters. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an A Coordination C Press, New York,	Advanced Inorgan nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yor Chemistry Approac 1996.
3. 4. 5. R . A	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Interst. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an A Coordination C Press, New York,	Advanced Inorgan ad Sons, USA, 1999 , Singapore, 2006. ad Sons, New Yor Chemistry Approact 1996.
3. 4. 5. R . A P	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Interst. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an A Coordination C Press, New York, organic Photochem	Advanced Inorgan ad Sons, USA, 1999 , Singapore, 2006. ad Sons, New York Chemistry Approact 1996. nistry; R. E. Kriege
3. 4. 5. R • A Pt	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Inters. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox 	C. A. Murillo and science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University c, Concepts of In chemistry; Wiley	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an A Coordination C Press, New York, organic Photochen y, New York, 1988	Advanced Inorgan nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl Chemistry Approact 1996. nistry; R. E. Kriege
3. 4. 5. R . A Pt 2. J. H 3. F.	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Interst. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox EFERENCE BOOKS W. Adamson and P. D. Fleischauer ubs, Florida, 1984. Ferraudi, Elements of Inorganic Photoe Basolo and R. G. Pearson, Mechanis 	C. A. Murillo and science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University c, Concepts of In chemistry; Wiley	d M. Bochmann, ons, John Wiley ar and Row publisher ry; John Wiley an A Coordination C Press, New York, organic Photochen y, New York, 1988	Advanced Inorgani nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl Chemistry Approach 1996. nistry; R. E. Kriege
3. 4. 5. R • R • P • J. H • F . Cork	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Inters. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox EFERENCE BOOKS W. Adamson and P. D. Fleischauer ubs, Florida, 1984. Ferraudi, Elements of Inorganic Photoe Basolo and R. G. Pearson, Mechanis, 1967. 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University 7, Concepts of In chemistry; Wiley sm of Inorganic	d M. Bochmann, ons, John Wiley ar and Row publisher, ry; John Wiley an A Coordination C Press, New York, 1 organic Photochen 7, New York, 1988 Reactions; 2nd Ec	Advanced Inorgani nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl Chemistry Approact 1996. nistry; R. E. Kriege 1., John Wiley, New
3. 4. 5. R P 2. J. H 3. F. York	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Interst. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox EFERENCE BOOKS W. Adamson and P. D. Fleischauer ubs, Florida, 1984. Ferraudi, Elements of Inorganic Photoe Basolo and R. G. Pearson, Mechanis 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University 7, Concepts of In chemistry; Wiley sm of Inorganic	d M. Bochmann, ons, John Wiley ar and Row publisher, ry; John Wiley an A Coordination C Press, New York, 1 organic Photochen 7, New York, 1988 Reactions; 2nd Ec	Advanced Inorgan ad Sons, USA, 1999 , Singapore, 2006. ad Sons, New York Chemistry Approact 1996. nistry; R. E. Kriege 1., John Wiley, New
3. 4. 5. R 2. J. H 3. F. 7 ork. 4. R.	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Inters. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox EFERENCE BOOKS W. Adamson and P. D. Fleischauer ubs, Florida, 1984. Ferraudi, Elements of Inorganic Photoe Basolo and R. G. Pearson, Mechanis, 1967. 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University 7, Concepts of In chemistry; Wiley sm of Inorganic	d M. Bochmann, ons, John Wiley ar and Row publisher, ry; John Wiley an A Coordination C Press, New York, 1 organic Photochen 7, New York, 1988 Reactions; 2nd Ec	Advanced Inorgani nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl Chemistry Approact 1996. nistry; R. E. Kriege 1., John Wiley, New
3. 4. 5. R 2. J. H 3. F. 7 ork 4. R.	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Interst. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox EFERENCE BOOKS W. Adamson and P. D. Fleischauer ubs, Florida, 1984. Ferraudi, Elements of Inorganic Photoe Basolo and R. G. Pearson, Mechanis, 1967. K. Sharma, Inorganic Reactions Mechanisma (Comparison 1967). 	C. A. Murillo an science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University 7, Concepts of In chemistry; Wiley sm of Inorganic nanism; Discover	d M. Bochmann, ons, John Wiley ar and Row publisher, ry; John Wiley an A Coordination C Press, New York, 1 organic Photochen 7, New York, 1988 Reactions; 2nd Ec	Advanced Inorgani nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl Chemistry Approact 1996. nistry; R. E. Kriege 1., John Wiley, New
3. 4. 5. 5. R 2. J. H 2. F. (ork) 5. R. E 1. h	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Interst. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox EFERENCE BOOKS W. Adamson and P. D. Fleischauer ubs, Florida, 1984. Ferraudi, Elements of Inorganic Photoe Basolo and R. G. Pearson, Mechanis, 1967. K. Sharma, Inorganic Reactions Mechanis 	2. A. Murillo and science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University c, Concepts of In chemistry; Wiley sm of Inorganic nanism; Discover	d M. Bochmann, ons, John Wiley ar and Row publisher, ry; John Wiley an A Coordination C Press, New York, 1 organic Photochen 7, New York, 1988 Reactions; 2nd Ec	Advanced Inorgani nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl Chemistry Approach 1996. nistry; R. E. Kriege l., John Wiley, New
3. 4. 5. 5. R 2. J. H 3. F. 7 ork 4. R. 1. <u>H</u> 2. <u>H</u> 3. <u>H</u>	 F. A. Cotton and G. Wilkinson, C. Chemistry; 6th Ed., A Wiley - Interst. J. E. Huheey, Inorganic Chemistry; W. Adamson, Concept of Inorgani 1975. S. F. A. Kettle, Physical Inorgani Spectrum; Academic Publishers, Ox EFERENCE BOOKS W. Adamson and P. D. Fleischauer ubs, Florida, 1984. Ferraudi, Elements of Inorganic Photoe Basolo and R. G. Pearson, Mechanis, 1967. K. Sharma, Inorganic Reactions Mechanis RESOURCES 	C. A. Murillo and science Publicati 4th Ed., Harper a ic Photochemistr ic Chemistry – xford University 7, Concepts of In chemistry; Wiley sm of Inorganic hanism; Discover	d M. Bochmann, ons, John Wiley ar and Row publisher, ry; John Wiley an A Coordination C Press, New York, 1 organic Photochen 7, New York, 1988 Reactions; 2nd Ec	Advanced Inorgani nd Sons, USA, 1999 , Singapore, 2006. nd Sons, New Yorl Chemistry Approact 1996. nistry; R. E. Kriege 1., John Wiley, New

COURSE CODE	COURSE NAME	L	Т	Р	С
YCY103	PHYSICAL CHEMISTRY- I	4	1	0	5
C:P:A	4.5: 0 : 0.5				
		L	Т	Р	H
		4	1	0	5
COURSE OUTC course, students v	OMES- On the successful completion of the vill be able to	DO	MAIN	LE	VEL
C01	<i>Identify</i> the basic concept of Electrochemistry and related laws	Cog	nitive	Re	member
CO2	Describe the theories of classical mechanics and quantum mechanics of a microscopic particles and <i>predict</i> the energy of the particles	Cog	nitive	Un Ap	derstand ply
CO3	<i>Recognize</i> the various theories of chemical kinetics of reactions.	Cog	nitive	Re	member
CO4	<i>Explain</i> the fundamentals of thermodynamic and <i>Label</i> the various thermodynamic parameters.	and	nitive ective	-	derstand ceive
CO5	<i>Generalized</i> the photo physical properties of chemical reactions.	Cog	nitive	Un	derstan
IINIT - I FI	ectrochemistry I			15	
Helmholtz- Pe UNIT – II Inadequacy of photoelectric of dualism – unc postulates of c	rical double layer-electro capillary phenomena-Lerrin - Guoy-Chapmann and Stern models. Quantum Chemistry – I Classical mechanics – black body radiation – Planck' effect – Bohr's theory of hydrogen atom – hydrogen s ertainty principle – decline of old quantum theory. Sc puantum mechanics – operator algebra: linear operator	's quai spectra chrödin r, Her	ntum co a – wav nger equ mitian c	15 oncep e-par uation opera	t – ticle 1 – tors,
related theorem simple system barrier – the q	s and eigenvalues, angular momentum operator - cor	f wave	e mecha	nics pote	to
UNIT – III	ms – orthogonality and normalization. Applications of s – particle in a box, one and three dimensional, particular untum mechanical tunneling.			15	
reaction coord	s – particle in a box, one and three dimensional, parti- uantum mechanical tunneling. Chemical Kinetics – I			·····	
chain reaction explosions and	s – particle in a box, one and three dimensional, particulation mechanical tunneling. Chemical Kinetics – I action rate – absolute reaction rate theory (ARRT) – the second s	ect – I -state	Hinshel ^s approxi	wood matic ogen	theory on –
chain reaction explosions and UNIT –IV S	 s – particle in a box, one and three dimensional, particulation mechanical tunneling. Chemical Kinetics – I action rate – absolute reaction rate theory (ARRT) – the linate – potential energy surfaces – kinetic isotope efforment. Principle of microscopic reversibility – steadyst is: thermal and photochemical reactions between hydroxical sections. 	ect – I -state a rogen	Hinshel approxi and hal	wood matic ogen	theory on – s –

<u>.</u>	of negative Kelvin t	emperature.	
UNIT –V Fast Reaction Techn	niques, Photochemi	stry and Radiation	15
Chemistry Introduction – flow methods (con	ntinuous and stanna	d flow mathada) ra	lavation mathed
and P jump methods) – pulse te processes of electronically excite and its applications – experimen lasers and their applications. Dif sources of high energy radiation electrons – definition of G value techniques – use of dosimetry	ed molecules – Jabl tal techniques in ph fferences between ra and interaction wi e, Curie, linear energy	onski diagram. – Ste notochemistry – chen adiation chemistry ar th matter – radiolysi gy transfer (LET) an	ern-Volmer equa nical actinomete nd photochemist s of water, solv d Rad – scaven
radiation chemistry.	LECTURE	TUTORIAL	TOTAL
	60	15	75
FEXT BOOKS	~~		
 D. A. Mcquarrie, Quantum K. J. Laidler, Chemical Kin J. W. Moore and R. G. Pear 	etics; 3rd Ed., Tata I		usalito, 2008. 1987.
4. K. J. Laidler, Chemical Kin	etics; 3rd Ed., Tata I son, Kinetics and M Yaylor, Chemical K 2002. Advanced Physical sco and W. L. Hase sey, 1999.	ty Science Books, Sa McGraw Hill, Noida, echanism; 3rd Ed., Jo inetics and Mechani Chemistry; 5th Ed., , Chemical Kinetics	usalito, 2008. 1987. ohn Wiley and S sm; 1st Ed., R Pragathi Prakas and Dynamics;
 K. J. Laidler, Chemical Kind J. W. Moore and R. G. Pear New York, 1981. M. Mortimer and P. G. T Society of Chemistry, UK, 2 J. N. Gurtu and A. Gurtu, Meerut, 2006. J. I. Steinfeld, J. S. Francis Ed., Prentice Hall, New Jers P. W. Atkins, Physical Cher 10. J. Rajaram and J. C. Kuriac Statistical and Irreversible; 1 	etics; 3rd Ed., Tata I son, Kinetics and M Yaylor, Chemical K 2002. Advanced Physical sco and W. L. Hase sey, 1999. nistry; 7th Ed., Oxfo cose, Thermodynami Pearson Education, I	ty Science Books, Sa McGraw Hill, Noida, echanism; 3rd Ed., Jo inetics and Mechani Chemistry; 5th Ed., chemical Kinetics ord University Press, ics for Students of Cl New Delhi, 2013.	usalito, 2008. 1987. ohn Wiley and S sm; 1st Ed., R Pragathi Prakas and Dynamics; Oxford, 2001. hemistry - Class
 K. J. Laidler, Chemical Kind J. W. Moore and R. G. Pear New York, 1981. M. Mortimer and P. G. T Society of Chemistry, UK, 2 J. N. Gurtu and A. Gurtu, Meerut, 2006. J. I. Steinfeld, J. S. Francis Ed., Prentice Hall, New Jers P. W. Atkins, Physical Cher 10. J. Rajaram and J. C. Kuriac Statistical and Irreversible; 1 Horia Metiu, Physical Cher 2006. K. K. Rohatgi-Mukherjee International Pvt. Ltd., New 	etics; 3rd Ed., Tata I son, Kinetics and M Yaylor, Chemical K 2002. Advanced Physical sco and W. L. Hase sey, 1999. mistry; 7th Ed., Oxfo cose, Thermodynami Pearson Education, I emistry, Thermodyn	ty Science Books, Sa McGraw Hill, Noida, echanism; 3rd Ed., Jo inetics and Mechani Chemistry; 5th Ed., c, Chemical Kinetics ord University Press, ics for Students of Ch New Delhi, 2013. namics; Taylor and	usalito, 2008. 1987. ohn Wiley and S sm; 1st Ed., R Pragathi Prakas and Dynamics; Oxford, 2001. hemistry - Class Francis, Singap
 K. J. Laidler, Chemical Kin J. W. Moore and R. G. Pear New York, 1981. M. Mortimer and P. G. T Society of Chemistry, UK, 2 J. N. Gurtu and A. Gurtu, Meerut, 2006. J. I. Steinfeld, J. S. Francis Ed., Prentice Hall, New Jers P. W. Atkins, Physical Cher 10. J. Rajaram and J. C. Kuriac Statistical and Irreversible; 1 Horia Metiu, Physical Cher 2006. K. K. Rohatgi-Mukherjee International Pvt. Ltd., New 	etics; 3rd Ed., Tata I son, Kinetics and M Yaylor, Chemical K 2002. Advanced Physical sco and W. L. Hase sey, 1999. mistry; 7th Ed., Oxfo cose, Thermodynami Pearson Education, I emistry, Thermodyn , Fundamentals of Delhi, 2014.	ty Science Books, Sa McGraw Hill, Noida, echanism; 3rd Ed., Jo inetics and Mechani Chemistry; 5th Ed., chemical Kinetics ord University Press, ics for Students of Ch New Delhi, 2013. namics; Taylor and F Photochemistry; 3	ausalito, 2008. 1987. ohn Wiley and S sm; 1st Ed., R Pragathi Prakas and Dynamics; Oxford, 2001. hemistry - Class Francis, Singap
 K. J. Laidler, Chemical Kind J. W. Moore and R. G. Pear New York, 1981. M. Mortimer and P. G. T Society of Chemistry, UK, 2 J. N. Gurtu and A. Gurtu, Meerut, 2006. J. I. Steinfeld, J. S. Francis Ed., Prentice Hall, New Jers P. W. Atkins, Physical Cher 10. J. Rajaram and J. C. Kuriac Statistical and Irreversible; 1 Horia Metiu, Physical Cher 2006. K. K. Rohatgi-Mukherjee International Pvt. Ltd., New REFERENCE BOOKS R. L. Flurry, Jr, Symmetry New Jersy, 1980. 	etics; 3rd Ed., Tata I son, Kinetics and M Yaylor, Chemical K 2002. Advanced Physical sco and W. L. Hase sey, 1999. mistry; 7th Ed., Oxfo tose, Thermodynami Pearson Education, I emistry, Thermodyn , Fundamentals of Delhi, 2014.	ty Science Books, Sa McGraw Hill, Noida, echanism; 3rd Ed., Jo inetics and Mechani Chemistry; 5th Ed., chemical Kinetics ord University Press, ics for Students of Ch New Delhi, 2013. namics; Taylor and Photochemistry; 3 d Chemical Applicat	usalito, 2008. 1987. ohn Wiley and S sm; 1st Ed., R Pragathi Prakas and Dynamics; Oxford, 2001. hemistry - Class Francis, Singap ard Ed., New
 K. J. Laidler, Chemical Kind J. W. Moore and R. G. Pear New York, 1981. M. Mortimer and P. G. T Society of Chemistry, UK, 2 J. N. Gurtu and A. Gurtu, Meerut, 2006. J. I. Steinfeld, J. S. Francis Ed., Prentice Hall, New Jers P. W. Atkins, Physical Cher 10. J. Rajaram and J. C. Kuriac Statistical and Irreversible; 1 Horia Metiu, Physical Cher 2006. K. K. Rohatgi-Mukherjee International Pvt. Ltd., New R. L. Flurry, Jr, Symmetry 	etics; 3rd Ed., Tata I son, Kinetics and M Yaylor, Chemical K 2002. Advanced Physical sco and W. L. Hase sey, 1999. mistry; 7th Ed., Oxfo tose, Thermodynami Pearson Education, I emistry, Thermodyn , Fundamentals of Delhi, 2014.	ty Science Books, Sa McGraw Hill, Noida, echanism; 3rd Ed., Jo inetics and Mechani Chemistry; 5th Ed., chemical Kinetics ord University Press, ics for Students of Ch New Delhi, 2013. namics; Taylor and Photochemistry; 3 d Chemical Applicat	usalito, 2008. 1987. ohn Wiley and S sm; 1st Ed., R Pragathi Prakas and Dynamics; Oxford, 2001. hemistry - Class Francis, Singap ard Ed., New

1.	https://www.youtube.com/watch?v=pGerRhxNQJE	
	https://www.youtube.com/watch?v=R-x9KdNjQmo	
3.	https://www.youtube.com/watch?v=F_NmS-Wy2IE	
4.	https://www.youtube.com/watch?v=6QXtnmB1vqk	
5.	https://www.youtube.com/watch?v=1zZ6rvh1cgw	

COU	RSE CODE	COURSE NAME	L	Г	٦.	Р	С
Ŋ	CY104	Inorganic Chemistry Practical - I	0	0)	6	3
PREF	REQUISITE	Nil	L	Г	٦.	Р	H
	C:P:A	0.6: 2.2:0.2	0	0)	6	6
COUR	RSE OUTCON	IES	DOMA	IN		LEVE	EL
CO1	separation	ne chemical reaction takes place in the of inorganic mixture and in the experiment and <i>relate</i> the results.	Cognitive Psychomo			nember ception	
CO2	mixture and	various cations present in the given estimate the amount of metal ion the whole of the given solution by illy.	Cognitive Psychomo		Uno Set	derstand	
CO3	-	e results and <i>labels</i> the various specific esent in the given solution.	Cognitive Affective Phsycome			ply ceive chanism	
	Inorganic C	hemistry Practical I			6 h	ours eac	ch .
	To perform t	he semi-micro qualitative analysis.					
	To estimate t	he metal ions using colorimeter.					
	Semi-micro Cd, Fe, Cr, A Tl, Se, Te, M Estimation c colorimeter TEXT BOO V. V. Rama London, 198 G. Svehla, T	qualitative analysis of a mixture containi Al, Co, Ni, Mn, Zn, Ba, Sr, Ca, Mg, NH Io, Ce, Th, Zr, Ti, V, U, Li). of copper, ferric, nickel, chromium and KS nujam, Inorganic Semimicro Qualitative 8. 'ext Book of Macro and Semimicro Qua	4) and two manganese e Analysis	less c e ions ; 3rd	usin Ed.,	non cation ng photo Nationa	ons (W, belectric Il Pubs,
	0 0	oup Ltd, London, 1987. Text Book of Quantitative Inorganic Ana	llysis; 6th I	Ed., Lo	ongr	nan, New	v Delhi,

LECTURE	TUTORIAL	TOTAL
90	0	90

COU	RSE CODE	COURSE NAME	L	1	[Р	H
Y	CY105	Physical Chemistry Practical - I	0	0)	6	3
PREF	REQUISITE	Nil	L	J	[Р	Н
	C:P:A	0.6: 2.2:0.2	0	0)	6	6
COUR	SE OUTCON	AES	DOMA	IN		LEVE	ĽL
CO1	Describe the	definition and significance of physical	Cognitive	and	Ren	nember	
		like rate constant, activation energy,	Psychomo		Perc	eption	
	order and var	rious laws and also <i>relate</i> the results.					
CO2	1	e physical parameters of the reactions	Cognitive			lerstand	
~~~		the relation between these parameters.	Psychomo		Set	-	
CO3	-	results and <i>recognize</i> the relation of	Cognitive	and	App	•	
	reaction.	ameters and its significance in the	Affective Phsycomo	tor	Rec	eive chanism	
		hemistry Practical I	Theyconic	101		ours eacl	
		•			UIIC		.1
	<b>Experiment</b>	s. cid hydrolysis of ester–comparison of str	enoths of a	vids			
		cid hydrolysis of ester–determination of $\epsilon$		140.			
	activation (E						
	3. Kinetics-s	aponification of ester-determination of et	hyl acetate	by			
	conductomet						
		ersulfate-iodine reaction – determination	of order,				
		onic strength on rate constant.	, ·,·				
		tion of molecular weight of substance by	transition				
	temperature	tion of molecular weight of substances by	v Rast meth	bo			
		tion of Critical Solution Temperature (CS					
		and effect of impurity on CST.	/ F				
	•	hase diagram of two components forming	g a simple				
	eutectic.						
		hase diagram of two compounds forming	-	ıd.			
	•		m.				
		phase diagram of three components syste					
	· iz izelerinir	ation of molecular weight of substances					
	colorimetry.	ation of molecular weight of substances lation of integral and differential heat of s	solutions by				
	colorimetry. 13. Polymeri	nation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami	olutions by				
	colorimetry. 13. Polymeri 14. Distribut	ation of molecular weight of substances lation of integral and differential heat of s	olutions by de. um.				
	colorimetry. 13. Polymeri 14. Distribut	hation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami ion law – study of Iodine-Iodine equilibri	olutions by de. um.				
	<ul> <li>colorimetry.</li> <li>13. Polymeri</li> <li>14. Distribut</li> <li>15. Distribut</li> <li>benzene.</li> <li>16. Adsorption</li> </ul>	hation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami ion law – study of Iodine-Iodine equilibri	olutions by de. um. acid in				
	colorimetry. 13. Polymeri 14. Distribut 15. Distribut benzene.	hation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami ion law – study of Iodine-Iodine equilibri ion law – study of association of benzoic	olutions by de. um. acid in				
	<ul> <li>colorimetry.</li> <li>13. Polymeri</li> <li>14. Distribut</li> <li>15. Distribut</li> <li>benzene.</li> <li>16. Adsorption</li> </ul>	hation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami ion law – study of Iodine-Iodine equilibri ion law – study of association of benzoic on – oxalic acid/acetic acid on charcoal u	olutions by de. um. acid in				
	colorimetry. 13. Polymeri 14. Distribut 15. Distribut benzene. 16. Adsorption isotherm. <b>TEXT BOO</b> 1. V. V. Ran	hation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami ion law – study of Iodine-Iodine equilibri ion law – study of association of benzoic on – oxalic acid/acetic acid on charcoal us	olutions by de. um. acid in sing Freund	llich	Ed.,	Nationa	l Pub
	colorimetry. 13. Polymeri 14. Distribut 15. Distribut benzene. 16. Adsorption isotherm. <b>TEXT BOO</b> 1. V. V. Ran London, 198	hation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami ion law – study of Iodine-Iodine equilibri ion law – study of association of benzoic on – oxalic acid/acetic acid on charcoal us <b>KS</b> nanujam, Inorganic Semimicro Qualitati 8.	olutions by de. um. acid in sing Freund ve Analysis	llich			
	<ul> <li>colorimetry.</li> <li>13. Polymeri</li> <li>14. Distribut</li> <li>15. Distribut</li> <li>benzene.</li> <li>16. Adsorption</li> <li>isotherm.</li> </ul> <b>TEXT BOO</b> <ul> <li>1. V. V. Randara</li> <li>London, 198</li> <li>2. G. Svehland</li> </ul>	hation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami ion law – study of Iodine-Iodine equilibri ion law – study of association of benzoic on – oxalic acid/acetic acid on charcoal us <b>KS</b> nanujam, Inorganic Semimicro Qualitati 8. , Text Book of Macro and Semimicro Qu	olutions by de. um. acid in sing Freund ve Analysis	llich			
	<ul> <li>colorimetry.</li> <li>13. Polymeri</li> <li>14. Distribut</li> <li>15. Distribut</li> <li>benzene.</li> <li>16. Adsorption</li> <li>isotherm.</li> </ul> <b>TEXT BOO</b> <ul> <li>1. V. V. Ran</li> <li>London, 198</li> <li>2. G. Svehlar</li> <li>Longman group</li> </ul>	hation of molecular weight of substances lation of integral and differential heat of s zation-rate of polymerization of acrylami ion law – study of Iodine-Iodine equilibri ion law – study of association of benzoic on – oxalic acid/acetic acid on charcoal us <b>KS</b> nanujam, Inorganic Semimicro Qualitati 8.	olutions by de. um. acid in sing Freund ve Analysis alitative In	llich s; 3rd organ	ic An	alysis; ś	5th Ed

LECTURE	TUTORIAL	TOTAL
90	0	90

COUDER		SEMESTER II					
UUUKSE	CODE	COURSE NAME	L	Т	Р	С	
YCY201		INORGANIC CHEMISTRY-II	4	1	0	5	
C:P:A		4.0:0.5:0.5	L	T	P	H	
			4	1	0	5	
		MES: On the successful completion		DOMAIN		LEVE	Ľ
v		ts will be able to		•.•		<b>D</b> 1	
CO1		nd <i>Explain</i> the basic concepts of		gnitive		Remember	
	structure	and bonding of organometallic ds; <i>Display</i> the geometries of		chomotor		Understand Set	
	organome	tallic molecules using 18 electror		CHOIDOU		501	
	rule.	tune molecules using 10 election	1				
CO2		ze and Report reaction mechanism of	f Cog	gnitive		Understand	
		and organometallic compounds.		ective		Respond	
CO3			Cos	gnitive		Understand	
	-	he physical and chemical properties		ective		Apply	
		es and <i>Interpret</i> the mechanism of nical reactions.				Respond	
~ ~ .			~				
CO4	Describe	1 1 0	-	gnitive		Analyze	
	chemistry	and the application of various	s Psy	chomotor		Perception	
CO5	concepts. <i>Identify</i>	the various metalloenzymes,		gnitive		Remember	
005	metallopo			Sintive		Remember	
	properties						
SYLL	ABUS:						
~							
	<b>N</b> ( )						
UNIT I -S	Structure a	and bonding in Organometallics:					
			lobal c	concept and	its ı	ısefulness.	
The 18 el	ectron rule	– applications and limitations – isol		-			
The 18 ele Nitrosyl ce	ectron rule omplexes -	- applications and limitations – isol - bridging and terminal nitrosyls, bent	and li	near nitrosy			
The 18 el Nitrosyl co complexes	ectron rule omplexes - s – metallo	- applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car	and li benes.	near nitrosy	/ls –	dinitrogen	15
The 18 ele Nitrosyl co complexes Classificat	ectron rule omplexes - s – metalloo tion based	- applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car on captivity and polarity of M-C bon	and li benes. d, org	near nitrosy anometallic	/ls – com	dinitrogen pounds of	15
The 18 ek Nitrosyl co complexes Classificat lanthanide	ectron rule omplexes - s – metallo tion based es and acti	- applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car	and li benes. d, org	near nitrosy anometallic	/ls – com	dinitrogen pounds of	15
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine,	ectron rule omplexes - s – metalloo tion based es and acti agriculture	- applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car on captivity and polarity of M-C bon inides – fluxional organometallic co	and li benes. d, org	near nitrosy anometallic	/ls – com	dinitrogen pounds of	15
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine, <b>UNIT II -</b>	ectron rule omplexes – s – metalloo tion based es and acti agriculture <b>Reaction</b>	– applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car on captivity and polarity of M-C bon inides – fluxional organometallic co e, horticulture and industry. mechanism and Catalysis:	and li benes. d, org	near nitrosy anometallic nds – orga	/ls – com nom	dinitrogen pounds of etallics in	15
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine, <b>UNIT II -</b> Ligand su	ectron rule omplexes – s – metalloo tion based es and acti agriculture <b>Reaction</b> ibstitution-	– applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car on captivity and polarity of M-C bon inides – fluxional organometallic co c, horticulture and industry. mechanism and Catalysis: oxidative addition and reductive eli	and li benes. d, org ompou	near nitrosy anometallic nds – orga ion-1,1 and	/ls – com unom	dinitrogen pounds of etallics in -insertion-	
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine, <b>UNIT II -</b> Ligand su addition a	ectron rule omplexes – s – metalloo tion based es and acti agriculture <b>Reaction</b> Ibstitution- nd elimina	<ul> <li>applications and limitations – isol</li> <li>bridging and terminal nitrosyls, bent</li> <li>cene and arene complexes – metal car</li> <li>on captivity and polarity of M-C bon</li> <li>inides – fluxional organometallic co</li> <li>horticulture and industry.</li> <li>mechanism and Catalysis:</li> <li>oxidative addition and reductive elition</li> </ul>	and li benes. d, org ompou iminat hydro	near nitrosy anometallic nds – orga ion-1,1 and boration hy	vls – com nom l 1,2 droc	dinitrogen pounds of etallics in -insertion- yanation –	15
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine, <b>UNIT II -</b> Ligand su addition a hydrogena	ectron rule omplexes - s – metalloo tion based es and acti agriculture <b>Reaction</b> Ibstitution- nd elimina ation of ol	– applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car on captivity and polarity of M-C bon inides – fluxional organometallic co c, horticulture and industry. mechanism and Catalysis: oxidative addition and reductive eli- tion reactions-alkene isomerization - efins -Wilkinson's catalyst - hydrof	and li benes. d, org ompou iminat hydro ormyla	near nitrosy anometallic nds – orga ion-1,1 and boration hy ation of old	vls – com nom 1,2 droc: efins	dinitrogen pounds of etallics in -insertion- yanation – - Wacker-	
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine, <b>UNIT II -</b> Ligand su addition a hydrogena Schmidt s	ectron rule omplexes – s – metalloo tion based es and acti agriculture Reaction ibstitution- nd elimina ation of ol- synthesis-	<ul> <li>applications and limitations – isol</li> <li>bridging and terminal nitrosyls, bent</li> <li>cene and arene complexes – metal car</li> <li>on captivity and polarity of M-C bon</li> <li>inides – fluxional organometallic co</li> <li>horticulture and industry.</li> <li>mechanism and Catalysis:</li> <li>oxidative addition and reductive elition reactions-alkene isomerization -</li> <li>efins -Wilkinson's catalyst - hydrof</li> <li>Monsanto acetic acid process- Eas</li> </ul>	and li benes. d, org ompou iminat hydro ormyla	near nitrosy anometallic nds – orga ion-1,1 and boration hy ation of old	vls – com nom 1,2 droc: efins	dinitrogen pounds of etallics in -insertion- yanation – - Wacker-	
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine, <b>UNIT II -</b> Ligand su addition a hydrogena Schmidt s Tropsch p	ectron rule omplexes – s – metalloo tion based es and acti agriculture <b>Reaction</b> ibstitution- nd elimina ation of ol synthesis- rocess- hyc	– applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car on captivity and polarity of M-C bon inides – fluxional organometallic co e, horticulture and industry. mechanism and Catalysis: oxidative addition and reductive eli- tion reactions-alkene isomerization - efins -Wilkinson's catalyst - hydrof Monsanto acetic acid process- Eas drosilylation.	and li benes. d, org ompou iminat hydro ormyla	near nitrosy anometallic nds – orga ion-1,1 and boration hy ation of old	vls – com nom 1,2 droc: efins	dinitrogen pounds of etallics in -insertion- yanation – - Wacker-	
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine, <b>UNIT II -</b> Ligand su addition a hydrogena Schmidt s Tropsch p <b>UNIT III</b>	ectron rule omplexes – s – metalloo tion based es and acti agriculture Reaction Ibstitution- nd elimina ation of ol synthesis- rocess- hyc Carbenes	- applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car on captivity and polarity of M-C bon inides – fluxional organometallic co b, horticulture and industry. mechanism and Catalysis: oxidative addition and reductive eli- tion reactions-alkene isomerization - efins -Wilkinson's catalyst - hydrof Monsanto acetic acid process- Eas hosilylation.	and li benes. d, org ompou iminat hydro ormyla tman	near nitrosy anometallic nds – orga ion-1,1 and boration hy ation of ole Halcon pro	vls – com nom 1,2 droc efins- ocess	dinitrogen pounds of etallics in -insertion- yanation – - Wacker- - Fischer-	
The 18 ele Nitrosyl co complexes Classificat lanthanide medicine, <b>UNIT II -</b> Ligand su addition a hydrogena Schmidt s Tropsch p <b>UNIT III</b> Fischer a	ectron rule omplexes - s – metalloo tion based es and acti agriculture Reaction ibstitution- nd elimina ation of ol synthesis- rocess- hyc Carbeness nd Schroc	– applications and limitations – isol - bridging and terminal nitrosyls, bent cene and arene complexes – metal car on captivity and polarity of M-C bon inides – fluxional organometallic co e, horticulture and industry. mechanism and Catalysis: oxidative addition and reductive eli- tion reactions-alkene isomerization - efins -Wilkinson's catalyst - hydrof Monsanto acetic acid process- Eas drosilylation.	and li benes. d, org ompou iminat hydro ormyla tman ity- C	near nitrosy anometallic nds – orga ion-1,1 and boration hy ation of ole Halcon pro	vls – com nom 1,2 drocy efins ocess	dinitrogen pounds of etallics in -insertion- yanation – - Wacker- - Fischer-	

activation- agnostic bonds -Ziegler-Natta polymerization of olefins-Heck reaction- The Pauson Khand reaction- Ene reaction.

#### **UNIT IV -General Principles of Bioinorganic Chemistry:**

Occurrence and availability of inorganic elements in biological systems – biomineralization – nucleation and crystal growth – various biominerals – calcium phosphate–iron biominerals – strontium and barium sulphate.

15

Function and transport of alkali and alkaline earth metal ions: characterization of  $K^+$ , Na⁺, Ca²⁺ and Mg²⁺ – complexes of alkali and alkaline earth metal ions with macrocycles – ion channels – ion pumps, catalysis.

#### UNIT V -Metalloporphyrins/Metalloenzymes:

Dioxygen transport and storage-hemoglobin and myoglobin: electronic and spatial structures-hemeythrin and hemocyanine- synthetic oxygen carriers, model systems-blue copper proteins (Cu)-iron-sulfur proteins (Fe)-cytochromeselectron transport chaincarbon monoxide poisoning- iron enzymes- peroxidase, catalase and cytochrome P-450, copper enzymes- superoxide dismutase, vitamin B12 and B12 coenzymes, photosynthesis- photosystem-I &II, nitrogen fixation, cisplatin.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
Hours	60	15	-	75

#### **References Books**

- 1. J. E. Huheey, Inorganic Chemistry; 4th Ed., Harper and Row Publishers, Singapore, 2006.
- 2. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; Thomson Learning, Boston, 1980.
- 3. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry; Panima Publishing Company, New Delhi, 1997.
- 4. W. Kaim and B. Schewederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John Wiley and Sons, New York, USA, 2013.
- 5. G. L. Eichhorn, Inorganic Biochemistry; Volumes 1 and 2, 2nd Ed., Elsevier Scientific Publishing Company, New York, 1975.
- F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry; 6th Ed., John Wiley and Sons, New York, 1999.
- R. C. Mehrotra and A. Singh, Organometallic Chemistry; 2nd Ed., New Age International Ltd. New Delhi, 2014.
- 8. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals; 3rd Ed., John Wiley and Sons, New York, 2001.
- S. E. Kegley and A. R. Pinhas, Problems and Solutions in Organometallic Chemistry; 2nd Ed., University Science Books, Oxford University Press, 1986.

10. A. J. Pearson, Advances in Metal-Organic Chemistry, Vol. 1; Jai Press, Inc., Greenwich, 1989. **Text books** 

- 1. A. W. Parkins and R. C. Poller, An Introduction to Organometallic Chemistry; 1987, Oxford University Press, Chennai.
- I. Haiduc and J. J. Zuckerman, Basic Organometallic Chemistry; Walter De Gruyter Inc, USA, 1985.
- 3. P. Powell, Principles of Organometallic Chemistry; 2nd Ed., Chapman and Hall, London, 1988.
- B. Douglas, D. H. McDaniel and J. J. Alexander, Concepts and Models of Inorganic Chemistry; 3rd Ed., John Wiley and sons, New York, 1994.
- 5. M. Bochmann, Organometallics 1: Complexes with transition metal-carbon bonds; Oxford Chemistry Primers Series, No. 12, and M. Bochmann, Organometallics 2: Complexes with transition metal-carbon bonds; No. 13, 1994.
- 6. J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, California, 1987

#### **E-Resources**

- 1. https://nptel.ac.in/courses/104103069/33
- 2. https://nptel.ac.in/courses/104105038/21
- 3. <u>https://onlinecourses.nptel.ac.in/noc18_cy09/preview</u>

COUH	RSE CODE	COURSE NAME	L	Т	P	С	
YCY2	202	PHYSICAL CHEMISTRY-II	4	1	0	5	
C:P:A		4.5:0:0.5	L	Т	Р	H	
<b>U.I</b> .A		4.3.0.0.3	<b>1</b>	1	0	6	
		S: On the successful completion of the	DO	MAI	N	LE	VEL
course CO1	e, students will be Explain the va	rious symmetry elements and symmetry	Cos	gnitive	e	Unders	standing
	operations			-			
CO2	and interaction	ysical aspects of molecular spectroscopy n of electromagnetic radiation with d diatomic molecules.	Cog	gnitivo	e	Remer	nber
CO3	· •	aw of thermodynamics and		gnitivo		Apply	•
CO4	····•	properties of real gases		ective		Receiv	<u> </u>
CO4		inciple of dynamics of electron transfer osition of metals.		gnitive ective		Remer Respon	
CO5	Apply and Ider	<i>utify</i> the various concepts of adsorption reaction at interphase.	Cog	gnitive	e	Apply Remer	
SYLL	ABUS:						
UNIT	I -Concept of Gr	oup Theory					
represe theore	entation of symm entations – prope	nsformations – conjugate elements a etry operations and point groups – reduc erties of irreducible representation. The of character table – direct product – pro	ible a great	and ir orth	redu ogo	acible nality	15
5	II -Molecular Sp						
Einste	in coefficient of a		is of	selec	tion	rules	
-Repre	esentation of spec	bsorption and transition probabilities -bas		tions	osci	llator	
strengt	th. Electronic spo	bsorption and transition probabilities -bas tra -the width and intensity of spectra th	ransi		1	aimar	
approx	kimation -vibratio			Opp	enn	enner	
	fortrat diagram	tra -the width and intensity of spectra the	Born				
	-iortiat ulagraffi	tra -the width and intensity of spectra the ectra -electronic spectra of molecules -	Born ncipl	e -dis	ssoc	iation	
energy	U U	tra -the width and intensity of spectra the ectra -electronic spectra of molecules - nal coarse structure -Franck-condon prim	Born ncipl	e -dis -solv	ssoc	iation effect	15
energy on spe	ectra. Infra red s	tra -the width and intensity of spectra the ectra -electronic spectra of molecules - nal coarse structure -Franck-condon prin -Pre-dissociation -various types of transit	Born ncipl tions	e -dis -solv -harm	ent onic	iation effect c and	15
energy on spe anharm	ectra. Infra red s nonic oscillators	tra -the width and intensity of spectra to ectra -electronic spectra of molecules - nal coarse structure -Franck-condon prin -Pre-dissociation -various types of transit spectra -vibrational spectra -selection ru	Born ncipl ions iles tomi	e -dis -solv -harm c mo	ent onic	iation effect c and lles -	15
energy on spe anharm vibrati	ectra. Infra red s nonic oscillators on spectra of poly	tra -the width and intensity of spectra to ectra -electronic spectra of molecules - nal coarse structure -Franck-condon prin -Pre-dissociation -various types of transit spectra -vibrational spectra -selection ru -vibration and rotation spectra of dia	Born ncipl ions iles tomi	e -dis -solv -harm c mo al coo	ent onic lecu rdin	iation effect c and lles - ates -	15

molecules -vibrational F	Raman spectra -ro	tational fine structu	ure -Fermi resonar	nce.	
UNIT III- Classical Th	ermodynamics				
Third law, thermodyna	mics, need for it	, Nernst heat the	orem and other for	orms of	
stating the third law	. Thermodynami	ic quantities at	absolute zero,	apparent	
exceptions to the t	hird law - th	ermodynamics o	f systems of	variable	
composition, partial m	olar properties,	chemical potenti	al, relationship	between	
partial molar quantiti	es, Gibbs Duhe	m equation and	d its application	ns (the	15
experimental determin	nation of parti	ial molar prope	rties not inclu	ded) -	
thermodynamic prope	rties of real	gases, fugacity	concept, calcula	tion of	
fugacity of real gas	, activity and	activity coefficie	ent, concept, de	finition,	
standard states and	experimental d	leterminations of	activity and	activity	
coefficient of electroly	tes.				
UNIT IV- Electrochem	nistry II				
Dynamics of electron	transfer – Marcu	s theory – tunnel	ing – the rate of	f charge	
transfer – current densit	y – Butler-Volme	er equation – Taft	equation – 29 pola	arization	
and overvoltage – mech	anism of hydroge	en evolution and or	xygen evolution re	eactions.	
Principles of electroder	position of metals	s – corrosion and	passivity – Pourt	baix and	
Evans diagrams – met	hods of protection	n of metals from	corrosion. Power	storage	15
systems – fuel cells – co	onstruction and fur	nctioning – applica	tions – photovolta	nic cells	
UNIT V- Surface Phen	omena				
Adsorption and free e	energy reaction a	at interphase -pot	tential energy dia	agram -	
Lennard-Jones plot -sur	face area determi	nation -heats of ac	dsorption -determi	ination -	
adsorption from solutio	n -Gibbs adsorpti	ion theorem -solid	-liquid interface -	Wetting	
and contact angle -solid	l-gas interfaces -s	oluble and insolut	ble films. Surface	tension:	
methods of measuring	surface tension -	electrical phenome	ena at interface in	ncluding	15
electro kinetic phenom	enon -Micelles a	and reverse micel	les -solubilisation	· -micro	
emulsion or micellar en	nulsions. Role of	surface in catalysis	s: semiconductor of	catalysis	
-n-and p-type surfaces	-kinetics of sur	face reaction inv	olving adsorbed	species.	
Langmuir-Hinshelwood	mechanism of	f bimolecular re	action -Langmui	r-Rideal	
mechanism -Rideal-Ele	y mechanism.				
	LECTURE	TUTORIAL	PRACTICAL	TOTAL I	HOURS
	LLCICILL	IUIUMAL	INACIICAL	IUIALI	

#### **Reference Books**

- 1. K. Chandra, Introductory Quantum Chemistry, 4th ed., Tata McGraw Hill, 1994.
- 2. R. K. Prasad, Quantum Chemistry, 2nd ed., New Age International Publishes (2000),
- 3. I. N. Levine, Quantum Chemistry, 4th ed., Prentice Hall of India Pvt Ltd., (1994),
- 4. D. A. McQuarrie, Quantum Chemistry, University Science Books (1998),
- 5. S. Glasstone, Introduction to Theoretical Chemistry, Affiliated East-West Press
- 6. G. N. Barrow, Introduction to Molecular Spectroscopy, International Mc.Graw Hill Edition (1993),
- 7. G. N. Barrow, Introduction to Molecular Spectroscopy, International McGraw Hill Student Edition (1984),
- 8. B. P. Straughan and S. Walker, Spectroscopy, Vol.I to III, Chapman Hall, London (1976),
- 9. S. Glasstone, Thermodynamics for Chemists, East-west Affiliated Pvt Ltd, New Delhi (1969),
- 10. R. P. Rastogi and R. R. Misra, An Introduction to Chemical Thermodynamics Vikas Publishing House Pvt Ltd., (1992),

#### **Text Books**

- Kloz and P. M. Rosenberg, Chemiscal Thermodynamics: Basics Theory and Methods, 3rd ed., W. A. Benjamin, NY (1974),
- 2. K. J. Laidler, Chemical Kinetics, 2nd ed, Tata McGraw Hill (1975),
- 3. A. A. Frost and R. G. Pearson, Kinetics and Mechanisms, John Wiley & Sons (1953),

E-Resources

https://nptel.ac.in/courses/103106070/33 https://nptel.ac.in/courses/113108051/2 https://onlinecourses.nptel.ac.in/noc18_cy15/preview

COU	RSE CODE	COURSE NAME	L	Т	P	С
YCY2	203	INORGANIC PRACTICAL-II	0	0	6	3
C:P:A		0.6: 2.2:0.2	L	Т	Р	Η
			0	0	6	6
COU	RSE OUTCOMES		DC	MAIN		LEVEL
CO1	<i>Identify</i> the vario volumetric metho	us Metals ions in the solution using d	Cognit Psycho	tive omotor		emember rception
CO2	<i>Estimate</i> the an solution using gra	nount of Metal ions present in vimetric method.	. 0	tive omotor	U1 Se	nderstand t
CO3	<i>Synthesis</i> of vario	ous inorganic compounds.	Cognit Psycho Affect	omotor	Se	oply t cceiving

1.	Titrimetry (V) :	and Gravimetry (G	)		
		ution(s) should be gi			
	1. Cu (V) and Ni				
	2. Cu (V) and Zr				
	3. Fe (V) and Zn				
	4. Fe $(V)$ and Ni				
	5. Zn (V) and Cu				
2	Duene notion of				
2.	-	the following compo	ounas:		
		copper (II) sulphate.			
	2. Potassium tri	oxalatochromate (III	.).		
	3. Potassium tri	oxalatoaluminate (II	I).		
	4. Trithioureaco	opper (I) chloride.			
	5. Trithioureacc	opper (I) sulphate.			
		LECTURE	TUTORIAL	PRACTICAL	TOTAL
					HOURS
	Hours	-	-	90	90
Refe	rence Book				
1	A I Vogel "Oua	ntitative Inorganic A	nalysis" FLBS 3 ^{rc}	¹ Edition 1971	
	_	n, Inorganic Semimi	-		ional Pubs
2.	London, 1988.	i, morganic Seminik		19515, 510 Lu., Nat	101101 1 0005,
	London, 1700.				

3. G. Svehla, Text Book of Macro and Semimicro Qualitative Inorganic Analysis; 5th Ed., Longman group Ltd, London, 1987.

COUR	SE CODE	COURSE NAME			Τ	P	С
YCY20	)4	PHYSICAL PRAC	CTICAL-II	0	0	6	3
C:P:A		0.6: 2.2:0.2		L	Т	Р	Η
				0	0	6	6
					Ŭ		<b>`</b>
COUR	SE OUTCOMES			DOMAIN		LF	EVEL
CO1	Identify the stre	ength of various types	of solutions	Cognitive	R	emem	ber
	using conductom			Psychomoto		ercepti	
CO2		ssociation constants of		Cognitive		nderst	and
	conductometric r	nethod.		Psychomoto	r S	et	
CO3	1	ssociation constants, se	•	Cognitive	:	pply	
	activity coeffic			Psychomoto		et	
	potentiometric m	ethod.		Affective	R	eceivii	ng
Any te	n experiments (t	to be decided by the	course teache	er) out of th	e fo	lowin	g
xperi	ments.						
		id- alkali titrations.					
2. Cor	nductometry - Pre	cipitation tritrations.					
3. Cor	nductometry - Dis	splacement titrations.					
4. Cor	nductometry - De	termination of dissoci	ation constant	t of weak ac	ids.		
5. Cor	nductometry - Sol	lubility product of spa	ringly soluble	e silver salts	•		
6. Cor	nductometry- Ver	ification of Onsager e	equation				
7. Cor	nductometry - De	termination of degree	of hydrolysis	and hydrol	ysis (	consta	nt of a
sub	stance.						
8. Cor	nductometry - To	determine the relative	e strength of t	wo acids.			
9. Pot	entiometric titrati	ions - Acid alkali titra	tions.				
10. Pot	entiometric titrati	ions - Precipitation tit	rations.				
11. Pot	entiometric titrati	ions - Redox titrations	5.				
12. Pot	entiometry - Dete	ermination of dissocia	tion constant	of weak aci	ds.		
13. Pot	entiometry - Dete	ermination of solubilit	y of silver sal	ts.			
	•	ermination of activity	•		f ion	5.	
		itration of ortho -pho					
16. Pot	entiometry- To de	etermine the pH of a l	ouffer solution	ı using quin	hydr	one ele	ectrode.
	LECT	TURE TUTORIAL	PRAG	CTICAL		ΤΟΤΑ	L HOUR
	Hours -			90			90
Refere	<u>.</u>				I.		~~
		ed Practical Physical c	hemistry", 20th	h edn. GOEI	_ pub	lishing	g House,
	shna Pakashan Me				-		
		Physical Chemistry" Re	evised and edite	ed by B. P. I	evitt	9th ed	••
Lor	ngman, London, 19	985.					
3. J. N	I. Gurtur and R. K	apoor, "Advanced Exp	erimental chen	nistry", Vol.	I. Cł	and &	Co., Lt
3. J.N	I. Gurtur and R. K	apoor, "Advanced Exp	erimental chen	nistry", Vol.	I. Cł	and &	Co., Ltd

	RSE CODE	COURSE NAME		Τ	`	P	C
		SOLID STATE CHEMISTRY-IA	4	1		0	5
YCY2	05A						
C:P:A		4.5:0:0.5	L	T	•	Р	H
			4	1		0	5
COUF	RSE OUTCOM	MES: On the successful completion of	DOMA	IN	1	LEV	EL
		will be able to					
CO1		concepts of crystal structure and basics gineering of organic solids.	Cognitiv	ve	Und	lersta	nd
CO2		and <i>Report</i> the chemical properties of anic frameworks and their applications.	Cognitiv Affectiv			lersta pond	nd
CO3	<i>Interpret</i> var	rious method for preparation and	Cognitiv Affectiv		App	oly	
<b>CO4</b>	crystallizatio	he magnetic and optical properties of	Cognitiv		Rec	eive nemb	or
004	inorganic so		Affectiv			pond	
CO5	Apply and	<i>Identify</i> the various concepts of solid try with respect to organic solids.	Cognitiv		App		
CVI I	ABUS:		1				
UNIT	I- Crystal St	ructure and Crystal Engineering of C	Organic S	Soli	ds		
FCC,	radius ratio r	cing - hcp and $ccp - packing$ efficiency ule - applications - polyhedral description 20, Cs ₂ O, rutile, perovskite (ABO ₃ ), Ref.	iption of	SO.	lids -	_	
FCC, structu and an carbox covale covale supran pharma UNIT M.O.F combin ladders bonds NLO a	radius ratio r are types: Nag ntispinels. Hyd yl / halide mo nt interaction ntsynthesis— pe nolecular iso aceutical phase <b>II- Metal Or</b> is (Metal Con ations of diff s, networks, in metal comp and OLED mat	ule – applications – polyhedral description 20, $Cs_2O$ , rutile, perovskite (ABO ₃ ), Rec drogen bonded supramolecular patterns atifs – concepts of different types of synth ons – principles of crystalengineers olymorphism and pseudopolymorphism and cryst morphism, polymorphism and cryst es. <b>ganic Frameworks</b> Organic Frameworks) – organomet ferent interactions to design molecular etc. Design of nanoporous solids. Introduces – implications for drug design – crysterials.	iption of D ₃ , K ₂ NiI involvin nons base ring ar norphism tal engin allic sy ar rods, terligand ystal engin	so. F ₄ , s g w d on nd eeri sten tria hyd	lids - pinel vater n non ng o ng o ns - ngles lroger	- s / - f f	
FCC, structu and ar carbox covale covale supran pharma UNIT M.O.F combin ladders bonds NLO a UNIT	radius ratio r are types: Nag ntispinels. Hyd cyl / halide mo nt interaction ntsynthesis- po nolecular iso aceutical phase <b>II- Metal Or</b> is (Metal <b>O</b> nations of diff s, networks, in metal comp and OLED mat <b>III- Prepara</b>	ule – applications – polyhedral description 20, Cs ₂ O, rutile, perovskite (ABO ₃ ), Reference drogen bonded supramolecular patterns tifs – concepts of different types of synth ons – principles of crystalengineer olymorphism and pseudopolymorphism and cryst es. <b>ganic Frameworks</b> Organic Frameworks) – organomet ferent interactions to design moleculation etc. Design of nanoporous solids. Inter olexes – implications for drug design – cryst	iption of D ₃ , K ₂ NiH involvin hons base ring ar horphism tal engin allic sy ar rods, terligand ystal engin	so. F4, s g w d on nd eeri tria hyc neer	lids - pinel vater n non ng o - ng o - ng o - ng o - ing o	- s / - f f - s, n f 15	

	1		omparison of diffe and dry high pres	
UNIT IV -Magne	tic Materials and	<b>Optical Propert</b>	ies	
alloys, transition Magnetoplumbites transformer, inform magnets. Lumines general commen	metal oxides, spi – applications nation storage, mag scence, Lasers nts, configurations kes phosphors – las	inels, garnets, ilr s – structure/ gnetic bubble mer and phosphors al coordinate n sers – the ruby lase	properties – metals nenite and perovsk property relations nory devices, perma – definitions nodel, some phos r, Neodymium lasers	ites. – nent and phor 15
reactions – confor packing effects form, $\beta$ form,	mational effects – photodimerizat: γ form) – pho ons of diacetylenes.	<ul> <li>intermolecular</li> <li>ion of 2-etho</li> <li>otopolymerization</li> <li>Asymmetric synt</li> </ul>	of 2,5-distyrylpyrazi heses – dimerizatio	cular (α ne –
	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
Hours REFERENCE BO	<u>60</u>	15	-	75
sons, New Y 2. J. M. 3. G. R Amsterdam, 4. G. R.	ork, 2014 (Unit III Lehn, Supramolecu . Desiraju, Crysta 1989.	– V). lar Chemistry; VC l Engineering: T Steiner, The Weak	H, Weinheim, 1995. he Design of Orga x Hydrogen Bond in	Ed., John Wiley and anic Solids; Elsevier, Structural Chemistry
<b>TEXT BOOKS</b>				
Sons, New 2. G. A.	York, 1999.	on to Hydrogen	Bonding; Oxford U	Vol 5, John Wiley and
E-RESOURCI (i) <u>http://www</u>	i. E <b>S</b> . <u>pubs.acs.org/journa</u> .rsc.org/Publishing/			

COURSE CODE	COURSE NAME	L	Т	P	С
YEC205B	SUPRAMOLECULAR CHEMISTRY-IB	4	0	0	5
C:P:A	4.0:0.5:0.5	L	Т	Р	Н
		4	1	0	5

	E OUTCOMES: On the successful completion of the	DOMAIN	Ι	LEVEL			
course, st CO1							
	chemistry; <i>Display</i> the synthons based interactions and polymorphism.	Psychomotor	Un Set	derstand			
CO2	<i>Summarize and Report</i> the chemical properties of Metallo organic frameworks and their applications.	Cognitive Affective		derstand spond			
CO3							
CO4	<i>Describe</i> the reactivity of supromoleclar compounds and the mechanism of catalysis.	Cognitive Psychomotor		alyze rception			
CO5	<i>Identify</i> the applications of various supramolecular compounds.	Cognitive		nember			
SYLLAF	BUS:						
UNIT I-	Concepts of Supramolecular Chemistry						
Concepts and languages of supramolecular chemistry – various types of non-covalent interactions – hydrogen bonds, C-H···X interactions, halogen bonds – $\pi$ - $\pi$ interactions, non-bonded interactions – various types of molecular recognition.Crystal engineering of organic solids – hydrogen bonded supramolecular patterns involving water / carboxyl / halide motifs – concepts of different types of synthons based on non-covalent interactions – principles of crystal engineering and non-covalent synthesis – polymorphism and pseudopolymorphism – supramolecular isomorphism / polymorphism – crystal engineering of pharmaceutical phases. <b>UNIT II -Metallo-Organic Frameworks</b>							
M.O.F (Metallo Organic Frameworks) – organometallic systems – combinations of different interactions to design molecular rods, triangles, ladders, networks, etc. – design of nanoporous solids – interligand hydrogen bonds in metal complexes – implications for drug design – crystal engineering of NLO materials, OLED. UNIT III- Co-receptor Molecules and Multiple Recognition							
Dinuclear molecular cyclophar	and polynulclear metal ion cryptates – linear r length by ditopic co-receptors – heterotopic	co-receptors olecular cages	of 	15			

### UNIT IV- Supramolecular Reactivity and Catalysis

	1
Catalysis by reactive macrocyclic cation receptor molecules – catalysis by	
reactive anion receptor molecules – catalysis with cyclophane type receptors –	
supramolecular metallocatalysis – cocatalysis – catalysis of synthetic reactions –	
biomolecular and abiotic catalysis. Supramolecular chemistry in solution – cyclodextrin, micelles, dendrimers, gelators – classification and typical reactions – applications.	15
applications.	
UNIT V- Supramolecular Devices	
Supramolecular devices and sensors – various types of supramolecular devices – an	
overview – supramolecular photochemistry – molecular and	

supramolecular photonic devices – light conversion and energy transfer devices – molecular and supramolecular electronic devices – electronic conducting devices – molecular wires, modified and switchable molecular wires – molecular and supramolecular ionic devices – tubular mesophases, molecular protonics – switching devices – electro-photo switch – ion and molecule sensors – role of supramolecular chemistry in the development of nanoscience and technology.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
Hours	60	15	-	75

#### REFERENCES

1. J. M. Lehn, Supramolecular Chemistry; VCH, Weinheim, Germany, 1995.

2. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids; Elsevier, United States, 1989.

3. G. R. Desiraju, and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press, Oxford, 1999.

#### **TEXT BOOKS**

- 1. G. A Jeffrey, Introduction to Hydrogen Bonding; Oxford University Press: UK, 1997.
- 2. J. M. Lehn, Transition Metals in Supramolecular Chemistry; John Wiley and Sons: New York, 1999.
- 3. G. R. Desiraju, Current Science; 2001, 81, 1038.

#### **E-RESOURCES**

(i) http://www.pubs.acs.org/journals/cgdefu/index.html

(ii) http://www.rsc.org/Publishing/ Journals /ce/ index.asp

		SEMESTER III	L	Т	Р	С
COUI	RSE CODE	COURSE NAME	4	1	0	5
YCY3		ORGANIC CHEMISTRY II		T	P	H
C: P:		4.5:0:0.5	4	1	0	5
	RSE OUTCON		Domain Level			vel
CO1						
CO2	reactions of aniphatic and aromatic compounds.					mber
CO3		eagents of various rearrangement reaction the mechanism of the addition and eactions	Cogniti	ve	Apj Under	
CO4	of various he	d <i>Interpret</i> the preparation and properties terocyclic compounds	Cogniti Affectiv	ve		ceive
CO5		and <i>Examine</i> the structural components natural products.	Cogniti Affecti		Anal Rece	•
UNIT	I - NUCLEO	PHILIC SUBSTITUTION REACTIONS			1	5
stereod rearran Aroma orienta nucleo UNIT Arom on tran oxide of Han mecha Equati Alipha coupli	chemical factor agements inv agements. atic nucleophi tion – Ullman philic substitut <b>II - ELECTR</b> atic electrophil asition state the quantitative tre mmett equation nisms Hamme on. tic electrophili	arbons. Reactivity – effect of structure, nu- ors – correlation of structure with rea- rolving carbocations – Wagner-Meer- lic substitutions – SN1, SNAr, Benzy- nn, Sandmeyer and Chichibabin reaction ion – Stevens – Sommelet- Hauser and von <b>OPHILIC SUBSTITUTION REACTION</b> lic substitution reaction – orientation, reac- ory with suitable reactions – substitutions i atment of the structural effects on reactivity n – principles of Hammett correlation – e tt parameters – $\sigma$ and $\rho$ , modified forms c substitution – SE2, SEi and SE1 mechani metals as electrophile in substitution reac	ctivity – wein ar ne mech – rearra -Richter r NS ctivity and n thiopher y. Substitu effect of s s of Ham sms – diaz	sol and anism ngen earra l me ar ne ar ne ar truct truct mett	vent eff dienone- m – rea nents inv angement chanisms nd pyridin effects – cure on re cure on re	ects – phenol activity volving ts. <b>15</b> s based ne – N- origins eaction n, Taft
		ON AND ELIMINATION REACTIONS				15
addition bromin to form carborn dimeth carborn conden Elimin	ons – orientation ne and hydroge mation of alco nyl systems – nylcuprate) – ac not on a content not on a con	carbon multiple bonds – electrophilic, r on of the addition – stereochemical factor on bromide, hydroxylation, 1,2- dihydroxyl hols – oxidation and ozonolysis. Addition mechanism – Grignard reagents – 1,2 ddition to ble bond – Benzoin, Knoevenagel, Sto formatsky reactions. s – mechanisms; E1, E2, E1cB – ster ev's rules – competition between elimination	rs influence lation – hy n to carbo - and 1,4 bbe, Dara reochemis	cing /drol onyl 4-ado zens try	the addi boration I and conj ditions ( glycidio of elimi	tion of leading jugated lithium c ester nation,

cis-elimination, Chugaev reaction – examples such as Hofmann degradation, Cope elimination – Bredt's rule with examples.

UNIT IV - HETEROCYCLES

Nomenclature: Trivial, systematic and replacement nomenclature – nonaromatic heterocycles – synthesis of tetrahydrofurans – pyrrolidines – tetrahydropyrans – piperidines. Synthesis and reactivity of heterocycles: aziridines – oxiranes – thiiranes – azetidines – oxetanes – oxazoles – imidazoles – thiazoles – isooxazoles. Synthesis and reactivity of aromatic heterocycles: pyrazoles – isothiazoles – triazoles – pyrimidines – purines – triazines – pyridazines – pyrazines.

#### **UNIT V - NATURAL PRODUCTS**

15

15

Terpenoids: introduction – biosynthesis of menthol, camphor – total synthesis: Takasago synthesis of menthol, Corey's synthesis of longifolene, Curran's synthesis of hirsutene.

Steroids: introduction – partial synthesis of androsterone and testosterone (from Cholesterol) – total synthesis: Johnson's synthesis of progesterone and Vollhardt's synthesis of estrone. Alkaloids: introduction – biosynthesis of nicotine, camptothecin – total synthesis: Corey's synthesis of epibatidine, Comin's asymmetric synthesis of Camptothecin and Woodward's synthesis of reserpine.

LECTURE	TUTORIALS	SELF STUDY	PRACTICAL	TOTAL				
60	15	-	-	75				

#### TEXT BOOKS

1. S. H. Pine and J. B. Hendrickson, D. J. Cram and G. S. Hammond, Organic Chemistry; 5th Ed., McGraw Hill, Noida, (1987).

2. T. H. E. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry; 3rd Ed.,

Benjamin-Cummings Publishing, USA, (1997).

- 3. J. March and M. B. Smith, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th Ed., Wiley, New York, (2007).
- 4. J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry, 2nd Ed., Oxford University Press, UK, (2012).
- 5. I. L. Finar, Organic Chemistry; Vol.II, 7th Ed., Pearson Education Ltd., New Jersey, (2009).

#### REFERENCES

1. R. K. Bansal, Reaction Mechanism in Organic Chemistry; Tata McGraw Hill, Noida, (1990)

2. F. A. Carey, and R. J. Sundberg, Advanced Organic Chemistry, Parts A and B, 5th Ed., Springer, Germany, (2007).

3. E. J. Corey, and X-M. Cheng, The Logic of Chemical Synthesis; 1st Ed., Wiley-Interscience,

New York, (1995).

- 4. T. L. Gilchrist, Heterocyclic Chemistry; 3rd Ed., Prentice Hall, New Jersey, 1997.
- 5. R. K. Bansal, Heterocyclic Chemistry; 3rd Ed., Wiley Eastern Ltd, New Delhi, 1999.
- 6. K. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis, Targets, Strategies, Methods; Wiley VCH, Germany, 1996.
- 7. Longifolene: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry; Vol.2. 5th Ed., Springer, Berlin, 2008.
- 8. Androsterone and Testosterone: J. Chem. Soc. Perkin Trans. I; 1986, 117.
- 9. Epibatidine: J. Org. Chem; 1993, 58, 5600.
- 10. Estrone, Estradiol and 2-Methoxyestradiol: J. Org. Chem; 2009, 74, 6362.

COUI	RSE CODE	COURSE NAME	L	Т	Р	С					
YCY302		PHYSICAL METHODS IN CHEMISTRY- I	4	1	0	5					
PREF	REQUISITE	NIL	L	Т	Р	Η					
	C:P:A	4.5:0:0.5	4	1	0	5					
COUI	RSE OUTC	DMES	DOM	ЛАIN	LE	VEL					
After t	he completi	on of the course, students will be able to	-								
<b>CO1</b>	<i>Explain</i> th	basic principles of molecular spectroscopy.	Cogn	itive	Under	stand					
CO2		undamentals of NMR spectroscopy and interpret pectra of organic compounds.	Cogn	itive	Remer Under						
CO3		principles of UV, and IR spectroscopy &	Cogn	itive	Understand						
000		IR and UV active organic compounds	~		Apply						
<b>CO4</b>		echniques of ESR, ORD and Mass spectroscopy	Cognitive		Apply						
	0	compounds.	Affective Respond								
CO5		e X-ray, electron, neutron diffractions of simple	Cogn		Analy						
TINIT	compound		Affec	tive	Receiv	ve					
UNI	PRI	CIPLES OF MOLECULAR SPECTROSCOPY	Y			15					
Interac	ction of elec	tromagnetic radiation with molecular systems, M	icrowa	ve sp	ectrosco	ору –					
	-	f diatomic molecules, rigid and non-rigid rotors -		-	-						
	-	ic substitution – microwave spectra of polyatomi									
•	-	olecules – infrared spectra – diatomic molecule									
		tors – diatomic vibrating rotator rotation – vibra									
	monoxide - interaction of rotation and vibration (breakdown of Born-Oppenheimer										
	approximation) – influence of the rotation on the spectrum of polyatomic molecules, linear and										
•	-	lecules, parallel and perpendicular vibrations – in				-					
Ramar	n spectra — r	tational Raman spectra of linear and symmetric to	Raman spectra – rotational Raman spectra of linear and symmetric top molecules – vibrational								

Raman spectra – rotational Raman spectra of linear and symmetric top molecules – vibrational Raman spectra – rotational fine structure – electronic spectra of diatomic molecules – vibrational coarse structure – intensity of vibrational lines in electronic spectra – rotational fine structure – fortrat diagram.

UNIT II NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY	15							
¹ H NMR Spectroscopy – multiplicity – coupling constant – spin-spin splitting – vicinal and								
geminal coupling constants - Karplus equation - long range coupling constants, influence of								
stereochemical factors on chemical shift of protons. Simplification of complex	x spectra –							
double resonance techniques, shifts reagents - chemical spin decoupling	of rapidly							
exchangeable protons (OH, SH,								
COOH, NH, NH ₂ ) – an elementary treatment of NOE phenomenon. ¹³ C NMR Spe	ectroscopy –							
broad band decoupling - off resonance decoupling - chemical shifts of common	n functional							
groups - FT NMR and its importance-DEPT spectra - identification of small	1							
based on NMR data – 2D techniques: 1H–1H COSY, ¹ H– ¹³ C HETCOSY – NOESY	ζ.							
UNIT III UV-VISIBLE AND IR SPECTROSCOPY	15							
UV-Visible spectroscopy – introduction – instrumentation, sampling techniques –	Woodward-							
Fieser and Scott's rules for conjugated dienes and polymers, ketones, alder	hydes, $\alpha,\beta$ -							
unsaturated acids, esters, nitriles, and amides - differentiation of geometrical i	somers and							
positional isomers – disubsitituted benzene derivatives – study of steric effect in arc	omaticity.							
Infrared spectroscopy - Introduction - instrumentation, sampling techniques								
influencing group frequencies - quantitative studies - hydrogen bonding (interme	plecular and							

intramolecular).								
UNIT IV ESR, ORD AN				15				
ESR – basic principles – comparison between ESR and NMR spectra – hyperfine splitting – applications to organic free radicals								
applications to organic free radicals.								
Optical rotatory dispersion and circular dichroism - introduction to theory and terminology -								
cotton effect – ORD curves -								
applications – applications of			0	ocyclic ketones				
– comparison between ORD a			1					
Mass Spectrometry – instrum				-				
isotopic peaks, metastable pe	-			-				
molecular ion peak – fragm		0 1	Ũ	on for various				
classes of compounds, McLat	fferty rearra	angement – nitroge	en rule.					
UNIT V X-RAY DIFFE	RACTION			15				
X-Ray diffraction by single c	rystal meth	od – space groups	- systematic absence	s in X-ray data				
and identification of lattice t								
factor and its relation to inter								
heavy atom method and direct								
– a brief account of Cambridg			-					
Electron diffraction by gase	s – scatter	ring intensity vs.	scattering angle, Wie	erl equation –				
measurement techniques. Net								
techniques – elucidation of st	ructure of r	nagnetically ordered	ed unit cell.					
LECTURE TUTO	ORIAL	SELF STUDY	PRACTICAL	TOTAL				
60	15	-	-	75				
TEXT BOOKS								
1. C. N. Banwell, Fundamen	tals of Mol	ecular Spectroscop	y; 4th Ed., McGraw H	Hill Education,				
Noida, 1994.								
2. B. P. Straughan and S. W	alker, Spec	troscopy; Vol.3, H	alstead Press, Sydney	, 1978.				
3. G. M. Barrow, Introduction	on to Molec	cular Spectroscopy	; McGraw Hill, New `	York,1964.				
4. P. K. Ghosh, Introduction								
5. P. M. Silverstein and amd	l F. X. Wes	tern, Spectroscopic	c Identification of Org	ganic				
Compounds;								
8th Ed., John Wiley, New	York, 201	4.						
REFERENCES								
1. W. Kemp, Organic Spectro	<b>1</b> • ·	- <b>-</b>						
2. J. R. Dyer, Applications of	f Absorptio	n Spectroscopy of	Organic Compounds,	PHI				
Learning,								
New Delhi, 2009.								
3. Y. R. Sharma, Elementary	Organic Sp	ectroscopy – Princ	ciples and Chemical a	pplications; S.				
Chand, New Delhi, 1992.								
4. P. S. Kalsi, Spectroscopy	of Organic	Compounds; 6th E	d., New Age Internati	ional				
Publishers,								
New Delhi, 2004.	- ·			2				
5. W. Clegg, Crystal Structur			• •					
6. G. H Stout and L. H. Jense	n, X-ray St	ructure Determinat	tion: A Practical Guid	e; John Wiley				
and N. N. 1 1002								
Sons, New York, 1992.	11 1 7	. 1.0	1					
7. J. P. Glusker and K. N. Tru		ystal Structure Ana	alysis: A Primer; 3rd l	Ed., Oxford				
University Press, UK, 201	0.							

8. D. N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques; University

Press, Hyderabad, 2001.

#### **E REFERENCES**

- 1. Web Pages: Cambridge Structural Database (CSD)-
- http://www.ccdc.cam.ac.uk/products/csd/Protein Data Bank (PDB)
- 2. http://www.rcsb.org/pdb/home/home.do

COUR	SE CODE	COURSE N	AME		L	4	Т	P	С
YCY3	)3	ORGANIC PRACTICA	CHEMISTR AL –I	Y	0	)	0	6	3
PRER	REREQUISITE Nil				L	4	Т	Р	H
C:P:A	C:P:A 1.8: 0.8:0.4				0	)	0	6	6
COURSE OUTCOMES				D	OMAI	Ň	LEVEL		
CO1	-	individual org	-	ents present		gniti choi	ve motor		Understand Perception
CO2		-	int/boiling po /individual		-	gniti choi	ve motor		Understand Set
CO3	÷	ature of function	onal group pr	esent in the	Psy	gniti choi ectiv	motor		Apply Set Receive
Mixtur separat 2. Prep 1. Metl 2. Gluc 3. Resa 4. Benz 5. <i>o</i> -Ch 6. <i>p</i> -Be	es containing t ion) – The phy paration of or nyl- <i>m</i> -nitroben ose pentaaceta cetophenone f cophenone oxi lorobenzoic ac nzoquinone fr	sis of an organ wo component visical constants ganic compound zoate from met ate from glucos from resorcinol me from benzo cid from anthra om hydroquino hol from anilin	s are to be sep are to be repo nds (single sta thylbenzoate ( e (acetylation) (acetylation) phenone (add unilic acid (Sap one (oxidation e (diazotizatio	parated (pilot prted (analys age) (nitration) ) ition) ndmayer read ) pn)	t sepa is).	)	on) and	-	
	1	HOURS	LECTURE 0	TUTORIA 0	AL	PR	<u>ACTIO</u> 90		TOTAL 90
1. J. M 2. V. H Inte 3. N. S (198	<b>BOOKS</b> Johan, Organic X. Ahluwalia, I rnational, (200 5. Gnanaprakas 7).	Analytical Ch P. Bhagat, and	emistry: Theo R. Agarwal, L namurthy, Or	ry and Pract aboratory T ganic Chemi	echni istry I	ique:	osa, (20 s in Or _t Manua	ganic ( l; S.V.	Chemistry; I. K. Printers,

of Practical Organic Chemistry; 5th Ed., Prentice Hall, (1989).

COURS	SE CODE	COURSE NA	ME		L	Т	P	C
YEC304						1	0	5
PRERE	QUISITES	Nil			L	Т	Р	Η
C:P:A		4:0:1			4	1	0	5
COURS	SE OUTCO	MES		DOM	AIN	LE	VEL	
CO1	Recall the	l Cogni	tive	Rer	nemb	er		
	chemistry.		Uno	lersta	ind			
CO2	Outline th	Dutline the structural aspects of antibiotics and Cognitive Understar						
		r functions						
CO3		he biological activity	ities of analgesic	Cogni	tive		nemb	
	and antipy	retics.					lersta	ind
				Affect			eive	
CO4			naesthetics and loca				lersta	
	anaesthetic			Affect			pond	
CO5	•	the various concept	ts of clinical	Cogni			alyze	
	chemistry.			Affect	ive		pond	
UNIT I			EUTICALCHEM				5	
			acology, pharmacy,					
			plants – first aid –					
			naintaining breathin					
			phoid, malaria, ch					
-	-		- medicinally imp		mpot	inas	01 11	011 –
UNIT I		BIOTICS	ferric ammonium c	illale.			15	
			fication and biolo	voical ac	tions			illin
			racycline – structu	0			-	
	L .	1 1	cological activity –	· <b>I</b>			-	
		-	oups, hydroxyl grou				1011, 1	main
UNIT I		GESIC AND AN	<u> </u>		<u>u 510</u>	aps.	15	
			of morphine – deri	vatives o	f mor	phine	-	eroin
			s - pethidine, methi					
-	-		i – analgin – prepa					-
-	-	rofen – structure ar	• • •	× 1	I			
UNIT I	<b>Ť</b>		LOCAL ANAEST	HETICS	5		15	
Characte	eristics of a	naesthetics – classi	ification of anaesth	etics – ge	eneral	anae	esthet	ics –
			m and halothane –	0				
			s anaesthetics) – me					
structure	e and uses -	- cocaine and ame	thocaine - structur	e and use	es – t	enzo	caine	and
procaine	e – structure	,						
synthesi	s and uses.							
UNIT V		ICAL CHEMISTE					15	
			erum – <i>o</i> -toluidine					
U			tion of diabetes – de					
			haemoglobin (Hb co					
LEC	TURE	TUTORIAL	SELF STUDY	PRACT	ICAI	' ا <u>،</u>	ТОТ	AL
	60	15	-	-			75	,
TEXT I	BOOKS							
			Pharmaceutical Che	mistry; $\overline{5}$	th Ed	., S. <del>C</del>	Chand	and
Compan	y Ltd., New	^v Delhi, (2014).						

#### REFERENCES

1. S. Lakshmi; Pharmaceutical Chemistry; 1st Ed., S. Chand and Company Ltd., New Delhi, (1995).

2. Bhagavathi Sundari; Applied Chemistry; 1st Ed., MJP Publishers, Chennai, (2006).

COURSE CODE		COURSE NAME	L	Т	Р	С	
YCY304B		ELECTR-ORGANIC CHEMISTRY	4	1	0	5	
PREREQUISITES		Nil	L	Т	P H		
C:P:A		4.4:0:0.6	4	1	0	5	
<b>COURSE O</b>	UTCOM	ES: On the successful completion of the	DOM	MAIN LEVEL			
course, stude							
CO1		the basic concepts of electron transfer	Cognitive			Remember	
		s and also the fundamentals aspects of			Understand		
C03		nemical methods.	Casa	4:	Line	lanatand	
CO2	cofactor	<i>e</i> the structure and activity of enzymes and	Cogni Affect			lerstand pond	
CO3	conactor		Cogni			lerstand	
005	Identify	the properties of lipids and nucleic acids.	Cognitive		Apply		
	Iueniijy	the properties of lipids and indefete acids.	Affective		Respond		
CO4	Summa	<i>rize</i> the concept of bioenergetics.	Cogni	tive	Understand		
	Summa	the concept of biochergetics.		1110		ici stallu	
CO5	Compar	<i>e</i> the principles of lead and analogue	Cognitive		Analyze		
	synthesi		Affective		Receive		
UNIT I	~	CONCEPTS OF ELECTRO ORGANIC	SYNTI	HESIS		15	
Introduction,	fundame	ental aspects of electron transfer reaction	on : o	xidatio	on, re	duction	
		cansfer reactions in organic chemistry and e					
1		n and theory of outer sphere electron transfe					
		henomena, monitoring a half-reactions, ge					
		henomena – Mass transfer in electrochemi			ental	aspects,	
UNIT II	METH	mical methods, Transient electrochemical m			CAT	15	
	REACT		INUCI		CAL	15	
Introduction,		veep voltammetry and cyclic voltammetry, 1	Experin	nental	setup	, simple	
		n, electron transfer reaction followed b					
solutions, li	miting e	xperimental factors – potential step a	nd cur	rent s	tep	method,	
-	•	hronocoulometry, chronopotentiometry – p	olarogr	aphy -	- metl	nods for	
determination of number of electrons.							
UNIT III CATHODIC REDUCTIONS						15	
Introduction,	formatio	n of radical anions, dianions and polyani	ons, ex	perime	ental	aspects,	
thermodynam	nics kine	etics, addition of electrophilic reagent	and and	relat	ed r	eaction,	
		chemical reduction of halogenated comp				0	
alkanes, halogenated aromatic compounds, acyl halides, aliphatic alpha - halo carbonyl							
compounds, cathodic reduction of nitro and related compounds, Aliphatic nitro compounds,							
		inds(preparation of para amino phenol nitr			trami	nes and	
		l reduction of carbonyl compounds, general				15	
UNIT IVANODIC OXIDATION OF ORGANIC COMPOUNDS15Introduction, general mechanistic consideration, directs anodic oxidation, indirect anodic							
oxidation. Anodic oxidation of hydrocarbons, nitrogen containing compounds.							
Electrosynthesis of Bioactive materials Introduction, simple Kolbe oxidation: application to							
synthesis of (+) - $\alpha$ onxerin and (+) - pentacyclosqualene, Kolbe cyclisation and Tandem							
,	(1) 0.0		e cycli	sation	and '		
cyclization.	(1) 40		e cycli	sation	and '		

Paired electro organic synthesis, simple examples – electrogenerated reagents Homogeneous redox catalysts – General aspects of indirect electron exchanges, pure redox catalysis (general case) – use of indirect electrochemical reactions in sythesis, oxidations, reductions – Electrogenarated superoxides. Electrochemical partial fluorination: Introduction, Anodic fluorination of aromatic compounds, olefins, carbonyl compounds, heterocyclic compounds. Electro enzymatics synthesis: Introduction, principles of redox catalytic enzyme activation and co-factor regeneration – electroenzymatic reductions and oxidation (simple examples only).

LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL			
60	15	-	-	75			

#### **TEXT BOOKS**

1. Organic electrochemistry by Henning Lund & Ole Hammerich, , 4th edition, Publisher: Marcel Dekker, Inc, New York

2. S. Warren, Designing Organic Synthesis: The Disconnection Approach; 2nd Ed., Wiley, New York, 2008.

#### REFERENCES

1. N. C. Price and L. Stevens, Fundamental of Electrochemistry; Oxford UniversityPress, UK, (1999)

2. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry: Part-A and Part-B; 5th Ed., Springer, Germany, (2008).

3. H. B. Kagan, Asymmetric Synthesis; Thieme Medical Publishers, Germany, (2009)

COURSE CODE	COURSE NAME	L	Т	P	С	
			-			

YCY3	305	ANALYTICAL CHEMISTR	Y	4	1	0	5
PRER	REQUISITES	NIL		L	Т	Р	Н
C:P:A		4.4:0:0.6		4	1	0	5
	- RSE OUTCOMES		Domain	Lev		Ū	U
CO1		c principle of instrumental	Cognitive	Ren	nembe erstai		
CO2	<i>Classify</i> the vario show their signific	us types of analytical error and cance.	Cognitive	1	Remember, Understand		
CO3	<i>Inspect</i> the applic chromatography.	ation of various techniques in	Cognitive Affective	Ana Rece	•		
CO4	thermoanalytical and fluorescence techniques.		Cognitive		erstai lyze	nd,	
CO5	<i>Examine</i> the concept of electroanalytical		Cognitive Affective	Ana	lyze,	Resp	ond
Variou binom popula estima Hypot means Curve residu fit – r <b>UNIT</b> Solver	us types of error – tial distribution, the ation and sample, re- tors, repeatability a thesis testing, level is t-Test, paired t-Te fitting, fitting of l als – general polyne and its abuse – mul <b>III: CHROMAT</b> nt extraction – prin	<b>CRROR ANALYSIS</b> accuracy, precision, significant ne Poisson distribution and nor mean, variance, standard deviation and reproducibility of measureme s of confidence and significance st – analysis of variance (ANOV inear equations, simple linear car omial equation fitting, linearizing tiple linear regression analysis, e <b>OGRAPHY</b> ciples of ion exchange, paper, the lisorbents, methods, Rf values, M	rmal distribution on, way of quoti- nts. (a, test for an out (A) – correlation a ases, weighted li- g transformations lementary aspect (hin-layer and co	on – de ng unce lier, test and regra inear cas s, expon- ts.	scribi rtaint ing v ession se, an ential roma	ing o y, ro arian 1. alys func togra	data bus is o tion 1: aphy
HPTL colum UNIT	C, HPLC techniqu n – GC-MS technic <b>IV: THERMOA</b>	es – adsorbents, columns, detec jues – methods, principles and us NALYTICAL METHODS ANI	tion methods, es es.	stimatior			
Princip Therm titratic Basic	hal Analysis (DTA ons – types – advan aspects of synch	ions and applications of thermog A) and Differential Scanning tages. ronous fluorescence spectrosco (quantization) – instrumentation	- Calorimetry ( py – spectral	(DSC) -	-theri	nom	etrio
UNIT	V: ELECTROAN	ALYTICAL TECHNIQUES					1:
Floctr	ochemical sensors.	ion-sensitive electrodes, glass	– membrane e	lectrode	s. so	lid-li	ani

membrane electrodes – ion-selective field effect transistors (ISFETs) – sensors for the analysis of gases in solution.

Po larography – principles and instrumentation – dropping mercury electrode – advantages – Ilkovic equation – applications of polarography – polarographic maxima – oscillographic polarography, AC polarography – cyclic voltammetry – advantages over polarographic techniques – chronopotentiometry – advantages – controlled potential coulometry – amperometric titrations: principles – techniques – applications – estimation of lead.

LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	ТОТ
				AL
60	15	-	-	75

### TEXT BOOKS

1. D. B. Hibbert and J. J. Gooding, Data Analysis for Chemistry; Oxford UniversityPress, UK, 2006.

2. J. Topping, Errors of Observation and Their Treatment; 4th Ed., Chapman Hall, London, (1984).

3. A. Braithwaite and J. F. Smith, Chromatographic Methods; 5th Ed., Springer, Germany; (1995).

4. V. K. Srivastava and K. K. Srivastava, Introduction to Chromatography; 2nd Ed., Holden Day,

New York, (1985).

5. H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, Instrumental Methods of Analysis; 6th

Ed., CBS Publishers and Distributors, Chennai, (1986).

- 6. D. A. Skoog, D. M. West and D. J. Holler, Fundamentals of Analytical Chemistry, 7th Ed., Harcourt College Publishers, Singapore, (2004).
- 7. A. Sharma, S. G. Schulman, Introduction to Fluorescence Spectroscopy; Wiley- Interscience, New York, (1999).

### REFERENCES

1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy; 4th Ed., Tata McGraw-Hill, New Delhi, (1994).

2. A. I. Vogel, Text Book of Quantitative Inorganic Analysis; 6th Ed., Longman, New Delhi, (2000).

3. D. C. Harris, Quantitative Chemical Analysis; 4th Ed., W. H. Freeman Publications, New York,

(1995).

4. S. C. Gupta, Fundamentals of Statistics; 6th Ed., Himalaya Publications, Delhi, (2006).

SEMESTER IV	

COURS	E CODE	COURSE NAME		L	T	С
YCY401	L	PHYSICAL METHODS IN C	HEMISTRY-II	4	1	5
				L	Т	H
C:P:A		3.75:0.75:0.5		4	1	п 5
	E OUTCON	MES: On the successful	DOMAIN	•	LEVI	-
		urse, students will be able to				
CO1		and <i>Explain</i> the electronic py of metal complexes	Cognitive	Und	nembe erstan	
CO2	Interpret	the IR and Raman spectra of	Psychomotor Cognitive	Set	erstan	d
02	inorganic compounds Affective Respond					u
CO3	••	e chemical environment of NMR	Cognitive	Und App	erstan lv	d
	active nucl compounds	ei present in the inorganic	Affective		pond	
CO4	•	PR, and magnetic properties the of metal complexes.	Cognitive Psychomotor		lyze ceptio	n
CO5		he Mossbauer spectra of iron and	Cognitive Psychomotor	Ana	lyze ceptio	
SYLLA	· · ·				-1	
UNIT I	ELECT	RONIC SPECTROSCOPY				
Microsta	tes, terms ar	ad energy levels for $d^1 - d^9$ ions in	cubic and square field	s– int	ensity	
of bands	– group the	eoretical approach to selection rule	s – effect of distortio	n and	spin-	15
orbit cou	pling on spe	ectra – evaluation of 10Dq and $\beta$ for	or octahedral complex	es of	cobalt	
and nick	el – applica	tions to simple coordination comp	ounds – charge trans	sfer sp	ectra.	
Optical a	rotatory disp	persion and circular dichroism and	l magnetic circular d	lichro	ism –	
	ons to metal	±				
UNIT II		RED AND RAMAN SPECTROSC				
Vibration	ns in simple	molecules ( $H_2O$ , $CO_2$ ) and their syn	metry notation for			
		- group vibrations and the limitation				15
	-	oscopy in the structural elucidation	-			
		, $ClO_4^-$ effect of coordination on li	•	•	· •	
		uctural elucidation of metal completely sulfoxide. Effect of isotopic				
spectra o	of molecules	- vibrational spectra of metal carbo	onyls with reference to	o the	nature	
of bond	ing –geome	try and number of C-O stretching	ng vibrations (group	theor	retical	
		ons of Raman spectroscopy – reson	ance Raman spectrosc	opy. S	SERS	
UNIT II	I   NMR SI	PECTROSCOPY				

Examples for different spin systems – chemical shifts and coupling constants<br/>(spin-spin coupling) involving different nuclei (1H, 19F, 31P, 13C) interpretation and<br/>applications to inorganic compounds – Effect of quadrupolar nuclei (2H,10B, 11B) on the<br/>1H NMR spectra. Systems with chemical exchange – evaluation of thermodynamic<br/>parameters in simple systems – study of fluxional behavior of molecules – NMR of<br/>paramagnetic molecules – isotropic shifts contact and pseudo-contact interactions –<br/>lanthanide shift reagents.15UNIT IVEPR SPECTROSCOPY AND MAGNETIC PROPERTIES10

Theory of EPR spectroscopy – spin densities and McConnell relationship factors affecting the magnitude of g and A tensors in metal species – zero-field splitting and Kramers degeneracy – spectra of V(II), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) complexes – applications of EPR to a few biological molecules containing Cu(II) and Fe(III) ions. Magnetic properties – types of magnetism – dia-, para-, ferro- and anti ferromagnetism– magnetic properties of free ions – first-order Zeeman effect – second-order Zeeman effect – states KT – states<<<<KT – determination of magnetic moments and their applications to the elucidation of structures of inorganic compounds – temperature independent paramagnetism – magnetic properties of lanthanides and actinides – spin crossover in coordination compounds.

## UNIT V MOSSBAUER AND OTHER SPECTROSCOPIC TECHNIQUES

Isomer shifts – quadrupole splitting – magnetic interactions – applications to iron and tin compounds. NQR spectroscopy – characteristics of quadrupolar nucleus – effects of field gradient and magnetic field upon quadrupolar energy levels – NQR transitions applications of NQR spectroscopy. SPS, Auger electron spectroscopy

### **REFERENCE BOOKS:**

- 1. R. S. Drago, Physical Methods in Inorganic Chemistry; Affiliated East-West Press Pvt. Ltd., New Delhi, 2012.
- 2. R. S. Drago, Physical Methods in Chemistry; Saunders College Publications, Philadelphia, 1992.
- 3. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 6th Ed., Wiley-Eastern Company, New Delhi, 1999.
- 4. P. J. Wheatley, The Determination of Molecular Structure; 2nd Ed., Dover Publications, Mineola, 1981.
- 5. G. J. Leigh, N. Winterton, Modern Coordination Chemistry; Royal Society of Chemistry, UK, 2002.
- 6. E. A. V. Ebsworth, Structural Methods in Inorganic Chemistry; 3rd Ed., ELBS, Great Britain, 1987.
- 7. W. Kemp, Organic Spectroscopy; 3rd Ed., Palgrave, New York, 2011.
- 8. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, PHI Learning, New Delhi, 2009.

COUR	SE CODE	COURSE NAME	L	Т	P	С
YCY4	)2	ORGANIC CHEMISTRY PRACTICAL-II	0 0 6		6	3
			L	Т	Р	H
C:P:A		1.8: 0.8:0.4	0	0	6	6
COUR	SE OUTCOMES		D	OMAIN		LEVEL
CO1	Identify the vario	ous functional groups present in a	Cognit	ive		Remember
	mixture of two con	nponents	Psycho	omotor		Perception
CO2	Predict the organi	c component present in the mixture	Cognit	ive		Understand
	by pilot separation	, bulk separation.	Psycho	omotor		Set
CO3	Experiments with	various reagents and identify the	Cognit	ive		Apply
	components.		Psycho	omotor		Set
			Affect	ive		Receiving
	and and Co., New D	ary Organic Spectroscopy – Principle elhi, 1992. by of Organic Compounds; 6th Ed., N	s and C	hemical .		cations; S.

	LECTURE	TUTORIAL	SELF- STUDY	TOTAL HOURS
Hours	60	15	-	75

1.	Quantitative analysis of organic compounds:
	Estimation of phenol, aniline, ketone, glucose, nitrobenzene, saponification value of an oil and
	Iodine value of an oil.
2.	Preparation of organic compounds (Double stage)
	1. p-bromo acetanilide from aniline (acetylation and bromination).
	2. acetyl salicylic acid from methyl salicylate (hydrolysis and acetylation).
	3. 1,3,5-tribromobenzene from aniline (bromination, diazotization and hydrolysation).
	4. p-nitroaniline from acetanilide (nitration and hydrolysis).
	5. benzillic acid from benzoin (rearrangement).
	6. p-amino benzoic acid from p-nitro toluene (oxidation and reduction).
	7. benzanilide from benzophenone (rearrangement).
	8. p-bromoaniline from acetanilide (bromination and hydrolysis).
	9. m-nitroaniline from nitrobenzene (nitration and reduction).
	10. 1,2,4-triacetoxy benzene from hydroquinone (oxidation and acylation).

COURS	E CODE	COURS	E NAME			L	Т	С	
<b>YEC403</b>	A	GREEN	CHEMISTRY	•		4	1	5	
						L	Т	Η	
C:P:A		3.75:0.75	5:0.5			4	1	5	
	E OUTCOME se, students wil		uccessful comp	letion of	DOM	IAIN		LEVEL	4
CO1	1 [′]		the concepts	of green	Cognit	ive	Re	member	
001	chemistry and	-	-	or green	Cogin	1100		derstand	
	enemistry and	a then prine	ipies.		Psycho	motor	Se		
CO2	Summarize	and Ren	ort the add	ition and	Cognit		Understand		
	condensation	-		ith their	Affect			spond	
001	applications.	• 1	1	1		•	TT	1 4 1	
CO3	<b>D3</b> <i>Explain</i> the oxidation- re <i>Identify</i> the mechanism of				Cognit	ive		nderstand	
	<i>Identify</i> the reactions.	nechanism (	or these chemica	11	Affect	wo		oply	
CO4		o vorious ti	pes of the poly	nore	Cognit			espond nalyze	
04	Calegorize II	le various ty	pes of the poly	11015		ychomotor Percepti		•	
CO5	<b>Examine</b> the	nrinciples o	of nuclear chemi	ietry	Cognit			nalyze	
COS	Examine the	principies e	n nuclear chemi	isti y	Psycho		•		
SYLLA	BUS:							I	
UNIT I	Introduc	tion to Gre	en Chemistry						
Introduct	tion to green c	hemistry –	twelve princip	les of gree	n chemi	stry –	plan	ning a	
aroon su	nthesis in a ch	amical labo	oratory – evalua	oting the tw	na of ra	action	invo	lved _	15
			•	-	-			nveu –	
-			on, elimination						
appropria	ate solvent – a	aqueous ph	ase reaction –	reactions in	n ionic	liquids	- (	organic	
synthesis	s in solid state	e – solid s	supported organ	nic synthesi	s – sel	ection	of s	starting	
•				•				U	
materials	s – use of protec	cting group	- use of catalys	t - use of m	icrowav	es and s	soni	cation.	
			LECTURE	TUTORIA	L PR	ACTIC	CAL	TOTA	٩L
	HC	OURS	0	0		90			90
TEXT B	OOKS		<b>4</b>						
1. J. Mo	han, Organic A	nalytical Cl	nemistry: Theor	y and Practi	ce; Naro	osa, (20	03).		
2. V.K.	Ahluwalia, P. 1	Bhagat, and	R. Agarwal, La	boratory Te	chnique	s in Org	gani	c Chemis	stry;
τ.	1 (2005)								

- International, (2005).
- 3. N. S. Gnanaprakasam and G. Ramamurthy, Organic Chemistry Lab Manual; S.V.Printers, (1987).
- 4. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford and P. W. G. Smith, Vogel's Textbook of Practical Organic Chemistry; 5th Ed., Prentice Hall, (1989).

UNIT II	Addition and Condensation Reactions	

condensation under catalytic conditions – applications.         UNIT III         Oxidation and Reduction Reactions         Oxidation reactions – Baeyer-Villiger oxidation in aqueous phase and solid state – enzymatic Baeyer-Villiger oxidation. Reduction reactions – Clemmensen reduction – mechanism – limitations – applications       15         UNIT IV       Phase-Transfer Catalyst Reactions         Image: Sever-Villiger oxidation. Reduction reaction - Clemmensen reduction – mechanism – limitations – applications         UNIT IV       Phase-Transfer Catalyst Reactions         Phase-transfer Catalyst Reactions         Image: Sever-Villiger oxidation reaction – Michael addition reaction – oxidation of toluene to benzoic acid – Reimer-Tiemann reaction Baker – Venkataraman synthesis         - Williamson = ther synthesis – Dozen reaction.       15         Oxidation Reactions         Image: Sonication Reactions         Sonication Reactions         Sonication Reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith reaction.         Iteration – Strecker synthesis – Ullmann coupling reaction – Wurtz reaction – Bouveault reaction.         REFERENCE BOOKS:         1.       V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.       P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Pr	reactions in a with nitroall	aqueous ph kanes and	chael addition in [adated ase. Condensation and an intriles – Aldol	reactions – Aldol o condensation in	condensation of a	aldehydes	15
Oxidation reactions – Baeyer-Villiger oxidation in aqueous phase and solid state – enzymatic Baeyer-Villiger oxidation. Reduction reactions – Clemmensen reduction – mechanism – limitations – applications       15         UNIT IV       Phase-Transfer Catalyst Reactions       15         Phase-transfer catalyst reactions – Heck reaction – Michael addition reaction –oxidation of toluene to benzoic acid – Reimer-Tiemann reaction Baker – Venkataraman synthesis – Williamson ether synthesis – Dozen reaction.       15         UNIT V       Sonication Reactions       15         Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith reaction.       15         REFERENCE BOOKS:       15         1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.       15         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.       16         3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.       10							
enzymatic Baeyer-Villiger oxidation. Reduction reactions – Clemmensen reduction –       15         mechanism – limitations – applications       Imitations – applications         UNIT IV       Phase-Transfer Catalyst Reactions       Imitation – oxidation         Phase-transfer catalyst reactions – Heck reaction – Michael addition reaction –oxidation       of toluene to benzoic acid – Reimer-Tiemann reaction Baker – Venkataraman synthesis       15         - Williamson ether synthesis – Dozen reaction.       Imitations – Sonication Reactions       15         Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith reaction.       15         REFERENCE BOOKS:       Imitation – Wurtz reaction – Bouveault reaction.       15         1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.       16.         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.       3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.         LECTURE       TUTORIAL       SELF-STUDY       TOTAL HOURS		Oxidation		eactions			
Initiation Backet - Viniger Oxidation. Reduction reactions - Clemmensen reduction - mechanism - limitations - applications         UNIT IV       Phase-Transfer Catalyst Reactions       15         Phase-transfer catalyst reactions - Heck reaction - Michael addition reaction -oxidation of toluene to benzoic acid - Reimer-Tiemann reaction Baker - Venkataraman synthesis       15         - Williamson ether synthesis - Dozen reaction.       Image: New Jone - Venkataraman synthesis       15         Sonication reactions - Barbier reaction - Reformatsky reaction - Simmons-Smith reaction.       Image: New Jone - Venkataraman synthesis       15         REFERENCE BOOKS:       Image: New Jone - Venkataraman synthesis - Ullmann coupling reaction - Wurtz reaction - Bouveault reaction.       Image: New Jone - Venkataraman synthesis - Venkataraman synthesis - Ullmann coupling reaction - Wurtz reaction - Bouveault reaction.       Image: New Jone - Venkataraman synthesis - Venkataraman synthesis - Venkataraman synthesis - Ullmann coupling reaction - Wurtz reaction - Bouveault reaction.       Image: New Jone - Venkataraman synthesis - Venkataraman syn	Oxidation re	actions – 1	Baeyer-Villiger oxi	idation in aqueous	phase and solid	d state –	
UNIT IV       Phase-Transfer Catalyst Reactions       1         Phase-transfer catalyst reactions – Heck reaction – Michael addition reaction –oxidation of toluene to benzoic acid – Reimer-Tiemann reaction Baker – Venkataraman synthesis       15         - Williamson ether synthesis – Dozen reaction.       15         UNIT V       Sonication Reactions       15         Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith reaction.       15         Reference BOOKS:       15         1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.       16.         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.       3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.         LECTURE       TUTORIAL       SELF-STUDY       TOTAL HOURS	enzymatic B	aeyer-Villig	ger oxidation. Redu	uction reactions -	Clemmensen rec	duction -	15
Phase-transfer catalyst reactions – Heck reaction – Michael addition reaction –oxidation of toluene to benzoic acid – Reimer-Tiemann reaction Baker – Venkataraman synthesis       15         Milliamson ether synthesis – Dozen reaction.         UNIT V       Sonication Reactions         Sonication Reactions         Sonication Reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith reaction.         Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith reaction.         REFERENCE BOOKS:         1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.         3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.         UTORIAL         SELF-STUDY         TOTAL HOURS	mechanism –	limitations	– applications				
15         of toluene to benzoic acid – Reimer-Tiemann reaction Baker – Venkataraman synthesis         – Williamson ether synthesis – Dozen reaction.         UNIT V         Sonication Reactions         Sonication Reactions         Sonication Reactions         Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith         reaction – Strecker synthesis – Ullmann coupling reaction – Wurtz reaction – Bouveault         reaction.         REFERENCE BOOKS:         1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.         X. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.         LECTURE         TUTORIAL         SELF-STUDY         TOTAL HOURS	UNIT IV	Phase-Tra	ansfer Catalyst Re	actions			
15         of toluene to benzoic acid – Reimer-Tiemann reaction Baker – Venkataraman synthesis         – Williamson ether synthesis – Dozen reaction.         UNIT V         Sonication Reactions         Sonication Reactions         Sonication Reactions         Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith         reaction – Strecker synthesis – Ullmann coupling reaction – Wurtz reaction – Bouveault         reaction.         REFERENCE BOOKS:         1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.         X. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.         LECTURE         TUTORIAL         SELF-STUDY         TOTAL HOURS	Phase-transfe	er catalyst r	eactions – Heck rea	action – Michael ad	dition reaction –	oxidation	
- Williamson ether synthesis – Dozen reaction.         UNIT V       Sonication Reactions       Image: Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith reaction – Strecker synthesis – Ullmann coupling reaction – Wurtz reaction – Bouveault reaction.       15         Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith reaction.       15         REFERENCE BOOKS:         1.       V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.       16         2.       P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.       3.       V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.         LECTURE       TUTORIAL       SELF-STUDY       TOTAL HOURS		•					15
UNIT V       Sonication Reactions         Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith       15         reaction – Strecker synthesis – Ullmann coupling reaction – Wurtz reaction – Bouveault       15         reaction.       REFERENCE BOOKS:         1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.       2.         P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.       3.         V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.       TOTAL HOURS					v enkatar aman	synthesis	
Sonication reactions – Barbier reaction – Reformatsky reaction – Simmons-Smith       15         reaction – Strecker synthesis – Ullmann coupling reaction – Wurtz reaction – Bouveault       10         reaction.       REFERENCE BOOKS:         1.       V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.         2.       P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.         3.       V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.         LECTURE       TUTORIAL       SELF-STUDY         TOTAL HOURS				1011.			
solication reactions – Barbler reaction – Kerofinatsky reaction – Simmons-Simul         reaction – Strecker synthesis – Ullmann coupling reaction – Wurtz reaction – Bouveault         reaction. <b>REFERENCE BOOKS:</b> 1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.         3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007. <b>LECTURE TUTORIAL SELF-STUDY TOTAL</b> HOURS		Sonicatio	II Reactions				
reaction. <b>REFERENCE BOOKS:</b> 1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.         3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007. <b>LECTURE TUTORIAL SELF-STUDY TOTAL HOURS</b>	Sonication r	eactions -	Barbier reaction	– Reformatsky re	action – Simmo	ons-Smith	15
reaction. <b>REFERENCE BOOKS:</b> 1. V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.         2. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.         3. V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007. <b>LECTURE TUTORIAL SELF-STUDY TOTAL HOURS</b>	reaction – St	recker syntl	hesis – Ullmann co	upling reaction – W	/urtz reaction – E	Bouveault	
<ol> <li>V. K. Ahluwalia, Green Chemistry; 2nd Ed., Ane Books Pvt Ltd., New Delhi, 2016.</li> <li>P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.</li> <li>V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.</li> <li>LECTURE TUTORIAL SELF-STUDY TOTAL HOURS</li> </ol>		2		1 0			
<ol> <li>P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, New York, 2005.</li> <li>V. K. Ahluwalia and K. Agarwal, Organic Synthesis, Special Techniques; 2nd Ed., Narosa Publishing House, New Delhi, 2007.</li> <li>LECTURE TUTORIAL SELF-STUDY TOTAL HOURS</li> </ol>	REFERENC	CE BOOKS	5:				
HOURS	<ol> <li>P. T. An Press, Ne</li> <li>V. K. Ah</li> </ol>	astas and J w York, 20 luwalia and	. C. Warner, Green 05. I K. Agarwal, Orga	chemistry Theory	and Practice; Ox	ford Unive	
			LECTURE	TUTORIAL	SELF-STUDY	-	
	Нош	rs	60	15		HOU 75	KS

COURS	E CODE	COURSE NAME		L	Т	С
<b>YEC403</b>	B	INDUSTRIAL CHEMISTRY		4	1 5	
				L	Т	Н
C:P:A		3.75:0.75:0.5		4	1	5
	E OUTCOMES e, students will	: On the successful completion of be able to	DOI	MAIN		LEVEL
CO1	<i>Illustrate</i> the industrial wast	basic ideas of an industry and es.	Cognit Psycho			emember nderstand et
CO2	<i>Rephrase</i> an properties of p	d <i>Report</i> the preparation and etroleum and petrochemicals.	Cognit Affecti	ive	_	nderstand espond
CO3	<i>Identify</i> the ro	le and functions of portland cement.	Cognit Affecti		A	nderstand oply espond
CO4	<i>List</i> the vario industry	us process involved in the paper	Cognit Psycho			nalyze erception
CO5	-	preparation and mode of action of nts and perfumes.	Cognit Psycho	ive		nalyze erception
SYLLA	BUS:				• •	
UNIT I	Basic Idea	s and Industrial Wastes				

Types of ind	rocessing - ustrial was wastes or	- chemical process stes – treatment of	chart – chemical of selection – design – f wastes or effluent ganic impurities – tro	- chemical process with organic impu	control. irities –	15
UNIT II	Petroleu	m and Petrochem	icals			
<ul> <li>unsaturate</li> <li>hydrocarbons</li> </ul>	d hydroca s – toluene	and xylene. Prepar	m natural gas – uses e, ethylene, propyle ration of rectified sp m rectified spirit – p	ene, butylene – a irit from beat – met	romatic hylated	15
UNIT III	Manufac	cture of Cement				
acid resisting	g cement, operties of	white cement, col	mina cement, water loured cement, Poz f cement – uses of c	zolana cement. Set	tting of	15
UNIT IV	Pulp and	l Paper and Manu	ifacture of Paper			
	beating, rea		es of pulp – sulphat ng and colouring. C	<b>1 1</b>	<b>1</b>	15
UNIT V	Soaps, D	etergents and Per	fumes			
continuous p – biodegrada Introduction	rocess only bility of su – production of synthet	y) – cleansing action rfactants, amphote on of natural perfution ic perfumes – music	d soft soaps – man on of soap – deterge ric detergents. mes – flower perfun cone and nitro-musk	ents – surface active nes – jasmine, rose	e agents	15
	CE BOOK	S:				
REFERENC						
<ol> <li>B. K. Sha</li> <li>R. N. Shr Toronto,</li> </ol>	eve, and J. 1977.	A. Brink Jr. Chem	th Ed., Goel Publish nical Process Industr ties of Industrial Che	ies; 4th Ed., McGra	w Hill,	
<ol> <li>B. K. Sha</li> <li>R. N. Shr Toronto,</li> <li>A. C. S. H</li> </ol>	eve, and J. 1977.	A. Brink Jr. Chem	nical Process Industr	ies; 4th Ed., McGra	w Hill,	K, AL

COURSE CODE COURSE NAME			L	Т	С	
YEC404A S		SELECTED TOPICS IN CHEMISTRY		4	1	5
				L	Т	Η
C:P:A	C:P:A 4.5:0.5:0.5		4	1	5	
<b>COURSE OUTCOMES:</b> On the successful completion of <b>DOM</b> A the course, students will be able to					IN LEVEL	
CO1	CO1 <b>Rephrase</b> the quantum chemical approach to Cog		Cognitiv Psychon			nember lerstand
CO2	<i>Compare</i> the role of various reagents used in Organic synthesis.				Understand Respond	
CO3	<i>Apply</i> the retro-synthetic approach in the synthesis of complex organic molecules.		Cognitive Understan Apply Affective Respond		oly	
CO4	<i>Categorize</i> the types of polymer reactions.		Cognitive Psychomotor		Analyze Perception	
CO5	<i>Illustrate</i> the p	Cognitiv	Apply		oly	
SYLLAI	BUS:		1			*
UNIT I	Quantun Structure	n Chemical Approach to Chemical e:	Bonding	and	Mole	cular

Diatomic mole	cules: Born-Oppenheimer approximation–MO theory ( $H_2$ and $H_2^+$ ), VB	15		
theory (H ₂ and H ₂ ⁺ ) – comparison. HMO calculations – evaluation of coefficients and				
eigenvalues for simple molecules – electron density – bond order and free valence index.				
C	D theory – applications to simple systems – hybridization schemes.			
UNIT II	NAMED REACTIONS AND APPLICATIONS IN ORGANIC			
	SYNTHESIS			
Bamford-Steve	ens reaction - Barton-McCombie reaction (Barton Deoxygenation) -			
Baylis-Hillmar	n reaction – Biginelli reaction – Corey-Chaykovsky reaction – Enamines	15		
and selective r	nono- and dialkylation via enamine reactions, Henry reaction - Hosomi-			
Sakurai reaction	on - Hunsdiecker reaction - Julia olefinationand its modifications -			
Mitsunobu rea	action - Mukaiyama-Aldol addition -Nazarov cyclization - Peterson			
olefination – 1	Prevost reaction - Prins reaction - Staudinger reaction Ugi reaction -			
Weinreb keto	ne synthesis - Wittig reaction and its modifications -Yamaguchi			
macrolactoniza	tion – Palladium based reactions: Fukuyama coupling –Heck reaction –			
Hiyama coupli	ng – Sonogashira coupling – Stille coupling – Suzuki coupling – Tsuji-			
Trost Reaction				
UNIT III	SYNTHETIC METHODOLOGY			
Introduction to	disconnections - synthons and synthetic equivalents - synthon			
approach – elec	ctron donors (nucleophiles) – electron acceptors (electrophiles)	15		
Introduction of	f functional groups - umpolung reactions - one group disconnections:			
alcohols, olefin	ns, ketones, acids - two group disconnections: 1, 2-, 1,3-, 1,4- and 1,5-			
difunctional co	ompounds - convergent syntheses. Functional group interconversion -			
functional grou	p addition – carbon-heteroatom bonds – methods for 3- and 4-membered			
rings - synthes	is of mono- and difunctional open chain molecules - mono and bicyclic			
molecules with				
UNIT IV	POLYMER CHEMISTRY			
Introduction -	structure - classification of polymers - polymerisation methods -			
importance of polymers. Molecular weight of polymers - number average and weight				
average – determination of molecular weight by osmometry – light scattering, viscosity				
and sedimentation methods. Kinetics of polymerisation reactions, polycondensation				
reactions, ionic and free radical polymerisation, copolymerisation – coordination				
polymers, conc UNIT V	lucting polymers,Ziegler-Natta catalyst. FUNDAMENTAL OF NUCLEAR CHEMISTRY			

The nucleus – subatomic particles and their properties – nuclear binding energy-nuclear	
structure - Liquid-drop model and nuclear-shell model - n/p ratio - nuclear forces -	
modes of radioactive decay - alpha, beta and gamma particles - orbital electron capture	15
- nuclear isomerism - internal conversion. Q-Values of nuclear reaction, coloumbic	
barrier, nuclear cross section, threshold energy and excitation function – different types of nuclear reactions with accelerated particles. Projectile capture and particles emission,	
spallation, fragmentation, nuclear fission, nuclear fusion - proportional counter, Geiger-	
Muller counter, scintillation counter and Cherenkov counter - linear accelerator,	
cyclotron and synchrotron.	

# **REFERENCE BOOKS:**

- 1. R. K. Prasad, Quantum Chemistry; 4th Ed., New Age International Publishers, New Delhi, 2009.
- 2. A. K. Chandra, Introductory Quantum Chemistry; 4th Ed., Tata McGraw Hill, New Delhi, 1994.
- 3. D. A. Mcquarrie, Quantum Chemistry; University Science Books, 2nd Ed., 2007.
- 4. I. N. Levine, Quantum Chemistry; 7th Ed., Prentice Hall, New Jersey, 2013.
- 5. L. Kurti and B. Czako, Strategic Applications of Named Reactions in Organic Synthesis; Elsevier, 2005.
- 6. A. Hassner and C. Stumer, Organic Synthesis Based on Named and Unnamed Reactions; Elsevier Science Ltd., UK, 1994.
- 7. G. Brahmachari, Organic Name Reactions: A Unified Approach; Alpha Science Intl. Ltd, UK, 2006.
- 8. S. Warren, Designing Organic Synthesis: The Disconnection Approach; 2nd Ed., Wiley, New York, 2008.
- 9. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Parts A and B, 5th Ed., Springer, Germany, 2007.
- 10. W. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, 4th Ed., Cambridge University Press, Cambridge, 2004

	LECTURE	TUTORIAL	SELF-STUDY	TOTAL HOURS
Hours	60	15	-	75

COURSE CODE COURSE NAME			L	Т	С	
YEC404B CHEMISTRY OF NANOSCIENCE AND NANOTECHNOLOGY			4	1	5	
				L	Т	H
C:P:A	C:P:A 4.4:0:0.6			4	1	5
COURSE OUTCOMES: On the successful completion of the course, students will be able toDOMAIN				LE	VEL	
	/					
CO1	Outline the	e synthetic methods of nanomaterials.	Cognitive	Re	meml	ber
			Understand			
			Psychomotor	Set		
CO2	CO2 <i>Compare</i> the properties and characterization of Cognitive		Understand		and	
	nanomaterials. Affective			Respond		1

CO4Classify the applications of carbon clusters and nanostructures.Cognitive PArCO5List the role and significance of nanoparticles in CO5CognitiveAr	nderstand	
CO4       Classify the applications of carbon clusters and nanostructures.       Cognitive Psychomotor       A: Psychomotor       P         CO5       List the role and significance of nanoparticles in nanodevice.       Cognitive Psychomotor       P         SYLLABUS:       Synthetic Methods       Psychomotor       P         Definition of nanodimensional materials – historical milestones – unique propertinanosize, quantum dots, classification of nanomaterials.General methods of sym nanomaterials – hydrothermal synthesis, solvothermal synthesis – microwave irr sol-gel and precipitation technologies – combustion flame – chemical condensation process – gas-phase condensation synthesis – reverse micelle sym polymer-mediated synthesis-protein microtubule-mediated synthesis – synthanomaterials using microorganisms and other biological agents – sonochemical s – hydrodynamic cavitation. Inorganic nanomaterials – typical examples TiO2/ZnO/CdO/CdS, organic nanomaterials – examples – rotaxanes and catenares         UNIT II       Characterisation of Nanoscale Materials         Principles of Atomic Force Microscopy (AFM) – Transmission Electron Microscopy (TEM) Resolution and Scanning Transmission Electron Microscops (SNOM).Scanning ion conductance microscope, scanning thermal microscope	espond	
CO5         List the role and significance of nanoparticles in nanodevice.         Cognitive Psychomotor         A           SYLLABUS:         Synthetic Methods         Psychomotor         P           Server and the propertion of nanodimensional materials – historical milestones – unique propertion anosize, quantum dots, classification of nanomaterials. General methods of symmanomaterials – hydrothermal synthesis, solvothermal synthesis – microwave irres sol-gel and precipitation technologies – combustion flame – chemical condensation process – gas-phase condensation synthesis – reverse micelle sympolymer-mediated synthesis – protein microtubule-mediated synthesis – synthanomaterials using microorganisms and other biological agents – sonochemical s – hydrodynamic cavitation. Inorganic nanomaterials – typical examples TiO ₂ /ZnO/CdO/CdS, organic nanomaterials – examples – rotaxanes and catenanes: UNIT II         Characterisation of Nanoscale Materials           Principles of Atomic Force Microscopy (AFM) – Transmission Electron Microscopy (TEM) Resolution and Scanning Transmission Electron Microscopy (SNOM). Scanning ion conductance microscope, scanning thermal microscope, scapes microscopes and surface plasmon spectroscopy.         VINIT III         Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucu zeolites, M.O.Fs, porous silicon, nanocatalysis.           VINIT IV         Carbon Clusters and Nanostructures         Cavitands, cucu zeolites, manospace – synthesis – single walled carbon nanotubes – synthesis – single walled carbon nanotubes.           VINIT IV         Nanotechnology and Nanodevices	nalyze	
nanodevice.         Psychomotor         P           SYLLABUS:         Synthetic Methods         Email of the propertion of the properties of the properis of the properties of the	erception	
SYLLABUS:         UNIT I       Synthetic Methods         Definition of nanodimensional materials – historical milestones – unique properti nanosize, quantum dots, classification of nanomaterials.General methods of sym nanomaterials – hydrothermal synthesis, solvothermal synthesis – microwave irrs sol-gel and precipitation technologies – combustion flame – chemical condensation process – gas-phase condensation synthesis – reverse micelle syr polymer-mediated synthesis-protein microtubule-mediated synthesis – synochymanomaterials using microorganisms and other biological agents – sonochemical s – hydrodynamic cavitation. Inorganic nanomaterials – typical examples TiO ₂ /ZnO/CdO/CdS, organic nanomaterials – examples – rotaxanes and catenanes         UNIT II         Characterisation of Nanoscale Materials         Principles of Atomic Force Microscopy (AFM) – Transmission Electron Microscopy (TEM) Resolution and Scanning Transmission Electron Microscopy (SNOM).Scanning ion conductance microscope, scanning Itermal microscopes and surface plasmon spectroscopy.         UNIT III       Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucu zeolites, M.O.Fs, porous silicon, nanocatalysis.         UNIT IV       Carbon Clusters and Nanostructures         Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes.         Carbon nanotubes – synthesis – single walled carbon nanotubes – synthetic strategies – gas phase and solution phase growth – growth control – pr         UNIT IV       Nanotechnology and Nanodevices	nalyze	
UNIT I         Synthetic Methods           Definition of nanodimensional materials – historical milestones – unique propertinanosize, quantum dots, classification of nanomaterials. General methods of symnanomaterials – hydrothermal synthesis, solvothermal synthesis – microwave irres sol-gel and precipitation technologies – combustion flame – chemical condensation process – gas-phase condensation synthesis – reverse micelle sympolymer-mediated synthesisprotein microtubule-mediated synthesis – synthanomaterials using microorganisms and other biological agents – sonochemical solvodynamic cavitation. Inorganic nanomaterials – typical examples TiO ₂ /ZnO/CdO/CdS, organic nanomaterials – examples – rotaxanes and catenanes           UNIT II         Characterisation of Nanoscale Materials           Principles of Atomic Force Microscopy (AFM) – Transmission Electron Microscopy (TEM) Resolution and Scanning Transmission Electron Microscopy (SOM). Scanning ion conductance microscope, scanning thermal microscope, scanning Tunneling Microscopy (STM) – Scanning Nearfield Optical Microsco (SNOM). Scanning ion conductance microscope, scanning thermal microscope, scalitors in nanospace – nanoconfinement – nanocapsules Cavitands, cucu zeolites, M.O.Fs, porous silicon, nanocatalysis.           UNIT IV         Carbon Clusters and Nanostructures           Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60-alkali doped C60-superconductivity in C60-larger and smaller fullerenes. Carbon nanotubes – synthesis – single walled carbon nanotubes – struct characterization – mechanism of formation – chemically modified carbon nanotubes. Na – synthetic strategies – gas phase and solution phase growth – growth control –	erception	
Definition of nanodimensional materials – historical milestones – unique propertignanosize, quantum dots, classification of nanomaterials.General methods of sympanomaterials – hydrothermal synthesis, solvothermal synthesis – microwave irrasol-gel and precipitation technologies – combustion flame – chemical condensation process – gas-phase condensation synthesis – reverse micelle sympolymer-mediated synthesis–protein microtubule-mediated synthesis – synthanomaterials using microorganisms and other biological agents – sonochemical s – hydrodynamic cavitation. Inorganic nanomaterials – typical examples TiO ₂ /ZnO/CdO/CdS, organic nanomaterials – examples – rotaxanes and catenanes UNIT II         Characterisation of Nanoscale Materials         Principles of Atomic Force Microscopy (AFM) – Transmission Electron Microscopy(TEM) Resolution and Scanning Transmission Electron Microscopy (SNOM).Scanning ion conductance microscope, scanning hermal microscopes and surface plasmon spectroscopy.         UNIT III       Reactions in Nanoparticles         Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucu zeolites, M.O.Fs, porous silicon, nanocatalysis.         UNIT IV       Carbon Clusters and Nanostructures         Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes. Carbon nanotubes – synthesis – single walled carbon nanotubes – struct characterization – mechanism of formation – chemically modified carbon nanotubes – synthesis – single walled carbon nanotubes. Na – synthetic strategies – gas phase and solution phase growth – growth control – pr         UNIT IV       Nanotechnology and Nanodevices         DNA as a nanomaterial – DNA – knots an		
nanosize, quantum dots, classification of nanomaterials.General methods of sym nanomaterials – hydrothermal synthesis, solvothermal synthesis – microwave irra sol-gel and precipitation technologies – combustion flame – chemical condensation process – gas-phase condensation synthesis – reverse micelle sy polymer-mediated synthesis–protein microtubule-mediated synthesis – synth nanomaterials using microorganisms and other biological agents – sonochemical s –hydrodynamic cavitation. Inorganic nanomaterials – typical examples TiO ₂ /ZnO/CdO/CdS, organic nanomaterials – examples – rotaxanes and catenanes <b>UNIT II Characterisation of Nanoscale Materials</b> Principles of Atomic Force Microscopy (AFM) – Transmission Electron Microscopy(TEM) Resolution and Scanning Transmission Electron Microscopy ( – Scanning Tunneling Microscopy (STM) – Scanning Nearfield Optical Microsco (SNOM).Scanning ion conductance microscope, scanning thermal microscope, sca probe microscopes and surface plasmon spectroscopy. <b>UNIT III Reactions in Nanoparticles</b> Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucu zeolites, M.O.Fs, porous silicon, nanocatalysis.		
Principles of Atomic Force Microscopy (AFM) – Transmission Electron         Microscopy(TEM) Resolution and Scanning Transmission Electron Microscopy (C         – Scanning Tunneling Microscopy (STM) – Scanning Nearfield Optical Microscop         (SNOM).Scanning ion conductance microscope, scanning thermal microscope, scaprobe microscopes and surface plasmon spectroscopy.         UNIT III       Reactions in Nanoparticles         Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucu zeolites, M.O.Fs, porous silicon, nanocatalysis.         VNIT IV       Carbon Clusters and Nanostructures         Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes.         Carbon nanotubes – synthesis – single walled carbon nanotubes – struct characterization – mechanism of formation – chemically modified carbon na - doping – functionalizing nanotubes – applications of carbon nanotubes. Na - synthetic strategies – gas phase and solution phase growth – growth control – pr         UNIT V       Nanotechnology and Nanodevices         DNA as a nanomaterial – DNA – knots and junctions, DNA – nanomechanica	hesis of diation- vapour thesis - nesis of ynthesis - nano	15
Microscopy(TEM) Resolution and Scanning Transmission Electron Microscopy (S         – Scanning Tunneling Microscopy (STM) – Scanning Nearfield Optical Microscop         (SNOM).Scanning ion conductance microscope, scanning thermal microscope, scaprobe microscopes and surface plasmon spectroscopy.         UNIT III       Reactions in Nanoparticles         Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucu zeolites, M.O.Fs, porous silicon, nanocatalysis.         VNIT IV       Carbon Clusters and Nanostructures         Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes.         Carbon nanotubes – synthesis – single walled carbon nanotubes – struct characterization – mechanism of formation – chemically modified carbon natorializing nanotubes – applications of carbon nanotubes. Na – synthetic strategies – gas phase and solution phase growth – growth control – pr         UNIT V       Nanotechnology and Nanodevices         DNA as a nanomaterial – DNA – knots and junctions, DNA – nanomechanica		
Reactions in nanospace – nanoconfinement – nanocapsules Cavitands, cucu zeolites, M.O.Fs, porous silicon, nanocatalysis.         UNIT IV       Carbon Clusters and Nanostructures         Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes. Carbon nanotubes – synthesis – single walled carbon nanotubes – struct characterization – mechanism of formation – chemically modified carbon na – doping – functionalizing nanotubes – applications of carbon nanotubes. Na – synthetic strategies – gas phase and solution phase growth – growth control – pr         UNIT V       Nanotechnology and Nanodevices         DNA as a nanomaterial – DNA – knots and junctions, DNA – nanomechanica	py 1	15
zeolites, M.O.Fs, porous silicon, nanocatalysis.         UNIT IV       Carbon Clusters and Nanostructures         Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes.         Carbon nanotubes – synthesis – single walled carbon nanotubes – struct characterization – mechanism of formation – chemically modified carbon nanotubes. Na – doping – functionalizing nanotubes – applications of carbon nanotubes. Na – synthetic strategies – gas phase and solution phase growth – growth control – proventional values.         UNIT V       Nanotechnology and Nanodevices         DNA as a nanomaterial – DNA – knots and junctions, DNA – nanomechanica		
Nature of carbon bond – new carbon structures – carbon clusters – discovery of C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes.Carbon nanotubes – synthesis – single walled carbon nanotubes – struct characterization – mechanism of formation – chemically modified carbon na –doping – functionalizing nanotubes – applications of carbon nanotubes. Na –synthetic strategies – gas phase and solution phase growth – growth control – proUNIT VNanotechnology and NanodevicesDNA as a nanomaterial – DNA – knots and junctions, DNA – nanomechanica	biturils, 1	15
C60–alkali doped C60–superconductivity in C60–larger and smaller fullerenes. Carbon nanotubes – synthesis – single walled carbon nanotubes – struct characterization – mechanism of formation – chemically modified carbon na –doping – functionalizing nanotubes – applications of carbon nanotubes. Na –synthetic strategies – gas phase and solution phase growth – growth control – pro UNIT V Nanotechnology and Nanodevices DNA as a nanomaterial – DNA – knots and junctions, DNA – nanomechanica		
UNIT VNanotechnology and NanodevicesDNA as a nanomaterial – DNA – knots and junctions, DNA – nanomechanica	unotubes nowires	15
DNA complexes-molecular recognition and DNA based sensor. Protein na nanopipettes, molecular diodes, self-assembled nanotransistors, nanoparticle r transfection.	nerase – noarray,	15

#### **REFERENCE BOOKS:**

- 1. C. N. R. Rao, A. Muller and A. K. Cheetham (Eds), The Chemistry of Nanomaterials: Vol. 1 and 2; Wiley-VCH;Germany, Weinheim, 2004.
- 2. C. P. Poole, Jr: and F. J. Owens, Introduction to Nanotechnology; Wiley Interscience, New Jersey, 2003.
- 3. K. J. Klabunde (Ed), Nanoscale Materials in Chemistry; 2nd Ed., Wiley-Interscience, New York, 2009.
- 4. T. Pradeep, Nano: The Essentials in Understanding Nanoscience and Nanotechnology; 1st Ed., Tata McGraw Hill, New York, 2007.
- 5. H. Fujita (Ed.), Micromachines as Tools in Nanotechnology; Springer-Verlag, Berlin, 2003.
- 6. Bengt Nolting, Methods in Modern Biophysics; 3rd Ed., Springer-Verlarg, Berlin, 2009.
- 7. H. Gleiter, Nanostructured Materials: Basic Concepts, Microstructure and Properties, Elsevier, Chennai, 2000.
- 8. W. Kain and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John-Wiley R Sons, New York, 2013.

	LECTURE	TUTORIAL	SELF-	TOTAL HOURS
			STUDY	
Hours	60	15	-	75