Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

Curriculum and Syllabus

for

B.Tech.

Electrical and Electronics Engineering

(Four Year Full Time)

Regulation 2018 (**Based on OBE**)

HoD/ EEE (Dr. N. Muruganantham)

Dean FET (Dr. R. Jayanthi) Dean Academics (Dr. P. K. Srividhya)

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

INSTITUTE VISION & MISSION

VISION	To be a	To be a Institution of global dynamism with excellence in knowledge and							
	innovati	innovation ensuring social responsibility for creating an egalitarian society.							
	IM1	Offering well balanced Programmes with scholarly faculty and state-							
	11/11	of-art facilities to impart high level of knowledge.							
		Providing student - centred education and foster their growth in							
	IM2	critical thinking, creativity, entrepreneurship, problem solving and							
MISSION		collaborative work.							
	11/2	Involving progressive and meaningful research with concern for							
	1M3	sustainable development.							
	IM4	Enabling the students to acquire the skills for global competencies.							
	11/15	Inculcating Universal values, Self-respect, Gender equality, Dignity							
	1115	and Ethics.							

CORE VALUES

- Student centric vocation
- Academic excellence
- Social Justice, equity, equality, diversity, empowerment, sustainability
- > Skills and use of technology for global competency.
- Continual improvement
- ➢ Leadership qualities.
- Societal needs
- ➤ Learning, a life long process
- ➢ Team work
- Entrepreneurship for men and women
- Rural development
- > Basic, Societal, and applied research on Energy, Environment, and Empowerment.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

	To beco	me a leader in providing education, training and research in the field of					
VISION	Electrical and Electronics Engineering to the aspiring graduates to be competent						
	in their	profession and render best service to the society.					
	DM1	To provide affordable, quality undergraduate and graduate education in					
	DNII	the areas of electrical engineering.					
	DMA	To provide service to the profession, the university, the community, and					
MISSION	DM2	society					
	DM3	To conduct scholarly research at the frontiers of electrical engineering.					
	DM4	To instil our graduates the need for life-long learning					
	DM	To promote personal and intellectual growth to reinforce a commitment					
	DM5	to ethical and professional practices.					

TABLE 1: MAPPING OF INSTITUTION MISSION (IMs) AND DEPARTMENT MISSION (DMs)

	DM1	DM2	DM3	DM4	DM5
IM1	3	1	1	0	0
IM2	1	3	1	0	0
IM3	0	2	3	2	0
IM4	0	0	2	3	1
IM5	0	1	0	1	3

0 – No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

PROGRAMME EDUCATIONAL OBJECTIVES

Based on the Mission of the Department, the Programme Educational Objectives are formulated as

PEO1	Our Graduates are professionally competent and apply the concepts of mathematics,
	science and engineering to solve problems in Electrical and Electronics Engineering and
	related fields.
PEO2	Our Graduates stay relevant in their chosen profession through lifelong learning and
	demonstrate social and ethical responsibility.

TABLE 2: MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH DEPARTMENT MISSION (DMs)

	DM 1	DM 2	DM3	DM 4	DM 5
PEO 1	2	0	1	1	1
PEO 2	1	3	1	3	3
	3	3	2	4	4
1- Low		2 – N	Aedium 3	-High	

GRADUATE ATTRIBUTES (GAs)

- 1. **Knowledge base for Engineering:** Demonstrate competence in mathematics, natural sciences, engineering fundamentals and specialized engineering knowledge appropriate to the programme.
- 2. Analytical Skills: Identify, formulate, analyse and solve diverse engineering problems.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

- 3. **Design:** Solution for complicated open–ended engineering problems and design the components with appropriate standards to meet specified needs with proper attention to public health, safety, environment and society.
- 4. **Experimental Investigation:** Technical skills to conduct investigation, interpretation of observed data and provide solution for multifaceted problems.
- 5. **Modern Engineering tools usage**: Acquire, select, manipulate relevant techniques, resources and advanced engineering ICT tools to operate simple to complex engineering activities.
- 6. **Impact of engineering on society:** Provide a product / project for use by the public towards their health, welfare, safety and legal issues to serve the society effectively.
- 7. **Environment and Sustainability:** Design eco-friendly and sustainable products in demonstrating the technology development to meet present and future needs.
- 8. **High Ethical Standards:** Practice ethical codes and standards endorsed by professional engineers.
- 9. Leadership and team work: Perform as an individual and as a leader in diverse teams and in multi-disciplinary scenarios.
- 10. **Communication Skills:** Professional communication with the society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.
- 11. **Project management and Finance:** Appropriate in incorporating finance and business practices including project, risk and change management in the practice of engineering by understanding their limitations.
- 12. Life-long learners: Update the technical needs in a challenging world in equipping themselves to maintain their competence.

PROGRAMME OUTCOMES (POs)

1. Apply the knowledge of mathematics, science, engineering fundamentals, to the solution of complex problems in Electrical and Electronics Engineering.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

- Identify, formulate, research literature and analyse complex Electrical and Electronics Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design solutions for complex Electrical and Electronics Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions, related to Electrical and Electronics Engineering.
- Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex Electrical and Electronics Engineering activities with an understanding of the limitations.
- 6. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

effective reports and design documentation, make effective presentations and give and receive clear instructions.

- 11. Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1	Ability to design and answer the problems in the field of Power Engineering by applying the knowledge acquired from Electrical Machines, Power Electronics, Electric Circuit Analysis, Power Systems & other related topics.
PSO2	Graduates will be able to develop and support Renewable based systems.

TABLE 3: GAS VERSUS POs and PSOs MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
GA1	3	2	2	2	2	3	2	2	2	2	2	2	3	3
GA2	2	3	2	2	1	2	2	1	1	2	1	2	3	3
GA3	2	3	2	3	3	2	1	1	1	1	2	2	3	3
GA4	1	2	3	3	2	1	1	2	2	1	3	3	3	3
GA5	1	1	3	1	3	1	2	1	3	2	2	3	2	2
GA6	2	2	1	2	3	2	3	3	3	3	3	1	3	3
GA7	1	1	2	1	3	1	2	2	2	2	1	2	3	3
GA8	1	1	1	1	2	1	3	2	2	3	3	1	3	3
GA9	1	2	1	2	2	1	2	2	3	2	3	1	2	2
GA10	2	1	2	2	3	2	1	3	3	1	2	2	3	3

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

GA11	2	1	1	1	1	2	2	1	1	2	1	1	2	2
GA12	1	2	2	2	2	1	2	2	3	2	3	2	3	3

TABLE 4: MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMME OUTCOMES (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO 1	3	3	3	2	2	1	1	1	1	2	2	1
PEO 2	3	2	1	3	1	3	3	2	3	2	2	3

0 – No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

DISTRIBUTION OF SUBJECTS TO BE INCLUDED AS PER UGC AND NAAC

S.No.	Category	Symbol
1.	Humanities and Social Sciences (HS), including Management;	HS
2.	Basic Sciences (BS) including Mathematics, Physics, Chemistry, Biology;	BS
3.	Engineering Sciences (ES), including Materials, Workshop, Drawing, Basics of Electrical/Electronics/Mechanical/Computer Engineering, Instrumentation;	ES
4.	Professional Subjects-Core (PC), relevant to the chosen specialization/branch;	PC
5.	Professional Subjects – Electives (PE), relevant to the chosen specialization/ branch;	PE
6.	Open Subjects- Electives (OE), from other technical and/or emerging subject areas;	OE
7.	Project Work, Seminar and/or Internship in Industry or elsewhere	PW/PI
8.	Mandatory Courses (UGC Mandatory)	MC
9.	Non-credit Course	ELS
10.	NCC/NSS/YRC/RRC/Sports	

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

STRUCTURE OF B.Tech. ELECTRICAL AND ELECTRONICS ENGINEERING PROGRAMME

S.No.	Category	Suggested by AICTE Breakup of Credits	Implementation in Curriculum 2018
1.	Humanities and Social Sciences including Management courses	12	12
2.	Basic Science courses	26	23
3.	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc	20	16
4.	Professional core courses	53	55
5.	ProfessionalElectivecoursesrelevanttochosenspecialization/branch	18	20
6.	Open subjects – Electives from other technical and /or emerging subjects	18	19
7.	Project work, seminar and internship in industry or elsewhere and minor courses	11	13
8.	Mandatory Courses [Environmental Sciences, Induction training, Indian Constitution, Essence of Indian Traditional Knowledge]	(non-credit)	(non-credit)
	Total	158	158

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

HUMANITIES & SOCIAL SCIENCES INCLUDING MANAGEMENT

S.No.	Course Title	Hrs. /Week L: T: P	Credits	Preferred Semester
1.	English	2:0:1	3	II
2.	Industrial Economics and Foreign Trade	3:0:0	3	V
3.	E-Waste Management	3:0:0	3	VI
4	Professional Ethics and Human Values	3:0:0	3	VII
	Total		12	

BASIC SCIENCE COURSES

S. No.	Course Title	Hrs. /Week L: T: P	Credit s	Preferred Semester
1.	Calculus and Linear Algebra	3:1:0	4	Ι
2.	Applied Physics for Engineers	3:1:2	6	Ι
3.	Calculus, Ordinary Differential Equations and Complex Variable	3:1:0	4	II
4.	Applied Chemistry for Engineers	3:1:1	5	Π
5.	Mathematics – III (Probability and Statistics)	3:1:0	4	IV
	Total		23	

ENGINEERING SCIENCE COURSES

S.No.	Course Title	Hrs. /Week L: T: P	Credits	Preferred Semester
1.	Programming for Problem Solving	3:0:4	5	Π
2.	Electrical and Electronics Engineering Systems	3:1:1	5	Ι
3.	Workshop Practices	1:0:2	3	Π
4.	Engineering Graphics	2:0:1	3	Ι
	Total		16	

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

PROFESSIONAL CORE COURSES TRACKS-ELECTRICAL AND ELECTRONICS ENGINEERING [PEC-EE]

S.No.	Course Title	Hrs. /Week L: T: P	Credits	Semester
1.	Electrical Circuit Analysis	3:1:2	5	
2.	Analog Electronics	3:0:2	4	
3.	Electrical Machines-I	3:1:2	5	III
4.	Electromagnetic Fields	3:1:0	4	
5.	Transmission and Distribution	3:0:0	3	
6.	Digital Electronics	3:0:2	4	
7.	Power Electronics	3:0:2	4	IX 7
8.	Electrical Machines-II	3:1:2	5	1.
9.	Signals and Systems	2:1:0	3	
10.	Power Systems – I (Apparatus and Modelling)	3:1:2	5	
11.	Control Systems	3:0:2	4	V
12.	Microprocessors and Microcontrollers	3:0:2	4]
13.	Power Systems –II (Operation and Control)	3:1:2	5	VI
	Total		55	

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

PROFESSIONAL ELECTIVE COURSE TRACKS-ELECTRICAL AND ELECTRONICSENGINEERING [PEC-EE]

S.No.	Course Code	Course Title	Hrs. /Week L: T: P	Credits	Preferred Semester
1.	XEE E11	Protection and Switchgear	3:0:0	3	V onwards
2.	XEE E12	Electrical Machine Design	3:0:0	3	V onwards
3.	XEE E42	Embedded System	3:0:0	3	V onwards
4.	XEE E13	Electrical safety, operations and Regulations	3:0:0	3	V onwards
5.	XEE E31	Industrial Automation	3:0:2	5	V onwards
6.	XEE E43	Power system Restructuring	3:0:0	3	V onwards
7.	XEE E44	Line Commutated and Active Rectifiers	3:0:0	3	VI onwards
8.	XEE E51	Electrical Drives	3:0:0	3	VI onwards
9.	XEE E41	High Voltage Engineering	3:0:0	3	VI onwards
10.	XEE E33	Electrical Energy, Conservation and Auditing	3:0:0	3	VI onwards
11.	XEE E34	Industrial Electrical Systems	3:0:0	3	VI onwards
12.	XEE E24	Digital Control Systems	3:0:0	3	VI onwards
13.	XEE E32	Digital Signal Processing	3:0:0	3	VI onwards
14.	XEE E14	Computer Architecture	3:0:0	3	V onwards
15.	XEE E22	Electromagnetic Waves	3:0:0	3	VI onwards
16.	XEE E23	Computational Electromagnetics	3:0:0	3	VI onwards
17.	XEE E21	Measurement and Instrumentation	3:0:2	5	VI onwards
18.	XEE E52	Power System Dynamics and Control	3:0:0	3	VII onwards
19.	XEE E53	HVDC Transmission Systems	3:0:0	3	VII onwards
20.	XEE E54	Power Quality and FACTS	3:0:0	3	VII onwards
21.	XEE E62	Wind and Solar Energy Systems	3:0:0	3	VII onwards
22.	XEE E61	Electrical and Hybrid Vehicles	3:0:0	3	VII onwards
23.	XEE E63	Power System Protection	3:0:0	3	VII onwards

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Fax: +91 - 4362 - 264660Email: headeee@pmu.eduWeb: www. pmu.edu

24.	OC*	Minor Course	3:0:0	1	VII onwards
25.	XEE E64	Advanced Electric Drives	3:0:0	3	VIII

PROJECT WORK & INTERNSHIP IN INDUSTRY

S.No.	Course Title	Hrs. /Week L: T: P	Credits	Preferred Semester
1.	In-plant Training	0:0:0	1	V
2.	Project Phase-I	0:0:6	3	VII
3.	Summer Internship (45 to 60 days duration during summer vacation of III year)	0:0:0	1	VII
4.	Project Phase-II	0:0:16	8	VIII
	Total		13	

SEMESTER-WISE STRUCTURE OF CURRICULUM REGULATIONS – 2018

(Applicable to the students admitted from the Academic year 2018-19)

CURRICULUM 2018

SEMESTER I

Code No.	Course Title	L	Т	Р	С	тсн
XMA 101	Calculus and Linear Algebra	3	1	0	4	4
XES 102	Environmental Sciences	3	0	0	0	3
XBE 103	Electrical and Electronics Engineering Systems	3	1	1	5	6
XAP 104	Applied Physics for Engineers	3	1	2	6	8
XEG 105	Engineering Graphics	2	0	1	3	4
	TOTAL	14	3	4	18	25

SEMESTER II

Code No.	Course Title	L	Т	Р	С	ТСН
XMA 201	Calculus, Ordinary Differential Equations and Complex Variable	3	1	0	4	4
XCP 202	Programming for Problem Solving	3	0	2	5	7
XGS 203	English	2	0	1	3	4
XAC 204	Applied Chemistry for Engineers	3	1	1	5	6
XWP 205	Workshop Practices	1	0	2	3	5
	TOTAL	12	2	6	20	26

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

SEMESTER III

Code No.	Course Title	L	Т	Р	C	ТСН
XEE 301	Electrical Circuit Analysis	3	1	1	5	6
XEE 302	Analog Electronics	3	0	1	4	5
XEE 303	Electrical Machines - I	3	1	1	5	6
XEE 304	Electromagnetic Fields	3	1	0	4	4
XEE 305	Transmission and Distribution	3	0	0	3	3
XEE 306	In-plant Training - I	0	0	0	0	0
	TOTAL	15	3	3	21	24

SEMESTER IV

Code No.	Course Title	L	Т	P	С	ТСН
XPS 401	Probability and Statistics	3	1	0	4	4
XEE 402	Digital Electronics	3	0	1	4	5
XEE 403	Power Electronics	3	0	1	4	5
XEE 404	Electrical Machines - II	3	1	1	5	6
XUM 405	Entrepreneurship Development	3	0	0	3	3
XEE 406	Signals and Systems	2	1	0	3	3
	TOTAL	17	3	3	23	26

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

Fax: +91- 4362 - 264660

Web: www. pmu.edu

Phone: +91 - 4362 - 264600

Email: headeee@pmu.edu

WINT TUTE OF SC FILL CE B TECHNOLO

SEMESTER V

Code No.	Course Title	L	Т	Р	С	ТСН
XEE 501	Power Systems - I (Apparatus and Modelling)	3	1	1	5	6
XEE 502	Control Systems	3	0	1	4	5
XEE 503	Microprocessors and Microcontrollers	3	0	1	4	5
XEE E1*	Professional Elective - 1	3	0	0	3	3
X** OE*	Open Elective - 1	3	0	0	3	3
XUM 506	Constitution of India	3	0	0	3	3
XEE 507	In-plant Training - II	0	0	0	0	0
XEE M01	Minor Course - I	0	0	0	0	2
	TOTAL	18	1	3	22	27

SEMESTER VI

Code No.	Course Title	L	Т	Р	C	ТСН
XUM 601	Economics for Engineers	3	0	0	3	3
XEE 602	Power Systems - II (Operation and Control)	3	1	1	5	6
XEE E2*	Professional Elective - 2	3	0	1	4	5
XEE E3*	Professional Elective - 3	3	0	1	4	5
X** OE*	Open Elective - 2	3	0	0	3	3
XUM 606	Disaster Management	3	0	0	P/F*	3
XEE M02	Minor Course - II	0	0	0	0	2
	TOTAL	18	1	3	19	27

*Pass / Fail course

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

Fax: +91- 4362 - 264660

Web: www. pmu.edu

Phone: +91 - 4362 - 264600

Email: headeee@pmu.edu

MUNINUM RATE AND THE OF SCIENCE BIECH

SEMESTER VII

Code No.	Course Title	L	Т	Р	C	ТСН
XEE E4*	Professional Elective - 4	3	0	0	3	3
XEE E5*	Professional Elective - 5	3	0	0	3	3
XUM 703	Human Ethics, Values, Rights and Gender Equality	3	0	0	3	3
X** OE*	Open Elective - 3	3	0	0	3	3
X** OE*	Open Elective - 4	3	0	0	3	3
XEE 706	Project Phase - I	0	0	8	4	6
XEE 707	In-plant Training - III	-	-	4	2	-
XEE M03	Minor Course - III	0	0	0	0	2
TOTAL		15	0	12	21	23

SEMESTER VIII

Code No.	Course Title	L	Т	Р	С	ТСН
XUM 801	Cyber Security	0	0	0	P/F	3
XEE E6*	Professional Elective - 6	3	0	0	3	3
X** OE*	Open Elective -5	3	0	0	3	3
XEE 804	Project Phase - II	0	0	12	6	16
	TOTAL	6	0	12	12	25

OVER ALL CREDITS = 156 CREDITS

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

MINOR (ONE CREDIT) COURSES:

Code No.	Course Title	L	Т	Р	С
OC1	Electrical Safety	1	0	0	1
OC2	Micro-grid	1	0	0	1
OC3	PLC programming	1	0	0	1
OC4	Energy Auditing	1	0	0	1
OC5	Programming with Arduino	1	0	0	1
OC6	Online MOOC Course	1	0	0	1

VALUE ADDED COURSES:

Code No.	Course Title
VAC1	Electrical System Design Using ETAP
VAC2	Electrical System Design Using HMI
VAC3	Auto CAD - Electrical
VAC4	Electrical System Design using PLC & SCADA
VAC5	Electrical System Design Using VFD
VAC6	Electrical System Design Using Internet of Things

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

LIST OF ELECTIVES

ELECTIVE GROUP -1: (5th Sem)

Code No.	Course Title	L	Т	Р	С
E11	Protection and Switchgear	3	0	0	3
E12	Electrical Machine Design	3	0	0	3
E13	Electrical Safety, Operations and Regulations	3	0	0	3
E14	Computer Architecture	3	0	0	3

ELECTIVE GROUP - 2: (6th Sem)

Code No.	Course Title	L	Т	Р	С
E21	Measurements and Instrumentation	3	0	1	4
E22	Electromagnetic Waves	3	0	0	3
E23	Computational Electromagnetics	3	0	0	3
E24	Digital Control Systems	3	0	0	3

ELECTIVE GROUP -3: (6th Sem)

Code No.	Course Title	L	Т	Р	С
E31	Industrial Automation	3	0	1	4
E32	Digital Signal Processing	3	0	0	3
E33	Electrical Energy Conservation and Auditing	3	0	0	3
E34	Industrial Electrical Systems	3	0	0	3

ELECTIVE GROUP -4: (7th Sem)

Code No.	Course Title	L	Т	Р	С
E41	High Voltage Engineering	3	0	0	3
E42	Embedded System	3	0	0	3
E43	Power System Restructuring	3	0	0	3
E44	Line Commutated and Active Rectifiers	3	0	0	3

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Fax: +91 - 4362 - 264660Email: headeee@pmu.eduWeb: www. pmu.edu

ELECTIVE GROUP -5:(7th Sem)

Code No.	Course Title	L	Т	Р	С
E51	Electrical Drives	3	0	0	3
E52	Power System Dynamics and Control	3	0	0	3
E53	HVDC Transmission Systems	3	0	0	3
E54	Power Quality and FACTS	3	0	0	3

ELECTIVE GROUP - 6:(8th Sem)

Code No.	Course Title	L	Т	Р	С
E61	Electrical and Hybrid Vehicles	3	0	0	3
E62	Wind and Solar Systems	3	0	0	3
E63	Power System Protection	3	0	0	3
E64	Advanced Electric Drives	3	0	0	3

OPEN ELECTIVES:

Code No.	Course Title	L	Т	Р	С
OE1	Industrial Automation	3	0	0	3
OE2	Energy Management and Auditing	3	0	0	3
OE3	Renewable Energy Technology	3	0	0	3

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

Fax: +91- 4362 - 264660

Web: www. pmu.edu

Phone: +91 - 4362 - 264600

Email: headeee@pmu.edu

PERFORMANCE PRIST-NO PRI

FLOW CHART FOR THE ENTIRE PROGRAMME

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headeee@pmu.edu

Fax: +91- 4362 - 264660 Web: www. pmu.edu

SYLLABUS 2018

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

SEMESTER I CALCULUS AND LINEAR ALGEBRA

COU	RSE C	ODE	COURSE NAME	COURSE NAME I								
X	CMA10	1			3	1	0	4				
С	Р	Α	CALCULUS AND LINEAR ALGEBR	RA	L	Τ	Р	Н				
3	0.5	0.5										
PREF	PREREQUISITE: Differentiation and Integration											
Cours	se Outo	comes	(XMA 101):	Dom	ain		Leve	el.				
C01	Appl to car	y ortho nonical	gonal transformation to reduce quadratic form forms.	Cognitiv	ve	Rem App	embe lying	ring				
CO2	Appl seque series	y powe ences and s.	er series to tests the convergence of the nd series. Half range Fourier sine and cosine	Cognitiv Psychon	ve notor	ring						
CO3	Find funct	the der ions. E	ivative of composite functions and implicit uler's theorem and Jacobian	Cognitiv Psychon	ve notor	Remembering Guided Response						
CO4	Expla expar witho deriva	ain the nsion, b out cons atives,	functions of two variables by Taylors by finding maxima and minima with and straints using Lagrangian Method. Directional Gradient, Curl and Divergence.	Cognitiv	e	Remembering Understanding Receiving						
CO5	Appl Curva	y Diffe ature a	rential and Integral calculus to notions of notions of notions of to improper integrals.	Cognitiv	tive Applying							

UNIT -I: MATRICES	9+3						
Linear Transformation - Eigen values and Eigen vectors -Properties of Eigen values and Eigen vectors - Cayley-Hamilton Theorem – Diagonalisation of Matrices – Real Matrices: Symmetric - Skew-Symmetric and Orthogonal Quadratic form – canonical form - Nature of Quadratic form and Transformation of Quadratic form to Canonical form (Orthogonal only).							
UNIT- II: SEQUENCES AND SERIES							
Sequences: Definition and examples-Series: Types and convergence- Series of positive terms – Tests of convergence: Comparison test, Integral test and D'Alembert's ratio test Fourier series: Half range sine and cosine series- Parseval's Theorem.							
UNIT- III: MULTIVARIABLE CALCULUS: PARTIAL DIFFERENTIATION	9+3						

Limit and continuity –Partial differentiation – Total Derivative – Partial differentiation of Composite Functions: Change of Variables – Differentiation of an Implicit Function - Euler's Theorem- Jacobian.

PERIOD ALL INSTITUTE OF SCIENCE & TECHNO Demotion of the science o

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT-IV: MULTIVARIABLE CALCULUS: MAXIMA AND MINIMA AND VECTOR CALCULUS

9+3

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers – Directional Derivatives - Gradient, Divergence and Curl.

UNIT-V: DIFFERENTIAL AND INTEGRAL CALCULUS

9+3

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

LECTURE	TUTORIAL	TOTAL	
45	15	60	

TEXT BOOKS

- 1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5).

REFERENCE BOOKS

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson Reprint, 2002.
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
- 3. D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.
- 4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

Mapping of COs with GAs

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	2			2					1		2
CO 2	3	2								1		1
CO 3	3	2								1		1
CO 4	3	2								1		1
CO 5	3	2			1					1		2
Total	15	10	0	0	3	0	0	0	0	5	0	7
Scaled Value	3	2			1					1		2
	$1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$											

0 - No Relation 1 - Low Relation 2- Medium Relation 3- High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ENVIRONMENTAL SCIENCES

COURSE	CODE	COURSE NAME	L	Τ	SS	P	С	
XES 1	02		0					
C:P:	Α	ENVIRONMENTAL SCIENCES	L	Т	SS	Р	Η	
1.4: 0.3	: 0.3		3	0	0	0	3	
Course Ou	itcomes	(XES102):		Don	nain	Lev	vel	
CO1	Descril	be the significance of natural resources and ex	plain	Cogn	itive	Reme	mber	
	anthrop	ogenic impacts.			Understand			
CO2	Illustra	ate the significance of ecosystem, biodiversity and na	Cognitive		Understand			
02	geo bio	chemical cycles for maintaining ecological balance.						
CO3	Identif	y the facts, consequences, preventive measures of 1	Cognitive		Remember			
005	pollutio	ons and recognize the disaster phenomenon	Affective		Receive			
COA	Explain	n the socio-economic, policy dynamics and practic	e the	Cognitive		Under	stand	
04	control	measures of global issues for sustainable developme	nt.	_		Apply		
	Recogn	ize the impact of population and the concept of va	rious	Cogn	itive	Under	stand	
CO5	welfare	programs, and apply the modern technology tow	_		Analysis			
	environ	mental protection.			-			

UNIT – I: INTRODUCTION TO ENVIRONMENTAL STUDIES AND ENERGY 12

Definition, scope and importance – Need for public awareness – Forest resources: Use, deforestation, case studies. – Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems – Mineral resources: Uses, environmental effects of mining, case studies-iron mining(Goa), bauxite mining(Odisha) – Food resources: effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies – Land resources: Land as a resource, land degradation – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT – II: ECOSYSTEMS AND BIODIVERSITY7Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and
decomposers – Biogeochemical cycles – Food chains, food webs and ecological pyramids –
Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b)
Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans,
estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity -

Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT – III: ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management– Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

10

AND India 4660 .edu

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT -IV: SOCIAL ISSUES AND THE ENVIRONMENT

10

6

(Deemed to be University) er Sec. 3 of UGC Act, 1956 • NAAC Accredited

think • innovate • transform

Rain water harvesting – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Public awareness.

UNIT -V: HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – Population explosion– Environment and human health – HIV / AIDS– Role of Information Technology in Environment and human health.

LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
45	0	0	0	45

TEXT BOOKS

- 1. Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co, USA, 2000.
- 2. Townsend C., Harper J and Michael Begon, Essentials of Ecology, Blackwell Science, UK, 2003
- 3. Trivedi R.K and P.K.Goel, Introduction to Air pollution, Techno Science Publications, India, 2003.
- 4. Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.
- 5. Introduction to International disaster management, Butterworth Heinemann, 2006.
- 6. Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson Education Pvt., Ltd., Second Edition, New Delhi, 2004.

REFERENCE BOOKS

- 1. Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol. I and II, Enviro Media, India, 2009.
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publ., House, Mumbai, 2001.
- 3. S.K.Dhameja, Environmental Engineering and Management, S.K.Kataria and Sons, New Delhi, 2012.
- 4. Sahni, Disaster Risk Reduction in South Asia, PHI Learning, New Delhi, 2003.
- 5. Sundar, Disaster Management, Sarup & Sons, New Delhi, 2007.
- 6. G.K.Ghosh, Disaster Management, A.P.H.Publishers, New Delhi, 2006.

E RESOURCES

- 1. http://www.e-booksdirectory.com/details.php?ebook=10526
- 2. <u>https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science</u>
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. <u>https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4</u>
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook
- 6. http://www.e-booksdirectory.com/details.php?ebook=8557
- 7. http://www.e-booksdirectory.com/details.php?ebook=6804
- 8. http://bookboon.com/en/atmospheric-pollution-ebook
- 9. http://www.e-booksdirectory.com/details.php?ebook=3749
- 10. http://www.e-booksdirectory.com/details.php?ebook=2604
- 11. http://www.e-booksdirectory.com/details.php?ebook=2116

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

<u>http://www.e-booksdirectory.com/details.php?ebook=1026</u> <u>http://www.faadooengineers.com/threads/7894-Environmental-Science</u>

PO PSO **PSO CO1 CO 2 CO 3 CO 4 CO 5** Total Scaled

Mapping of COs with POs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS

COU	RSE CODE	COURSE NAME	RSE NAME L T						
X	BE 103	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS		3	1	1	5		
Prere	quisites	Physics		L	Т	Р	Н		
C:P:	A			3	1	2	6		
3:1:0				5	L	4	U		
Cours	se Outcomes	(XBE 103):	Γ	Doma	ain]	Level		
CO1	Define and and build ar devices	Relate the fundamentals of electrical parameters and explain AC, DC circuits by Using measuring	Cogni Psych	itive omo	tor	Rem Und Mec	Remember Understand Mechanism		
CO2	Define and	Explain the operation of DC and AC machines.	Cognitive			Rem Und	Remember Understand		
CO3	Recall and	Illustrate various semiconductor devices and	Cognitive			Rem	Remember		
	their appli	cations and displays the input output				Und	erstand		
	characteristi	cs of basic semiconductor devices.	Psychomotor			Mec	Mechanism		
CO4	Relate and	Explain the number systems and logic gates.	Cogni	itive		Rem	Remember		
	Construct the	he different digital circuit.				Und	Understand		
			Psych	omo	tor	Orig	Origination		
CO5	Label and	Outline the different types of microprocessors	Cognitive			Rem	Remember		
005	and their app	plications.				Und	erstand		

UNIT-I: FUNDAMENTALS OF DC AND AC CIRCUITS, MEASUREMENTS 9+9+12

Fundamentals of DC– Ohm's Law – Kirchhoff's Laws - Sources - Voltage and Current Relations – Star/Delta Transformation - Fundamentals of AC – Average Value, RMS Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoidal quantities - Simple Series, Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).

List of Experiments

- 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.
- 2. Study of Active and Passive elements Resistors, Inductors and Capacitors, Bread Board.
- 3. Verification of AC Voltage, Current and Power in Series and Parallel connection.
- 4. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.
- 5. Fluorescent lamp connection with choke.
- 6. Staircase Wiring.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT -II: ELECTRICAL MACHINES

Construction, Principle of Operation, Basic Equations, Types and Application of DC Generators, DC motors - Basics of Single-Phase Induction Motor and Three Phase Induction Motor- Construction, Principle of Operation of Single-Phase Transformer, Three phase transformers, Auto transformer.

UNIT- III: SEMICONDUCTOR DEVICES

Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode -Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier -Applications.

List of Experiments

- 5. Forward and Reverse bias characteristics of PN junction diode.
- 6. Forward and Reverse bias characteristics of zener diode.
- 7. Input and Output Characteristics of NPN transistor.

UNIT- IV: DIGITAL ELECTRONICS 9 + 6 + 10

Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subtractors, multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.

List of Experiments

8. Construction and verification of simple logic gates.

9. Construction and verification of adders.

10. Construction and verification of subtractor.

UNIT- V: MICROPROCESSORS

Architecture, 8085, 8086 - Interfacing Basics: Data transfer concepts – Simple Programming concepts

LECTURE	TUTORIAL	PRACTICAL	TOTAL		
45	15	30	90		

TEXT BOOKS

- 1. Metha V.K., 2008. Principles of Electronics. Chand and Company.
- 2. Malvino, A. P., 2006. Electronics Principles. 7th ed. New Delhi: Tata McGraw-Hill.
- 3. Rajakamal, 2007. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 1999. Digital Design. Prentice Hall of India.
- 5. Ramesh, S. Gaonkar, 2000, Microprocessor Architecture, Programming and its Applications with the 8085, 4th ed, India: Penram International Publications.

REFERENCE BOOKS

- 1. Corton, H., 2004 Electrical Technology. CBS Publishers & Distributors.
- 2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
- 3. Jacob Millman and Christos, C. Halkias, 1967, Electronics Devices, New Delhi: McGraw-Hill.
- 4. Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems, Tokyo: McGraw-Hill, Kogakusha Ltd.
- 5. Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

9+6+0

9 + 6 + 0

9 + 3 + 8

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

E-REFERENCES

- 1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.
- 2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.
- 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.
- 4.Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC

Bangalore.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1	3	3	1	1	1	1			1	1	1		3	3
CO 2	3	3	1	1	1	1			1	1	1		3	3
CO 3	2	2	2	1	2	2	1	1	1	1	1		3	3
CO 4	2	2	1	1	1	1	1	1	1	1	1		3	3
CO 5	2	2	1	1	1	1	1	1	1	1	1		3	3
Total	12	12	6	5	6	6	3	3	5	5	5		15	15
Scaled	3	3	2	1	2	2	1	1	1	1	1		5	5

Mapping of COs with POs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY Deemed to be University Established Under Sec. 3 of UGC Act. 1956 - NAAC Accredited Inthis • innovate • transform

APPLIED PHYSICS FOR ENGINEERS

COURS	SE CODE	COURSE NAME	L	Т	Р	С		
XA	P 104	APPLIED PHYSICS FOR ENGINEERS	3	1	2	6		
C:P: A 2.8:0.8:0	.4		L	Т	Р	Н		
PRERE	QUISITE:	3	1	4	8			
Course (Outcomes (2	Doma	in	Leve	l			
CO1	Identify t elasticity a and techno	ive omotor	ve Remember, Understand motor Mechanism					
CO2	Illustratethelawsofelectrostatics,magneto-staticsandCognitiveelectromagnetic induction;useandlocatebasic applications ofPsychomotorelectromagnetic induction to technology.PsychomotorAffective							
CO3	Understan measurem application	nd the fundamental phenomena in optics by ent and describe the working principle and n of various lasers and fibre optics.	Cognit Psycho Affecti	ive omotor ive	Unde Apply Mech Recei	rstand, y anism ve		
CO4	Analyze principles	energy bands in solids, discuss and use physics of latest technology using semiconductor devices.	Cognit Psycho Affecti	ive omotor ive	Unde Analy Mech Recei	rstand, yze anism ve		
CO5	Develop Is equation for	Cognit	ive	Unde Apply	rstand, y			

UNIT - I: MECHANICS OF SOLIDS 9+3+9 Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum - torque - law of conservation of energy and momentum - Friction. Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus -Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Bending of beams -Experimental determination of Young's modulus: Uniform bending and non-uniform bending. **UNIT -II: ELECTROMAGNETIC THEORY** 9+3+3 Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarization, Dielectric constant, internal field - Clausius Mossotti Equation - Laws of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - expression for plane, circularly and elliptically polarized light - quarter and half wave plates - production and detection of plane, circularly and elliptically polarized light. **UNIT -III: OPTICS, LASERS AND FIBRE OPTICS** 9+3+12 **Optics:** Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive

Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660

Email: headeee@pmu.edu Web: www. pmu.edu

LASER: Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - CO₂ laser -Applications Fiber Optics: Principle and propagation of light in optical fiber - Numerical aperture and acceptance angle - Types of optical fiber - Fiber optic communication system (Block diagram).

UNIT -IV: SEMICONDUCTOR PHYSICS

Semiconductors: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes - doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

Diodes and Transistors: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations - Advantages of common emitter configuration - working of NPN transistor as an amplifier in common emitter configuration.

UNIT -V: QUANTUM PHYSICS

9+3+0

9+3+6

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

TEXT BOOKS

- 1. Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.
- 2. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., Delhi, 2010. New

REFERENCE BOOKS

- 1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.
- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised 3. Edition, VRB Publishers, Chennai, 2011.

4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E RESOURCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

LABORATORY

1.	Torsional Pendulum - determination of moment of inertia and rigidity modulus of the given material of the wire.
2.	Uniform Bending - Determination of the Young's Modulus of the material of the beam.
3.	Non-Uniform Bending - Determination of the Young's Modulus of the material of the beam.
4.	Meter Bridge - Determination of specific resistance of the material of the wire.
5.	Spectrometer - Determination of dispersive power of the give prism.
6.	Spectrometer - Determination of wavelength of various colours in Hg source using grating.
7.	Air wedge - Determination of thickness of a given thin wire.
8.	Laser - Determination of wavelength of given laser source and size of the given micro particle using
	Laser grating

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

30

90

9.	Post office Box - Determination of band gap of a given semiconductor.									
10.	PN Junction Diode - Determination of V-I characteristics of the given diode.									
REFERENCE BOOKS										
1	1. Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency (P) Ltd, 2008.									
2	2. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.									
3	3. Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.									
		LECTURE	TUTORIAL	PRACTICAL	TOTAL					

Mapping of COs with POs

15

45

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1	3	2	2	1					1			1	3	2
CO 2	3		1		1							1	3	3
CO 3	3	2	2	2	1				1			1		
CO 4	3	2	2	2	1				1			1	2	3
CO 5	3		2									1		
Total	15	6	9	6	4				3			5	8	8
Scaled	3	2	2	2	1				1			1	2	2

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

MISTITUTE OF SCIENCE & TECHNOLOGY Cerement be Undersky) Established Under Sec 3 of UGC Act, 1956 - NAAC Accredited think • innovate • transform

ENGINEERING GRAPHICS

COURSE CODE				CO	L	Т	Р	С				
XEG 105										0	1	3
С	P	Α		EN	GINE	L	Т	Р	H			
1.75	1	0.25								0	2	4
PREREQUISITE: NIL												
Course outcomes:							Domain	Level				
CO1 Apply the national and international						Cognitive,	Applying, Guided					
standards, construct and practice						Psychomotor	response and Responds to					
	va	rious cu	urves				Affective	Phenomena				
CO2	In	terpret,	cons	struct	Cognitive	Understanding, Mechanism						
	orthographic projections of points,						Psychomotor	and Responds to Phenomena				
	sti	aight li	nes and	d plane	s.		Affective					
CO3	C	onstruct	: Ske	etch	Cognitive	Applying, Complex Overt						
	pr	ojectior	n of	solids	Psychomotor	Response and Responds to						
	positions and true shape of sectioned						Affective	Phe	Phenomena			
	SO	lids.										
CO4	In	terpret,	Sketo	ch and	Cognitive	Understanding, Complex						
	de	velopm	ient of	f later	Psychomotor	Overt Response and						
	si	nple	and	Affective	Responds to Phenomena							
	in	tersection	on of s	olids.								
CO5	Co	onstruct	ske	etch	Cognitive	Applying, Complex Overt						
	ise	ometric	and	perspec	Psychomotor	Response and Responds to						
	si	nple an	d trunc	cated so	olids.		Affective	Phenomena				

UNIT-I: INTRODUCTION, FREE HAND SKETCHING OF ENGG. OBJECTS AND CONSTRUCTION OF PLANE CURVE

6+6

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.Pictorial representation of engineering objects – representation of three-dimensional objects in two-dimensional media – need for multiple views – developing visualization skills through free hand sketching of three-dimensional objects. Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves.

UNIT -II: PROJECTION OF POINTS, LINES AND PLANE SURFACES

6+6

General principles of orthographic projection – first angle projection – layout of views – projections of points, straight lines located in the first quadrant – determination of true lengths

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection.

UNIT-III: PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS

6+6 projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one plane of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane - true shapes of sections.

UNIT -IV: DEVELOPMENT OF SURFACES AND INTERSECTION OF SOLIDS

6+6

6+6

Need for development of surfaces - development of lateral surfaces of simple and truncated solids - prisms, pyramids, cylinders and cones - development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes - intersection of solids and curves of intersection -prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset

UNIT -V: ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones – principles of perspective projections projection of prisms, pyramids and cylinders by visual ray and vanishing point methods.

THEORY	PRACTICAL	TOTAL	
30	30	60	

TEXT BOOKS

- 1. Bhatt, N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.
- 2. Natarajan, K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Chennai, 2006. Publishers.
- 3. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam. 2013

REFERENCES

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition - 2001.
- 2. Venugopal, K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008.
- 3. Gopalakrishnan.K.R,. "Engineering Drawing, I & II", SUBJECThas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E RESOURCES

- 1. http://periyarnet/Econtent
- 2. http://nptel.ac.in/courses/112103019/

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1	3	2	3	1	1	0	0	0	0	0	0	1	3	2
CO 2	3	2	1	1	1	0	0	0	0	0	0	1	3	3
CO 3	3	2	1	1	1	0	0	0	0	0	0	1	3	3
CO 4	3	2	1	1	1	0	0	0	0	0	0	1	3	3
CO 5	3	2	1	1	1	0	0	0	0	0	0	1	3	3
Total	15	10	7	5	5	0	0	0	0	0	0	5	15	15
Scaled value	3	2	2	1	1	0	0	0	0	0	0	1	3	3

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

SEMESTER II CALCULUS, ORDINARY DIFFERENTIAL EQUATIONS AND COMPLEX VARIABLE

C	COURS	E	COURSE NAME		L	Т	Р	С		
X	CMA 20)1	CALCULUS, ORDINARY DIFFERENTIA EQUATIONS AND COMPLEX VARIABL	L Æ	E 3		0	4		
С	Р	Α			L	Т	P	Н		
3	0	0			3	1	0	4		
PRE	PREREQUISITE: Mathematics I (Calculus and Linear Algebra)									
Cour	rse out	comes:		Domai	n		L	evel		
CO1	le and triple integrals and to find line, surface and an integral by Applying Greens, Gauss divergence theorem.	Cognitive			Applying Remembering					
CO2	Solv whic	v e first h are s	order differential equations of different types olvable for p, y, x and Clairaut's type.	Cognit	ive	A	Applying			
CO3	Sol vari	v e Seco able co	nd order ordinary differential equations with efficients using various methods.	Cognit	Re	Remembering				
CO4	CO4Use CR equations to verify analytic functions and to find harmonic functions and harmonic conjugate. Conformal mapping of translation and rotation. Mobius transformation.						Understanding Remembering Guided Response			
CO5	CO5Apply Cauchy residue theorem to evaluate contour integralsCognitiveApply Cauchy integral cosine function and to stateinvolving sine and cosine function and to stateCauchy integral formula, Liouvilles theorem. Taylor's series, zeros of analytic functions, singularities, Laurent's series.AffectiveRec									

UNIT -I: MULTIVARIABLE CALCULUS (INTEGRATION)12Multiple Integration: Double integrals (Cartesian) - change of order of integration in double integrals -
Change of variables (Cartesian to polar) - Triple integrals (Cartesian), Scalar line integrals - vector line
integrals - scalar surface integrals - vector surface integrals - Theorems of Green, Gauss and Stokes.-UNIT-II: FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS12Exact - linear and Bernoulli's equations - Euler's equations - Equations not of first degree: equations
solvable for p - equations solvable for y- equations solvable for x and Clairaut's type.12UNIT-III: ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDERS12Second order linear differential equations with variable coefficients- method of variation of parameters -
Cauchy-Euler equation- Power series solutions- Legendre polynomials- Bessel functions of the first kind
and their properties.12

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

PERFORMANCE PRIST NO CONTROL OF SECTION OF CONTROL OF SECTION OF CONTROL OF C

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT-IV: COMPLEX VARIABLE – DIFFERENTIATION

12

12

Differentiation-Cauchy-Riemann equations- analytic functions-harmonic functions-finding harmonic conjugate- elementary analytic functions (exponential, trigonometric, logarithm) and their properties-Conformal mappings- Mobius transformations and their properties.

UNIT-V: COMPLEX VARIABLE – INTEGRATION

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions- singularities- Laurent's series – Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

· · ·	LECTURE	TUTORIAL	TOTAL
	45	15	60

TEXT BOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

REFERENCE BOOKS

- 1.G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 3.W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9thEdn. Wiley India, 2009.
- 4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.
- 5.E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
- 6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.
- 7.J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.
- 8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	2			2					1		2
CO 2	3	1								1		1
CO 3	3	1								1		1
CO 4	3	2								1		1
CO 5	3	2			1					1		2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled	3	2			1					1		
	•	•	1 – :	$5 \rightarrow 1$,	6	$-10 \rightarrow$	2,	11 – 1	$5 \rightarrow 3$			

Mapping of COs with GAs

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

(Deemed to be University) d Under Sec. 3 of UGC Act, 1956 • NAAC Accredited

9+6

think • innovate • transform

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

PROGRAMMING FOR PROBLEM SOLVING

COURS	SE CODE	COURSE NAME		L	Т	Р	С	
XCI	P 202	PROGRAMMING FOR PROI SOLVING	BLEM	3	0	2	5	
PREREQ	UISITES			L	Т	Р	Н	
C:P: A				3	0	4	7	
3:1:1								
Course O	outcomes		Domai	n		Lev	el	
CO1 –	Define pr	ogramming fundamentals and Solve	Cognitive			Remem	ıber-	
	simple pr	ograms using I/O statements	Psychomotor		Understand			
						Apply		
CO2	Define s	yntax and write simple programs	Cognitive			Remem	ıber	
	using con	trol structures and arrays	Psychomotor		Understand			
						Apply		
CO3	Explain a	and write simple programs using	Cognitive		Understand			
	functions	and pointers	Psychomotor			Apply		
CO4	Explain a	and write simple programs using	Cognitive			Unders	tand	
	structures	s and unions	Psychomotor			Apply		
						Analyz	e	
CO5	Explain a	and write simple programs using	Cognitive Psychomotor			Remember		
	files and I	Build simple projects				Underst	tand	
						Create		

UNIT- I: PROGRAMMING FUNDAMENTALS AND INPUT/ OUTPUT STATEMENTS 9+6

Theory

Introduction to components of a computer system, Program-Flowchart-Pseudocode-Software-Introduction to C language-Character set-Tokens: Identifiers, Keywords, Constants, and Operatorssample program structure-Header files – Data Types-Variables- Output statements –Input statements. **Practical**

- 1.Program to display a simple picture using dots.
- 2.Program for addition of two numbers
- 3. Program to swap two numbers
- 4. Program to solve any mathematical formula.

UNIT- II: CONTROL STRUCTURE AND ARRAYS

Theory

Control Structures-Conditional Control statements: Branching, Looping-Unconditional control structures: switch, break, continue, goto statements- Arrays: One Dimensional Array-Declaration-Initialization-Accessing Array Elements-Searching-Sorting-Two Dimensional Arrays-Declaration -

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Initialization- Matrix Operations - M	ulti Dimension	al Arrays-Decla	ration– Initializa	tion. Storage
classes: auto-extern-static. Strings: Bas	ic operations on	strings.		
Practical				
1. Program to find greatest of 3 num	bers using Bran	ching Statement	S	
2. Program to display divisible numl	bers between n1	and n2 using loo	ping Statement	
3. Program to remove duplicate elen	nent in an array.			
4. Program to perform string operati	ons.			
Performing basic sorting algorithms				
UNIT- III: FUNCTIONS AND POINT	ERS			9+6
Theory				·
Functions: Built in functions-User Det	fined Functions-	Parameter passi	ing methods-Pass	ing arrays to
functions-Recursion-Programs using	arrays and fun	ctions. Pointers	s-Pointer Declara	tion-Address
Operator-Pointer expressions & point	er arithmetic-P	ointers and fur	nction-Call by v	alue-Call by
Reference-Pointer to arrays-Use of Po	ointers in self-re	eferential structu	ures-Notion of lin	nked list (no
implementation).				
Practical				
1.Program to find factorial of a given nu	umber using four	r function types.		
2.Programs using Recursion such as F	Finding Factoria	l, Fibonacci ser	ies, Ackerman fu	inction etc.
Quick sort or Merge sort				
3.Programs using Pointers				
UNIT -IV: STRUCTURES AND UNIC	ON			9+6
Theory				
Structures and Unions -Giving values	to members-Ini	tializing Structu	re-Functions and	structures-
Passing structure to elements to function	ns- Passing enti	re function to fu	nctions- Arrays of	f structure -
Structure within a structure and Union.				
Practical				
1.Program to read and display student ma	rk sheet Structu	res with variable	2S	
2.Program to read and display student ma	irks of a class us	ing Structures w	vith arrays	
3.Program to create linked list using Strue	ctures with poin	ters		
UNIT- V: FILES				9+6
Theory				
File management in C-File operation fu	unctions in C-D	efining and oper	ning a file- Closi	ng a file-The
getw and putw functions- The fprintf &	fscanf functions	- fseek function	- Files and Struct	ures.
Practical				
1.Program for copying contents of one fil	e to another file			
2.Program using files using structure with	n pointer			
	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	45	0	30	75
TEXT BOOKS/ REFERENCES				
1.ByronGottfried,"ProgrammingwithC"	, III Edition, (Ind	lian Adapted Ed	ition), TMH publi	ications, 2010
2. Yeshwant Kanethker, "Let us C", BP				,
	B Publications, 2	2008		,
	B Publications, 2	2008		,

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

- 3. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005
- 4. Behrouz A. Forouzan and Richard. F. Gilberg,"A Structured Programming Approach Using C", II Edition, Brooks–Cole Thomson Learning Publications, 2001
- 5. Johnsonbaugh R. and Kalin M., "Applications Programming in ANSIC", III Edition, Pearson Education India, 2003
- 6. E. Balaguruswamy, Programming in ANSIC, Tata McGraw-Hill

	PO	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	2	2	2	1								1	0
CO 2	2	-	2	1								1		1
CO 3	2							1						1
CO 4	2	2	2		1	1	1			1				
CO 5	2							1		1				
Total	10	4	6	3	2	1	1	2		2		1	1	2
Scaled	2	1	2	1	1	1	1	1	0	1	0	1	1	1
-	· · ·	T D 1		1 T	D 1		0.14	1.			<u> </u>	1 D	1 . •	•

Mapping of COs with POs

 $0 - No Relation \qquad 1 - Low Relation \qquad 2 - Medium Relation \qquad 3 - High Relation$

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Email: headeee@pmu.eduWeb: www. pmu.edu

		ENGLISH							
CC	OURSE CODE	COURSE NAME	L	Т	Р	SS	С		
	XGS 203	FNCLISH	2	0	1	0	3		
Pre-re	equisites (if any)	ENGLISH	L	Т	Р	SS	Η		
C: P:	A		2	0	2	0	4		
2.6:0.4	4:0 0 4 (VCS		D	•					
Cours	se Outcomes (XGS	(203):	Dom	<u>ain</u>		evel			
COI	Ability to recall the	ne meaning for proper usage	Cogn	itive	R	ememb	er		
CO2	Apply the technic	ues in sentence patterns	Cogn	itive	A	pply			
CO3	Identify the comr	non errors in sentences	Cogn	itive	R	ememb	er		
CO4	Construct the Na	ture and Style of sensible Writing	Cogn	itive	C	reate			
CO5	Practicing the wr	iting skills	Psycl	nomoto	or G R	uided esponse	e		
CO6	Grasping the te etiquettes	echniques in learning sounds and	Psycl	nomoto	or A	dapting	5		
UNIT	-I: VOCABULAI	RY BUILDING					9		
 1.3 A deriva 1.4 Sy UNIT 2.1 Se 2.2 Us 2.3 Im 2.4 Cr 2.5 Or 2.6 Te 	cquaintance with tives <u>nonyms, antonyms</u> -II: BASIC WRI entence Structures se of phrases and cl portance of proper reating coherence ganizing principles echniques for writin	prefixes and suffixes from foreign , and standard abbreviations. FING SKILLS auses in sentences punctuation of paragraphs in documents g precisely	langua	ges in	Engl	ish to	form 9		
UNIT	-III: IDENTIFYI	NG COMMON ERRORS IN WRIT	ING				9		
 3.1 subject-verb agreement 3.2 Noun-pronoun agreement 3.3 Misplaced modifiers 3.4 Articles 3.5 Prepositions 3.6 Redundancies 3.7 Clichés 									
UNIT	-IV: NATURE A	ND STYLE OF SENSIBLE WRITH	NG				9		
4.1 De 4.2 De 4.3 Cl 4.4 Pr 4.5 W	escribing efining assifying oviding examples o riting introduction	or evidence and conclusion							

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT -V: WRITING PRACTICES				9
5.1 Comprehension				
5.2 Précis Writing				
5.3 Essay Writing				
UNIT VI - ORAL COMMUNICATION				
(This unit involves interactive practice sessions in	Language Lab))		
Listening Comprehension				
Pronunciation, Intonation, Stress and Rhythm				
Common Everyday Situations: Conversations an	d Dialogues			
Communication at Workplace				
• Interviews				
Formal Presentations				
			r	
	LECTURE	PRACTICAL	TO	ГAL
	30	30	6	0

Suggested Readings:

(i) Practical English Usage. Michael Swan. OUP. 1995

(ii) Remedial English Grammar. F.T. Wood. Macmillan.2007

(iii) On Writing Well. William Zinsser. Harper Resource Book. 2001

(iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006

(v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011

(vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

Mapping of COs with POs

	PO	PS O	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled	2	0	0	0	0	0	2	0	1	0	0	0	0	0

1-5=1, 6-10 = 2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

APPLIED CHEMISTRY FOR ENGINEERS

COU	RSE CODE	COURSE NAME	L	Т	Р	С	
X	XAC 204	APPLIED CHEMISTRY FOR ENGINEERS	3	1	1	5	
PRER	EQUISITES	Nil	L	Т	Р	Н	
C:P: A			3	1	2	6	
3.5:1.0	:0.5						
Course	e Outcomes (XA	AC 204):	Doma	in	Leve	1	
CO1	Identify the pe affinity, oxida various water	riodic properties such as ionization energy, electron tion states and electro negativity. Describe the quality parameters like hardness and alkalinity.	Cognit Psycho	ive omotor	Remember Perception		
CO2	Explain and M molecular orbi	Ieasure microscopic chemistry in terms of atomic, tals and intermolecular forces.	Cognit Psycho	tive omotor	Understand Set		
CO3	Interpret bull and kinetic con	k properties and processes using thermodynamic nsiderations.	Cognit Psycho Affect	ive omotor ive	Apply Mechanism Receive		
CO4	Describe, Illu used in the syr	strate and Discuss the chemical reactions that are athesis of molecules.	Cognit Psycho Affect	ive omotor ive	Remember Analyze Perception Respond		
CO5	5 Apply, Measure and Distinguish the ranges of electromagnetic spectrum used for exciting different molecule energy levels in various spectroscopic techniques			ive omotor	Reme Appl Mech	ember y nanism	

UNIT – I: PERIODIC PROPERTIES AND WATER CHEMISTRY

8+3+6

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. **Water Chemistry**-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity.

UNIT-II: USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA

12+3+6

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board (PCB).

PERFORMENT THUTE OF SCENE THUT O

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT-III: ATOMIC AND MOLECULAR STRUCTURE

10+3+6

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real es and critical phenomena. Potential energy surfaces of H_3 , H_2F and HCN and trajectories on these surfaces.

UNIT-IV: SPECTROSCOPIC TECHNIQUES AND APPLICATIONS	7+3+6

Principles of spectroscopy and selection rules. Electronic spectroscopy-chromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

UNIT-V: STEREOCHEMISTRY AND ORGANIC REACTIONS8+3+6		<u> </u>	0	
	UNIT-V:	STEREOCHEMISTRY	AND ORGANIC REACTIONS	8+3+6

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule- Aspirin and paracetamol.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	15	30	90

TEXT BOOKS

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., 1993
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- 3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., 1976.
- 6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.
- 8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCE BOOKS

1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishal publishing Co., Edition 2004

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

2. Kurioe, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000

E RESOURCES - MOOCs:

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. http://ocw.mit.edu/courses/chemistry/

Mapping of COs with POs

	PO1	PO	PSO	PSO										
		2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	0	0	0	0	0	2	3	3	0	0	0	1	2
CO2	2	0	0	0	0	0	1	2	2	0	0	0	1	1
CO3	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO4	3	0	0	0	0	0	3	3	3	0	0	0	0	0
CO5	3	0	0	0	0	0	2	2	3	0	0	0	0	0
Total	14	0	0	0	0	0	10	13	14	0	0	0	2	3
Scaled	3	0	0	0	0	0	2	3	3	0	0	0	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Fax: +91 - 4362 - 264660Email: headeee@pmu.eduWeb: www. pmu.edu

WORKSHOP PRACTICES

CO	OURS	E	COURSE NAM	/IE	LTP		С		
	ODE	<u>,</u>				_	_		
	VP 20	15	WORKSHOD DDA	TICES		UT	2 D	3 11	
	<u>P</u>	A	WORKSHOP PRAC	LIICES		1		н 5	
I PRFR		ISITE	·			U	4	3	
	LQU		rse outcomes:	Domain		L	evel		
	S	umma	rize the machining methods	Cognitive	Understanding				
C01	a	nd Pra	ctice machining operation.	Psychomotor	Guide	ed res	response		
-	D	efinin	g metal casting process,	Cognitive	Reme	mber	ing		
CO2	n	nouldin	g methods and relates Casting	Psychomotor	Perception				
and Smithy applications.									
Plan basic carpentry and fitting Cognitive Applyi						ying			
CO:	0	peratio	n and Practice carpentry and	Psychomotor	Guide	ed res	ponse		
	fi	tting o	perations.						
CO4	S	umma	rize metal joining operation	Unde	rstand	ling			
	a	nd Pra	ctice welding operation.	Psychomotor	Guide	Guided response			
0.05		lustra	te the, electrical and	rstand	ing				
CO5 electronics basics and Makes Psychomotor Origin					nation	L			
COUT		ppropr	late connections.					-	
	SE (JUNI						<u> </u>	
EXP.N	IO.		TITLE	R	EL A'	γ ΓΙΟΝ			
1		Introd	uction to machining process				CO	01	
2		Plain t	urning using lathe operation				CO1		
3		Introd	uction to CNC				CO	01	
4		Demo	nstration of plain turning using	CNC			CO	01	
5		Study	of metal casting operation				CO	2	
6		Demo	nstration of moulding process				CO	2	
7		Study	of smithy operation				CO	2	
8		Study	of carpentry tools				CO	13	
9		Half la	ap joint – Carpentry				CO	13	
10		Mortis	se and Tenon joint – Carpentry				CO	13	
11		Study	of fitting tools				CO	13	
12		Square	e fitting				CO	13	
13		Triang	ular fitting				CO	13	
14		Study	of welding tools				CO	14	
15		Square	e butt joint - welding				CO	14	
16		Tee jo	int – Welding				CO	14	
17		Introd	uction to house wiring				CO	15	

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

18	One lamp controlled by one swite	CO5				
19	19 Two lamps controlled by single switch					
20	Staircase wiring	CO5				
		LECTURE	PRACTICAL	TOTAL		
		15	60	75		

TEXT BOOKS

1. Workshop Technology I, II, III, by S K Hajra, Choudhary and A K Chaoudhary. Promoters and Publishers Pvt. Ltd., Bombay Media

2. Workshop Technology by Manchanda Vol. I, II, III India Publishing House, Jalandhar. REFERENCES

1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.

2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd.,New Delhi

3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.

4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. http://nptel.ac.in/courses/112107145/

PO1 PO PO PO PO PO PO PO PO PO **PSO PSO** PO PO **CO1 CO2 CO3 CO4 CO5** Total Scaled

Mapping of COs with POs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

SEMESTER III ELECTRICAL CIRCUIT ANALYSIS

Cours	se Outcomes (XEE 301):	Domain	Level
CO1	Apply network theorems for the analysis of electrical circuits.	Cognitive	Apply
	Respond network theorems for the analysis of electrical	Psychomotor	Guided
	circuits.		Response
CO2	Comparing the transient and steady-state response of R, RL and	Cognitive	Understand
	RLC electrical circuits.	Psychomotor	Perception
	Describe the transient and steady-state response of RL and RC		
	electrical circuits.		
CO3	Analyze circuits in the sinusoidal steady-state (single-phase	Cognitive	Analyze
	and three-phase).	Psychomotor	Mechanism
	Construct and analyze of Single-phase transformer for its		
	Sinusoidal response		
CO4	Laplace transforms analysis of ac circuits.	Cognitive	Analyze
	Construct and analyze of RLC Series and parallel resonance	Psychomotor	Mechanism
	circuits.		
CO5	To Understand the concept of one port and two port network	Cognitive	Understanding
	functions.		-

COURSE CODE	COURSE NAME	L	Т	Р	C	
XEE 301		3	1	1	5	
C:P: A	ELECTRICAL CIRCUIT ANALYSIS	L	Т	Р	CH	
3:1:0		3	1	2	6	
UNIT- I: NETWORK THEOREMS						

Superposition theorem, Thevenin theorem, Norton theorem, Maximum power transfer theorem, Reciprocity theorem, Compensation theorem. Analysis with dependent current and voltage sources. Node and Mesh Analysis. Concept of duality and dual networks.

List of Experiments

1. Verification of KVL and KCL

2. Verification of Thevenin theorem

3.Verification of Norton theorem

4. Verification of Maximum power transfer theorem

UNIT- II: SOLUTION OF FIRST AND SECOND ORDER NETWORKS

08+03

Solution of first and second order differential equations for Series and parallel R-L, R-C, RL-C circuits, initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.

List of Experiments

5.Transient analysis of Series RL, RC circuits

6. Sinusoidal analysis of Series RL, RC circuits

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT- III: SINUSOIDAL STEADY STATE ANALYSIS

Representation of sine function as rotating phasor, phasor diagrams, impedances and admittances, AC circuit analysis, effective or RMS values, average power and complex power. Three-phase circuits. Mutual coupled circuits, Dot Convention in coupled circuits, Ideal Transformer.

List of Experiments

7. Measurement of active power for star and delta connected balanced loads

8. Verification of self, mutual inductance and coefficient of coupling

UNIT- IV: ELECTRICAL CIRCUIT ANALYSIS USING LAPLACE	08+03
TRANSFORMS	

Review of Laplace Transform, Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, inverse Laplace transform, transformed network with initial conditions. Transfer function representation. Poles and Zeros. Frequency response (magnitude and phase plots), series and parallel resonances

List of Experiments

9.RLC Series and parallel Resonance

UNIT- V: NETWORK FUNCTIONS AND TWO PORT NETWORKS

12+03

08 + 03

Concepts of complex frequency, Transform impedance, Networks function of one port and two port networks, concepts of poles and zeros, property of driving point and transfer function. Two Port Networks, terminal pairs, Relationship of two port variables, impedance parameters, admittance parameters, transmission parameters and hybrid parameters, interconnections of two port networks.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	15	30	90

TEXTBOOKS

- 1. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2006.
- 2. D. Roy Choudhury, "Networks and Systems", New Age International Publications, 1998.
- 3. W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education, 2013.

REFERENCES

- 1. C. K. Alexander and M. N. O. Sadiku, "Electric Circuits", McGraw Hill Education, 2004.
- 2. K. V. V. Murthy and M. S. Kamath, "Basic Circuit Analysis", Jaico Publishers, 1999.

E REFERENCES

- 1. NPTEL: http://nptel.ac.in/courses/108102042/
- 2. MOODLE: http://moodle.cecs.pdx.edu/course/view.php?id=16

REFERENCES

- 1. Department Lab Manual
- 2. Sudhakar.A and Shyam Mohan.S.P, "Circuits and Networks Analysis and Synthesis", Fourth edition, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2010.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3									1		1	1	1
CO 2	3									1		1	2	1
CO 3	3	2								1	1	2	3	1
CO 4	3	2			1					1	1	1	3	3
CO 5	3	2			1					1	1	1	2	2
Total	15	6	0	0	2	0	0	0	0	5	3	6	11	8
Scaled	3	2	0	0	1	0	0	0	0	1	1	2	3	2

 $0 - No \ Relation \qquad 1 - Low \ Relation \qquad 2 - Medium \ Relation \qquad 3 - High \ Relation$

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ANALOG ELECTRONICS

Cours	se Outcomes (XEE 302):	Domain	Level
CO1	Understand the characteristics of diode and analyze the	Cognitive	Understand
	rectifier circuits.		Analyze
		Psychomotor	Guided Response
CO2	Understand the characteristics of transistor.	Cognitive	Understand
		Psychomotor	Mechanism
CO3	Understand the concept of MOSFET and analyze the	Cognitive	Understand
	circuits and its characteristics	Psychomotor	Analyze
			Mechanism
CO4	Classify and explain different types of amplifier	Cognitive	Understand
		Psychomotor	Mechanism
CO5	Recall and explain linear and non-linear application of	Cognitive	Understand
	OP-AMP	Psychomotor	Mechanism

COURSE CODE	COURSE NAME	L	Т	Р	С
XEE 302		3	0	1	4
C:P: A = 3:1:0	ANALOG ELECTRONICS	L	Т	Р	Η
	-	3	0	2	5

UNIT- I: DIODE CIRCUITS

P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, Zener diodes, Special diodes, clamping and clipping circuits.

List of Experiments

- 1. Design of full wave rectifier with and without filter.
- 2. Design of bridge rectifier circuits using with and without filter.
- 3. Conduct an experiment to test clipping and clamping circuits.

UNIT-II: BJT CIRCUITS

Structure and I-V characteristics of a BJT; BJT as a switch. BJT as an amplifier: small-signal model, biasing circuits, current mirror; common-emitter, common-base and common collector amplifiers; Small signal equivalent circuits, high-frequency equivalent circuits.

List of Experiments

4. Design of BJT common emitter amplifier using voltage divider bias with and without feedback.

UNIT-III: MOSFET CIRCUITS

MOSFET structure and I-V characteristics. MOSFET as a switch. MOSFET as an amplifier: small-signal model and biasing circuits, common-source, common-gate and common-drain amplifiers; small signal equivalent circuits - gain, input and output impedances, transconductance, high frequency equivalent circuit.

List of Experiments

5.Plot the drain and transfer characteristics of MOSFET.

9+9

8+3

8+3

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT- IV: DIFFERENTIAL, MULTI-STAGE AND OPERATIONAL AMPLIFIERS

Differential amplifier; power amplifier; direct coupled multi-stage amplifier; internal structure of an operational amplifier, ideal op-amp, non-idealities in an op-amp (Output offset voltage, input bias current, input offset current, slew rate, gain bandwidth product)

List of Experiments

6. Conduct experiment on differential amplifier

UNIT -V: LINEAR AND NONLINEAR APPLICATIONS OF OP-AMP

9+15

8+3

Idealized analysis of op-amp circuits. Inverting and non-inverting amplifier, differential amplifier, instrumentation amplifier, integrator, active filter, P, PI and PID controllers and lead/lag compensator using an op-amp, voltage regulator, oscillators (Wien bridge and phase shift). Analog to Digital Conversion. Hysteretic Comparator, Zero Crossing Detector, Square-wave and triangular-wave generators. Precision rectifier, peak detector, Monoshot.

List of Experiments

7.Design of Phase shift and Wien bridge oscillators using OP-AMP.

8.Conduct experiment on Inverting, Non inverting amplifier using OP-AMP.

9.Conduct experiment on astable and monostable multivibrator using OP-AMP.

10.Conduct experiment on integrator and differentiator circuit using OP-AMP.

11.Conduct experiment on Schmitt trigger circuit using OP-AMP.

LECTURE	PRACTICAL	TOTAL
45	30	75

TEXTBOOKS

1. A. S. Sedra and K. C. Smith, "Microelectronic Circuits", New York, Oxford University Press, 1998.

- 2. J. V. Wait, L. P. Huelsman and G. A. Korn, "Introduction to Operational Amplifier theory and applications", McGraw Hill U. S., 1992.
- 3. J. Millman and A. Grabel, "Microelectronics", McGraw Hill Education, 1988.

REFERENCES

1. P. Horowitz and W. Hill, "The Art of Electronics", Cambridge University Press, 1989.

2. P. R. Gray, R. G. Meyer and S. Lewis, "Analysis and Design of Analog Integrated Circuits", John Wiley & Sons, 2001.

3. Department Lab Manual.

E REFERENCES

1. <u>www.nptel.ac.in</u>.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

ł	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3									1		1	2	2
CO 2	3									1		1	2	2
CO 3	3	2								1	1	2	2	2
CO 4	2	2			1					1	1	1	2	2
CO 5	3	1			2					1	1	1	2	2
Total	14	5	0	0	3	0	0	0	0	5	3	6	10	10
Scaled	3	1	0	0	1	0	0	0	0	1	1	2	2	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ELECTRICAL MACHINES-I

Course O	utcomes (XEE 303):	Domain	Level
CO1	Understand the operation of DC machines.	Cognitive	Understand
		Psychomotor	Perception
CO2	Understand the winding concepts of DC machine.	Cognitive	Understand
		Developmentor	Complex Overt
		rsycholiotor	Response
CO3	Understand the motoring and generating concepts of DC	Cognitive	Understand
	machine.	Psychomotor	Set
CO4	Machine. Analyse single phase and three phase transformers circuits.	Psychomotor Cognitive	Set Analyse
CO4	machine. Analyse single phase and three phase transformers circuits.	Psychomotor Cognitive Psychomotor	Set Analyse Set
CO4 CO5	machine.Analyse single phase and three phase transformers circuits.Understand the various loss in magnetic circuits	Psychomotor Cognitive Psychomotor Cognitive	Set Analyse Set Understand

COURSE CODE	COURSE NAME	L	Т	Р	С
XEE 303		3	1	1	5
C:P: A = 3:1:0	ELECTRICAL MACHINES - I	L	Т	Р	Н
		3	1	2	6

UNIT -I:INTRODUCTION TO DC MACHINES9+3+6Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole-faces or shoes, air
gap and armature core, visualization of magnetic field produced by the field winding excitation with
armature winding open, air gap flux density distribution, flux per pole, induced EMF in an armature coil.
List of Experiments

1. Study of D.C. Motor Starters.

UNIT- II: DC MACHINES - ARMATURE AND WINDING

Armature winding and commutation – Elementary armature coil and commutator, lap and wave windings, construction of commutator, linear commutation Derivation of back EMF equation, armature MMF wave, derivation of torque equation, armature reaction, air gap flux density distribution with armature reaction.

UNIT- III: DC MACHINE - MOTORING AND GENERATION

Armature circuit equation for motoring and generation, Types of field excitations – separately excited, shunt and series. Open circuit characteristic of separately excited DC generator, back EMF with armature reaction, voltage build-up in a shunt generator, critical field resistance and critical speed. V-I characteristics and torque-speed characteristics of separately excited, shunt and series motors. Speed control through armature voltage. Losses, load testing and back-to-back testing of DC machines

List of Experiments

- 2. Open Circuit Characteristics (OCC) and load Characteristics of D.C self-excited generator.
- 3. Load characteristics of D.C shunt generator
- 4. Load characteristics of D.C. shunt motor.
- 5. Load characteristics of D.C series motor.
- 6. Speed control of D.C shunt motor.

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

8+3+6

9+3+6

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT -IV: TRANSFORMERS AND TEST

10+3+6

9+3+6

Principle, construction and operation of single-phase transformers, equivalent circuit, phasor diagram, voltage regulation, transformer - construction, types of connection and their comparative features, Parallel operation of single-phase and three-phase transformers, Phase conversion - Scott connection, three-phase to six-phase conversion, Tap-changing transformers losses and efficiency Testing - open circuit and short circuit tests, polarity test, back-to-back test- separation of hysteresis and eddy current losses

List of Experiments

7.Load test on single-phase transformer.

8. Open circuit and short circuit tests on single phase transformer.

UNIT -V: AUTOTRANSFORMERS

Autotransformers - construction, principle, applications and comparison with two winding transformer, Magnetizing current, effect of nonlinear B-H curve of magnetic core material, harmonics in magnetization current.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	15	30	90

TEXTBOOKS

A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.
 A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

REFERENCES

1. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

2. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

3. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

Mapping of COs with POs

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	2	2	1				1			1	1	0
CO 2	3	-	2	1				1				1		1
CO 3	3			1				1			1			1
CO 4	3	2	2	2	1		1			1		1		1
CO 5	3			1						1				1
Total	15	4	6	7	2	0	1	2	1	2	1	3	1	4
Scaled	3	1	2	2	1	0	1	1	1	1	1	1	1	1
	0 – N	lo Rela	tion	1 - L	ow Re	lation	on 2 – Medium Relation 3 – High Relation							

ELECTROMAGNETIC FIELDS

Course Ou	tcomes (XEE 304):	Domain	Level	
CO1	To understand the basics of vector and outline different	Cognitive	Remembering	
001	coordinate system.	Coginave	Understanding	
CO2	To understand the concept of static electric field for simple	Cognitive	Understanding	
	configuration using gauss and Coulombs law.	Cognitive	Onderstanding	
CO3	Define the knowledge of electrostatics using, boundary	Comitive	Understanding	
	conditions, Poissons and Laplace equation.	Cognitive		
	Recall the magnetic field configuration using Different laws		Pemembering	
CO4	and outline time varying electric and magnetic fields using	Cognitive	Understanding	
	Maxwell's equation.		Understanding	
C05	Recall the concept of magnetization and magnetic field	Comitivo	Understanding	
005	configuration using boundary condition.	Cognitive	Understanding	

COURSE CODE	COURSE NAME	L	Т	Р	С				
XEE 304		3	1	0	4				
C:P: A = 3:0:0	ELECTROMAGNETIC FIELDS	ELECTROMAGNETIC FIELDS L							
		3	1	0	4				
UNIT- I: REVIEW OF VECTOR CALCULUS									
Vector algebra-addition, subject traction, components of vectors, scalar and vector multiplications, tr									
products, three orth	ogonal coordinate systems (rectangular, cylindrical and sphe	rical).	Vect	or ca	lculus				
differentiation, parti	al differentiation, integration, vector operator del, gradient, d	iverge	ence	and	l curl;				
integral theorems of vectors. Conversion of a vector from one coordinate system to another.									
UNIT- II: STATIC ELECTRIC FIELD 9									
Coulomb's law, Electric field intensity, Electrical field due to point charges. Line, Surface and Volume									
charge distributions	. Gauss law and its applications. Absolute Electric potentia	l, Pot	ential	diffe	rence,				
Calculation of poten	tial differences for different configurations. Electric dipole, E	lectros	static 1	Energ	y and				
Energy density.									
UNIT -III: CONDU	JCTORS, DIELECTRICS AND CAPACITANCE				9+3				
Current and current	density, Ohms Law in Point form, Continuity of current, E	ounda	ary co	nditio	ons of				
perfect dielectric ma	aterials. Permittivity of dielectric materials, Capacitance, Cap	acitan	ce of	a two	o-wire				
line, Poisson's equat	tion, Laplace's equation, Solution of Laplace and Poisson's ed	quatio	n, App	olicat	ion of				
Laplace's and Poisso	on's equations.								
UNIT -IV: STATIC MAGNETIC FIELDS, TIME VARYING FIELDS AND MAXWELL'S									
EQUATIONS									

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Biot-Savart Law, Ampere Law, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic potentials. Steady magnetic fields produced by current carrying conductors. Faraday's law for Electromagnetic induction, Displacement current, Point form of Maxwell's equation, Integral form of Maxwell's equations, Motional Electromotive forces. Boundary Condit ions. Force on a moving charge, Force on a differential current element, Force between differential current elements, Nature of magnetic materials, Magnetization and permeability, Magnetic circuits, inductances and mutual inductances.

UNIT -V: ELECTROMAGNETIC WAVES

Derivation of Wave Equation, Uniform Plane Waves, Maxwell's equation in Phasor form, Wave equation in Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect. Poynting theorem.

	J.	0
LECTURE	TUTORIAL	TOTAL
45	15	60

9+3

TEXTBOOKS

1. M. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Publication, 2014. 2. A. Pramanik, "Electromagnetism - Theory and applications", PHI Learning Pvt. Ltd, New Delhi, 2009.

3. A. Pramanik, "Electromagnetism-Problems with solution", Prentice Hall India, 2012.

4. G. W. Carter, "The electromagnetic field in its engineering aspects", Longmans, 1954.

REFERENCES

1. W. J. Duffin, "Electricity and Magnetism", McGraw Hill Publication, 1980.

2. W. J. Duffin, "Advanced Electricity and Magnetism", McGraw Hill, 1968.

3. E. G. Cullwick, "The Fundamentals of Electromagnetism", Cambridge University Press, 1966.

4. B. D. Popovic, "Introductory Engineering Electromagnetics", Addison-Wesley Educational Publishers, International Edition, 1971.

5. W. Hayt, "Engineering Electromagnetics", McGraw Hill Education, 2012.

REFERENCES

1. NPTEL: http://nptel.ac.in/courses

Mapping of COs with POs

	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	2	-	1	-	-	-	-	-	1	-	1	1	1
CO2	1	2	-	1	-	-	-	-	-	-	1	-	2	1
CO3	1	2	-	-	-	-	-	-	-	-	-	1	1	2
CO4	1	3	-	-	-	-	-	-	-	-	-	-	2	2
CO5	1	2	1	-	-	-	-		-	-	-	1	1	1
Total	6	11	1	3	0	0	0	0	0	1	1	3	7	7
Scaled	2	3	1	1	0	0	0	0	0	1	1	1	2	2
	0	No P	alation	n 1	Low	Palatio	n 2	Mod	ium Pe	lation 3	High	Palatic	'n	

-No Relation Low Relation Medium Relation 3 – High Relation

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

R

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

Course	e Outcomes (XEE 305):	Domain	Level
CO1	Explain the major components of Transmission and Distribution Systems (TDS). Classify different types of single and three phase transmission line parameters.	Cognitive	Understanding Understanding
CO2	Outline the types of transmission line efficiency calculations and its performance	Cognitive	Understanding
CO3	Explain the different types of insulators and solve for stress and sag in overhead lines.	Cognitive	Understanding Applying
CO4	Interpret different type's underground cables.	Cognitive	Understanding
CO5	Summarize the latest technologies in the field of distribution systems.	Cognitive	Understanding

TRANSMISSION AND DISTRIBUTION

			· · · · · · · · · · · · · · · · · · ·							
COURSE CODE	COURSE NAME	L	Т	P	C					
XEE 305		3	0	0	3					
C:P: A	TRANSMISSION AND DISTRIBUTION	L	Т	Р	Н					
3:0:0		3	0	0	3					
UNIT- I: TRANSMISSION LINE PARAMETERS 09										
Structure of electric power system: Various levels such as generation, transmission and distribution; – Resistance, Inductance and Capacitance calculations – Single-phase and three-phase lines – double circuit lines – effect of earth on transmission line capacitance.										
UNIT- II: PERFORMANCE OF TRANSMISSION LINES 09										
Regulation and efficiency – Tuned power lines, Power flow through a transmission line – Power circle diagrams, Introduction to Transmission loss and Formation of corona – critical voltages – effect on line performance – travelling waveform phenomena.										
UNIT- III: MECH	ANICAL DESIGN OF OVERHEAD LINES			(09					
Line supports – Ins efficiency – Stress a	ulators, Voltage distribution in suspension insulators – T and sag calculation – effects of wind and ice loading.	Festing	of insu	ators –	string					
UNIT -IV: UNDE	RGROUND CABLES				09					
Comparison with overhead line – Types of cables – insulation resistance – potential gradient – capacitance of single-core and three-core cables.										
UNIT- V: DISTRIBUTION SYSTEM09										

PERIOD PERIOD

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headeee@pmu.edu Fax: +91- 4362 - 264660 Web: www. pmu.edu

 $General \ aspects - Kelvin's \ Law - A.C. \ distribution - Single-phase \ and \ three \ phase - Techniques \ of \ voltage \ control \ and \ power \ factor \ improvement - Introduction \ to \ Distribution \ loss - Recent \ trends \ in \ transmission \ and \ distribution \ systems$

	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXTBOOKS			

D.P. Kothari and I.J. Nagrath, 'Power System Engineering', Tata McGraw–Hill,2nd Edition, 2008.
 B.R.Gupta, 'Power System Analysis and Design', S.Chand, New Delhi, 2003.

3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall India Pvt. Ltd, 2002.

REFERENCES

1. Luces M.Fualkenberry ,Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 1996.

- 2. Hadisaddak, 'Power System Analysis,' Tata McGraw Hill Publishing Company',2003
- Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi
 Tamil Nadu Electricity Board Handbook', 2012.

E REFERENCES

1. NPTEL, Power System Generation, Transmission and Distribution Prof. D. P. Kothari Center for Energy Studies Indian Institute of Technology, Delhi.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3								1		2	2	1
CO2	1	3	1		1							1	3	1
CO3	1			1	1					1			2	1
CO4	1	2									1	1	2	1
CO5	1	2										1	2	1
Total	5	10	1	1	2	0	0	0	0	2	1	5	11	5
Scaling	2	3	1	1	1	0	0	0	0	1	1	2	3	2

0 - No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

PROBABILITY AND STATISTICS

Cours	se Outcomes (XPS 401):	Domain	Level
CO1	Explain conditional probability, independent events; find	Cognitive	Understanding
	expected values and Moments of Discrete random variables		Remembering
	with their properties.		
CO2	Find distribution function, Marginal density function,	Cognitive	Remembering
	conditional density function and to define density function		
	of conditional distribution functions normal, exponential and		
	gamma distributions.		
CO3	Determine the statistical parameters of Binomial, Poisson	Cognitive	Understanding
	and Normal and to find correlation, regression and Rank	Psychomotor	
	Correlation coefficient of two variables.		Guided
	Moments, skewness and Kurtosis.		Response
CO4	Explain large sample test for single proportion, difference of	Cognitive	Understanding
	proportion, single mean, difference of means and difference		
	of standard deviations with simple problems.		
CO5	Explain small sample test for single mean, difference of	Cognitive	Understanding
	mean and correlation coefficients, variance test, chi square		
	test with simple problems.	Affective	Receiving

Learning Objectives

- 1. Appreciate the importance of probability and statistics in computing and research
- 2. Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries
- 3. Use appropriate statistical method in the analysis of simple datasets.
- 4. Interpret and clearly present output from statistical analyses in a clear concise and understandable manner
- 5. The main objective of this course is to provide students with the foundations of probabilities and statistical analysis mostly used in varied applications in engineering and science like disease modeling, climate prediction and computer networks etc.

COURSE CODE	COURSE NAME	L	Т	Р	С				
XEE 401	MATHEMATICS – III	3	1	0	4				
C:P: A = 3.5:2.5:2.5	(PROBABILITY AND STATISTICS)	L	Т	Р	СН				
		3	1	0	4				
UNIT - I: BASIC PROB	ABILITY				12				
Probability spaces, conditional probability, independence; Discrete random variables, Independent									
random variables, the mul	tinomial distribution, Poisson approximation to the	binom	ial d	istrib	ution,				

random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT-II: CONTINUOUS PROBABILITY DISTRIBUTIONS & BIVARIATE DISTRIBUTIONS

Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities. Bivariate distributions and their properties, distribution of sums and quotients, conditional densities, Bayes' rule.

UNIT - III: BASIC STATISTICS

Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation

UNIT- IV: APPLIED STATISTICS

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

UNIT-V: SMALL SAMPLES

Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXTBOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015.

- 2. N.P. Bali and M. Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 2010.
- 3. Veerarajan T., "Probability, Statistics and Random processes", Tata McGraw-Hill, New Delhi, 2010.

REFERENCES

- 1. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall, 2003.
- 2. S. Ross, "A First Course in Probability", Pearson Education India, 2002.
- 3. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, Wiley, 1968.
- 4. E. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 2006.

E REFERENCES

nptel

Probability and Statistics by Prof.Somesh kumar, Department of Mathematics, IIT Kharagpur. (http://nptel.ac.in/noc/noc_courselist.php)


```
12
ions:
```

12

12

12

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

Mapping of COs Vs GAs

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	2	1						1	1		1
CO 2	3	2	1						1	1		1
CO 3	3	2	1	1					1	1		1
CO 4	3	2	1	1	1	1			1	1	1	1
CO 5	3	2	1	1	1	1	1		1	1	1	1
Total	15	10	5	3	2	2	1		5	5	2	5
Scaled	3	2	1	1	1	1	1		1	1	1	1

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

DIGITAL ELECTRONICS

Cours	se Outcomes (XEE 402):	Domain	Level
CO1	To Understand numerical values in various number systems and show number conversions between different number Systems.	Cognitive Psychomotor	Understanding Guided Response
CO2	To Analyze Boolean functions and minimization techniques using k –maps and postulates and theorems of Boolean Algebra, minimization of Boolean functions using basic laws.	Cognitive Psychomotor	Analyze Perception
CO3	To Apply Logic gates and their applications and construct	Cognitive	Apply
	the simple adders and subtractors using logic gates.	Psychomotor	Mechanism
CO4	To Understand the process of Analog to Digital conversion	Cognitive	Understanding
	and its applications.	Psychomotor	Mechanism
CO5	To Understand the process of Digital to Analog conversion	Cognitive	Understanding
	and its applications.	Psychomotor	Mechanism

COURSE CODE	COURSE NAME	L	Т	Р	С					
XEE 402		3	0	1	4					
C:P: A	DIGITAL ELECTRONICS	L	Т	Р	СН					
2:1:0		3	0	2	5					
UNIT - I: FUNDAMENTALS OF DIGITAL SYSTEMS AND LOGIC FAMILIES 9+9										

Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one's and two's complements arithmetic, codes, error detecting and correcting codes, characteristics of digital ICs, digital logic families.

List of Experiments

1. Verification and study of logic gates.

2. Binary to Gray and Gray to binary code converters.

3.Excess -3 to BCD and vice-versa code converters.

UNIT - II: COMBINATIONAL DIGITAL CIRCUITS

Standard representation for logic functions, K-map representation, and simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, De-Multiplexer/Decoders, Adders, Subtractors, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders Q-M method of function realization.

List of Experiments

3. Implementation and verification of Multiplexers and Demultiplexer using logic gates.

4. Implementation and verification of Encoders and Decoders using logic gates.

9+6

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT - III: SEQUENTIAL CIRCUITS AND SYSTEMS

A 1-bit memory, the circuit properties of Bistable latch, JK, SR, D and T types flip-flops, applications of flip-flops, shift registers, applications of shift registers, Asynchronous counters, synchronous counters design using flip flops, special counter IC's, applications of counters.

List of Experiments

5.Design and verify operation of Half / Full adder.

6.Design and verify operation of Half/Full Subtractor.

UNIT- IV: A/D AND D/A CONVERTERS

Digital to analog converters: weighted resistor/converter, R-2R Ladder DAC, specifications for D/A converters, examples of DAC ICs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator ADC, successive approximation ADC, specifications of ADC, example of ADC ICs.

List of Experiments

8. Verification of state tables of RS, JK, T and D flip flops using NAND and NOR gates.

UNIT-V: SEMICONDUCTOR MEMORIES AND PROGRAMMABLE LOGIC 9+3 DEVICES

Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, ROM, RAM, content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, PLA, PAL, CPLDS, and FPGA.

List of Experiments

9. Shift registers and Counters.

LECTURE	TUTORIAL	PRACTICAL	TOTAL	
45	0	30	75	

TEXTBOOKS

1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.

2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.

3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

REFERENCES

- 5. Taub and Schilling, 'Digital Integrated Circuits', McGraw Hill, 2002.
- 6. Samuel C. Lee "Digital Circuits and Logic Designs" Prentice Hall of India; 2000.
- 7. Fletcher, W.I., 'An Engineering Approach to Digital Design', Prentice Hall of India, 2002.
- 8. Anand Kumar, Fundamental of Digital circuits, PHI 2003.

E REFERENCES

- 1. NPTEL, Digital Logic Circuits, Prof. S.Srinivasan, IIT Madras.
- 2. NPTEL, Digital Logic Circuits, Prof. D. Roychoudhury, IIT Kharagpur.

9+6

9+6

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	1	3	-	-	1	1	1	-	1	-	2	2	1
CO 2	3	2	1	-	-	2	0	2	1	-	-	2	1	2
CO 3	2	2	1	-	-	1	2	2	1	1	-	1	2	2
CO 4	2	2	3	-	-	1	1	1	-	-	1	1	1	2
CO 5	3	2	2	-	-	0	1	1	1	1	1	2	2	2
Total	12	9	10	-	-	5	5	7	3	3	2	8	8	9
Scaled	3	2	2	0	0	1	1	2	1	1	1	2	2	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Fax: +91 - 4362 - 264660Email: headeee@pmu.eduWeb: www. pmu.edu

POWER ELECTRONICS

Cours	se Outcomes (XEE 403):	Domain	Level		
CO1	To Understand the structure, operation and characteristics of	Cognitive	Understanding		
	power switching devices.	Psychomotor	Response		
CO2	Determine the operation, characteristics and performance	Cognitive	Understanding		
	parameters of controlled rectifiers.	Psychomotor	Mechanism		
CO3	Analysis the operation of DC - DC choppers.	Cognitive	Analyzing		
		Psychomotor	Mechanism		
CO4	Analysis the operation of various inverters and infer the	Cognitive	Analyzing		
	suitable PWM techniques.	Psychomotor	Mechanism		
CO5	To Understand the concept of various types of AC voltage	Cognitive	Understanding		
	controllers.	Psychomotor	Mechanism		

COURSE CODE	CODE COURSE NAME		Т	Р	С			
XEE 403	XEE 403		0	1	4			
C:P: A	C:P: A POWER ELECTRONICS L							
2:1:0	2:1:0 3							
UNIT – I: POWER	SWITCHING DEVICES				9+9			
Review on Semicor	nductor devices - I-V characteristics and Switching Ch	naracte	eristics	s of p	ower			
Diodes, SCR, TRIA	C, power BJT, power MOSFET and IGBT. Triggering and	Comr	nutatio	on Cir	cuits.			
List of Experiment	S							
1.Characteristics of	SCR							
2.Characteristics of	MOSFET							
3.Characteristics of	IGBT							
UNIT – II: THYRI	STOR RECTIFIERS				9+3			
Single phase half-wave and full-wave thyristor rectifiers – Single phase full-bridge thyristor rectifier with R-load and highly inductive load – Three phase full-bridge thyristor rectifier with R-load and highly inductive load. List of Experiments 4. Single phase fully controlled rectifier with R. RL load								
UNIT – III: DC TO DC CHOPPERS								
Types of Choppers, Class A to E, step-up and step-down choppers – Analysis of Voltage, Current and Load commutated choppers –Introduction to Resonant converters List of Experiments 5.BUCK- BOOST converter using MOSFET. 6.IGBT based choppers.								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT – IV: INVERTERS							
Single phase, Three phase voltage source inverters (Both 120° and 180° mode of conductions) – Bipolar							
sinusoidal modulation and unipolar sir	nusoidal modula	ation, Modulation	n Index -	PWM			
Techniques- Current Source Inverters.							
List of Experiments							
7.Single phase IGBT PWM inverter.							
8.Series Inverter/ Parallel Inverter							
UNIT – V:AC VOLTAGE CONTRO	OLLERS			9+6			
Single-phase and three phase AC voltag	e controllers N	Aulti-stage seque	nce control – step-up	p and step-			
down cycloconverter – Single phase to	single phase and	d Single phase to	Three phase cycloc	onverters.			
List of Experiments							
9.Single phase AC voltage controller us	sing SCR / TRL	AC.					
10.Single phase cycloconverter.							
11.Mini project: Design of basic power	converter circu	its.					
	LECTURE	TUTORIAL	PRACTICAL	TOTAL			
	45	0	30	75			
TEXTBOOKS							
1. Rashid, M.H., 'Power Electronics: Circuits, Devices and Applications', Pearson Education							
India, 2009.							
2. Singh, M.D and Kanchandani, 'Power Electronics', Tata McGraw Hill & Hill publication							
Company Ltd New Delhi, 2009.							
3 Bimbhra, P.S. 'Power Electronics', Khanna Publishers, 2007.							

4. Ned Mohan, Tore M. Undeland and William P.Robbins, 'Power Electronics: Converters, Applications and Design', New Jersey, John Wiley and Sons, 2007.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

REFERENCES

- 1. Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., 'Thyristorised Power Controllers', Wiley Eastern Limited, 1986.
- 2. Lander, W., 'Power Electronics', McGraw Hill and Company, Third Edition, 2009.
- 3. Sen.P.C., 'Power Electronics', Tata McGraw-Hill Publishing Co. Ltd., New Delhi, 2005.
- 4. Joseph Vithayathil, 'Power Electronics', McGraw-Hill New York, 1996.
- 5. Erickson, R.W and Maksimovic, D., 'Fundamentals of Power Electronics', Springer Science & Business Media, 2007.
- 6. Umanand, L., 'Power Electronics: Essentials and Applications', Wiley India, 2009.
- 7. Department Laboratory Manual

E REFERENCES

- 1. Lecture Series on Power Electronics by Prof. B.G. Fernandes, Department of Electrical Engineering, IIT Bombay.
- 2. http://www.nptel.ac.in/courses/108105066/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PS01	PSO2
CO 1	3	2	1	0	0	1	3	0	0	0	0	1	3	1
CO 2	2	1	2	1	0	0	1	0	0	0	0	0	2	2
CO 3	3	1	1	0	0	0	0	0	0	0	0	0	1	2
CO 4	1	3	2	0	0	1	0	0	0	0	0	0	2	1
CO 5	1	2	3	1	3	0	1	1	0	0	0	0	3	2
Total	10	9	9	2	3	2	5	1	0	0	0	1	11	8
Scaled	2	2	2	1	1	1	1	1	0	0	0	1	3	2

Mapping of COs with POs

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

12+3+3

ELECTRICAL MACHINES – II

Cours	e Outcomes (XEE 404):	Domain	Level		
CO1	To Understand the fundamentals of different types of slots and	Cognitive	Understanding		
	windings used for AC machines.	Psychomotor	Mechanism		
CO2	To Understand the concepts of pulsating and revolving	Cognitive	Understanding		
	magnetic fields.	Psychomotor	Mechanism		
CO3	To Understand the operation of induction machines, ttorque	Cognitive	Understanding		
	slip characteristics, equivalent circuit and its phasor diagram.	Psychomotor	Mechanism		
CO4	To Understand the different types of starting, braking and	Cognitive	Understanding		
	speed control for induction motors. React the generator	Psychomotor	Mechanism		
	operation, self-excitation and doubly-fed Induction machines.				
CO5	To Understand the operation of single-phase induction motors	Cognitive	Understanding		
	and its performance parameters.	Psychomotor	Mechanism		

COURSE NAME	L	Т	Р	С				
	3	1	1	5				
ELECTRICAL MACHINES – II	L	Т	Р	Н				
	3	1	2	6				
UNIT – I: FUNDAMENTALS OF AC MACHINE WINDINGS								
of windings in stator and cylindrical rotor-Slots for windin	ngs –	Singl	e-turn	i coil –				
rhang -Full-pitch coils-Types of windings- 3D visualizatio	n of t	he ab	ove v	vinding				
istribution with fixed current through winding –Winding dist	ributi	on fa	ctor.					
ase squirrel cage induction motor.								
2.Load test on three phase slip ring induction motor.								
hase alternator.								
nase induction motor.								
UNIT – II: PULSATING AND REVOLVING MAGNETIC FIELDS 9+3+6								
Types of magnetic fields -Alternating current in windings with spatial displacement - Magnetic field								
produced by a single winding – Fixed current and alternating current. Pulsating fields produced by spatially								
displaced windings– Windings spatially shifted by 90° – Three windings spatially shifted by 120° (carrying								
three-phase balanced currents) – Revolving magnetic field.								
List of Experiments								
5.No load and blocked rotor test on three phase induction motor.								
	COURSE NAME ELECTRICAL MACHINES – II ENTALS OF AC MACHINE WINDINGS of windings in stator and cylindrical rotor–Slots for windin erhang –Full-pitch coils–Types of windings– 3D visualizatio istribution with fixed current through winding –Winding dist ase squirrel cage induction motor. ase slip ring induction motor. hase alternator. hase induction motor. MG AND REVOLVING MAGNETIC FIELDS ends –Alternating current in windings with spatial displace inding – Fixed current and alternating current. Pulsating field findings spatially shifted by 90° – Three windings spatially sh urrents) – Revolving magnetic field.	COURSE NAME L B 3 ELECTRICAL MACHINES – II 3 ENTALS OF AC MACHINE WINDINGS 3 of windings in stator and cylindrical rotor–Slots for windings – S 3 erhang –Full-pitch coils–Types of windings– 3D visualization of the istribution with fixed current through winding –Winding distributi 4 ase squirrel cage induction motor. 4 4 hase alternator. 4 4 hase induction motor. 4 4 MG AND REVOLVING MAGNETIC FIELDS 4 4 Idds –Alternating current in windings with spatial displacement inding – Fixed current and alternating current. Pulsating fields prove findings spatially shifted by 90° – Three windings spatially shifted urrents) – Revolving magnetic field. 4 rotor test on three phase induction motor. 4 4	COURSE NAME L T BLECTRICAL MACHINES – II 3 1 L T 3 1 ENTALS OF AC MACHINE WINDINGS 3 1 of windings in stator and cylindrical rotor–Slots for windings – Single rhang –Full-pitch coils–Types of windings– 3D visualization of the ab istribution with fixed current through winding –Winding distribution fa ase squirrel cage induction motor. ase squirrel cage induction motor. ase alternator. hase alternator. Hase induction motor. MG AND REVOLVING MAGNETIC FIELDS Ids –Alternating current in windings with spatial displacement – Mainding – Fixed current and alternating current. Pulsating fields produced findings spatially shifted by 90° – Three windings spatially shifted by 12 urrents) – Revolving magnetic field. rotor test on three phase induction motor. T	COURSE NAMELTPELECTRICAL MACHINES – II 3 1 1 LTP 3 1 2 ENTALS OF AC MACHINE WINDINGS 94 of windings in stator and cylindrical rotor–Slots for windings –Single-turnentrang –Full-pitch coils–Types of windings– 3D visualization of the above vistribution with fixed current through winding –Winding distribution factor.ase squirrel cage induction motor.hase alternator.hase induction motor.MG AND REVOLVING MAGNETIC FIELDS9elds –Alternating current in windings with spatial displacement – Magnetinding – Fixed current and alternating current. Pulsating fields produced by sp'indings spatially shifted by 90° – Three windings spatially shifted by 120° (currents) – Revolving magnetic field.rotor test on three phase induction motor.				

6.No load and blocked rotor test on single phase induction motor.

UNIT – III: INDUCTION MACHINES

Constructional details –Types of rotors (squirrel cage and slip-ring) – Torque Slip Characteristics – Equivalent circuit – Phasor Diagram– Effect of parameter variation on torque speed characteristics –Methods

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

of starting, braking and speed control for induction motors-Generator operation -Self-excitation- Doubly-Fed Induction Machines. **List of Experiments** 7. Regulation of three phase alternator by EMF /MMF methods. **UNIT - IV: SINGLE PHASE INDUCTION MOTORS** 6+3+6 Constructional details of single-phase induction motor - Double revolving field theory and operation -Equivalent circuit – Determination of parameters – Split-phase starting methods and applications. List of Experiments 8.OCC and load characteristics of three phase alternator 9.V and inverted V curves of three phase synchronous motor. **UNIT - V: SYNCHRONOUS MACHINES** 9+3+3 Constructional details - Cylindrical rotor synchronous machine- EMF equation - Equivalent circuit - Phasor diagram-Armature reaction-Voltage regulation- V-curves. Salient pole machine - Two reaction theory -Phasor diagram – Power angle characteristics. Synchronizing and parallel operation. (Basic operation of synchronous motors) **List of Experiments** 10.Study of induction motor starters. LECTURE **TUTORIAL** PRACTICAL TOTAL 45 15 30 90

TEXTBOOKS

- 1. I. J. Nagrath and D. P. Kothari, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2010.
- 2. M. G. Say, 'Performance and Design of AC Machines', CBS Publishers, 2002.
- 3. P. S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2011.
- 4. B.L.Theraja, 'A Textbook of Electrical Technology', Vol. I & II, M/s S.Chand, Delhi, 2013.

REFERENCES

- 1. A. E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata McGraw Hill publishing Company Ltd, 2013.
- 2. A. S. Langsdorf, 'Alternating Current Machines', Tata McGraw Hill publishing Company Ltd, 1984.
- 3. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons, 2007.
- 4. J.B. Gupta, 'Theory and Performance of Electrical Machines', S.K.Kataria and Sons, 2002.
- 5. DeshPande M.V., 'Electrical Machines', PHI Learning Pvt Ltd., New Delhi 2011.
- 6. A. G. Warren, 'Problems in Electrical Engineering', Parker and Smith Solutions, Newyork, 1940.
- 7. K. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt Ltd, 2002.
- 8. Department Laboratory Manual.

E REFERENCES

- 1. http://freevideolectures.com/Course/2335/Basic-Electrical-Technology35-38,
 - Prof. L. Umanand, IISc Bangalore.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PSO2
CO 1	3	2	2	2	1	0	0	0	0	0	0	2	2	1
CO 2	3	2	2	2	1	0	0	0	0	0	0	1	2	1
CO 3	3	2	2	2	1	0	0	0	0	0	0	1	1	1
CO 4	2	2	1	3	2	0	0	0	0	0	0	1	1	1
CO 5	3	0	0	0	1	0	0	0	0	0	0	1	1	1
Total	14	8	7	9	6	0	0	0	0	0	0	6	7	5

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ENTREPRENEURSHIP DEVELOPMENT

Cours	se Outcomes (XUM 405):	Domain	Level
CO1	<i>Recognise</i> and <i>describe</i> the personal traits of an entrepreneur.	Cognitive Affective	Understand Receiving
CO2	<i>Determine</i> the new venture ideas and <i>analyze</i> the feasibility report.	Cognitive	Understand Analyze
CO3	<i>Develop</i> the business plan and <i>analyze</i> the plan as an individual or in team.	Cognitive Affective	Receiving Analyze
CO4	Describe various parameters to be taken into consideration for launching and managing small business.	Cognitive	Understand
CO5	Describe Technological management and Intellectual Property Rights	Cognitive	Understand

COURSE CODE	COURSE NAME	L	Т	Р	С								
XUM 405		3	0	0	3								
C:P: A = 2:0:1	ENTERDENTITIETID DEVELOPMENT	L	Т	Р	Н								
	ENTREPRENEURSHIP DEVELOPMENT	3	0	0	3								
UNIT – I: ENTREPR	ENEURIAL TRAITS AND FUNCTIONS				9								
Definition of Entrepreneurship; competencies and traits of an entrepreneur; factors													
Entrepreneurship Development; Role of Family and Society; Achievement Motivation; Entrepreneurship a													
a career and national de	velopment.												
UNIT – II: NEW PRO	DUCT DEVELOPMENT AND VENTURE CREATION				9								
Ideation to Concept d	evelopment; Sources and Criteria for Selection of Produc	ct; m	arket	t assessment;									
Feasibility Report; Pro	oject Profile; processes involved in starting a new vent	ure;	legal	form	nalities;								
Ownership; Case Study													
UNIT – III: ENTREP	RENEURIAL FINANCE				9								
Financial forecasting f	or a new venture; Finance mobilization; Business plan p	repara	ation	; Sou	rces of								
Financing, Angel Invest	tors and Venture Capital; Government support in start-up pro-	motio	on.										
UNIT – IV: LAUNCH	ING OF SMALL BUSINESS AND ITS MANGEMENT				9								
Operations Planning - N	Iarket and Channel Selection - Growth Strategies - Product L	auncl	ning -	– Incu	ubation,								
Monitoring and Evaluat	ion of Business - Preventing Sickness and Rehabilitation of I	Busin	ess U	Jnits.									
Definition of Entrepr Entrepreneurship Devel a career and national de UNIT – II: NEW PRO Ideation to Concept de Feasibility Report; Pro Ownership; Case Study UNIT – III: ENTREP Financial forecasting f Financing, Angel Invess UNIT – IV: LAUNCH Operations Planning - M Monitoring and Evaluat	reneurship; competencies and traits of an entreprene opment; Role of Family and Society; Achievement Motivation velopment. DUCT DEVELOPMENT AND VENTURE CREATION evelopment; Sources and Criteria for Selection of Product oject Profile; processes involved in starting a new vent RENEURIAL FINANCE or a new venture; Finance mobilization; Business plan p tors and Venture Capital; Government support in start-up profile ING OF SMALL BUSINESS AND ITS MANGEMENT Market and Channel Selection - Growth Strategies - Product L ion of Business - Preventing Sickness and Rehabilitation of 1	eur; on; Er ct; ma ure; repara omotio Busin	facto ntrepi arket legal ation on. hing- less U	rs af reneur asses form ; Sou Jnits.	 9 ifecting ship as 9 ssment; nalities; 9 rces of 9 ibation, 								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT-V: TECHNOLOGY MANAGEMENT, IPR PORTFOLIO FOR NEW PRODUCT VENTURE

9

Technology management; Impact of technology on society and business; Role of Government in supporting Technology Development and IPR protection; Entrepreneurship Development Training and Other Support Services.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

TEXTBOOKS

- 1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.
- 2. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi.

REFERENCES

- 1. Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis,
- 2. Biztrantra ,2nd Edition.
- 3. Prasanna Chandra, 2009, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill.
- 4. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.
- 5. Arya Kumar,2012, Entrepreneurship: Creating and Leading an Entrepreneurial Organisation, Pearson Education India.
- 6. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage Learning India.
- 7. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material
- 8. for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad. Available from: http://www.ediindia.org/doc/EDP-TEDP.pdf
- 9.

E REFERENCES

- 1. Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	GA 1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	0	0	0	0	0	0	0	0	3	3	3	1
CO 2	0	0	1	2	3	2	1	1	1	2	3	0
CO 3	0	0	0	0	0	1	0	2	3	3	0	2
CO 4	0	0	0	0	0	1	1	2	3	0	3	3
CO 5	0	0	0	0	0	1	1	3	0	0	0	3
Total	0	0	1	2	3	5	3	8	10	8	9	9
Scaled	0	0	1	1	1	2	1	2	3	2	2	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

SIGNALS AND SYSTEMS

Course	e Outcomes (XEE 406):	Domain	Level
CO1	Understand the concepts of continuous time and discrete time	Cognitive	Understand
	systems.		
CO2	Analyse systems in complex frequency domain.	Cognitive	Analyse
CO3	Learn about Fourier transformation techniques	Cognitive	Remembering
CO4	Learn about Laplace transformation techniques	Cognitive	Remembering
CO5	Learn about Z- transformation techniques	Cognitive	Remembering

COURSE CODE	COURS	SE NAME		L	Т	Р	С						
XEE 406				2	1	0	3						
C:P: A	SIGNALS A	ND SYSTEMS		L	Т	P	Η						
3:0:0													
UNIT -I: INTRODUC	CTION TO SIGNALS AN	D SYSTEMS					09						
Signals and systems as	s seen in everyday life, and	d in various bra	nches of engi	neering	g and sc	cience.	Signal						
properties: periodicity,	absolute integrability, dete	rminism and sto	chastic charac	cter. So	me spec	cial sign	nals of						
importance: the unit step, the unit impulse, the sinusoid, the complex exponential, some special time-limite													
signals; continuous and	d discrete time signals, cont	tinuous and disc	rete amplitude	e signal	s. Syste	em prop	erties:						
linearity: additivity and homogeneity, shift-invariance, causality, stability, reliability. Examples.													
UNIT- II: BEHAVIO	UNIT- II: BEHAVIOUR OF CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 09												
Impulse response and s	step response, convolution,	input-output be	haviour with a	aperiod	ic conv	ergent i	nputs,						
cascade interconnectio	ns. Characterization of cau	sality and stabil	ity of LTI syst	tems. S	ystem r	represer	ntation						
through differential equ	uations and difference equa	tions. State-spa	ce Representat	tion of	systems	s. State-	-Space						
Analysis, Multi-input,	multi-output representation	n. State Transiti	on Matrix and	its Ro	le. Perio	odic inp	outs to						
an LTI system, the not	ion of a frequency response	e and its Relation	n to the impuls	se respo	onse.								
UNIT -III: FOURIER	R TRANSFORMS						09						
Fourier series represer	ntation of periodic signals,	Waveform Syn	nmetries, Fou	rier Co	pefficier	nts, har	monic						
spectrum and THD. Fo	urier Transform, convolution	on/multiplication	n and their effe	ect in th	ne frequ	ency do	omain,						
magnitude and phase re	esponse, Fourier domain du	ality. The Disci	ete- Time Fou	irier Tr	ansforn	n (DTF	T) and						
the Discrete Fourier Tr	ansform (DFT). Applicatio	n to simple circ	uits.										
UNIT-IV: LAPLACI	E TRANSFORMS						06						
Review of the Laplace	Transform for continuous ti	ime signals and	systems, system	m func	tions, po	oles and	l zeros						
of system functions an	nd signals, Laplace domain	n analysis, solu	tion to differe	ential e	quation	s and s	system						
behaviour. Application	to simple circuits.						-						
UNIT -V: Z- TRANSFORMS AND SAMPLING RECONSTRUCTION12													
The z-Transform for d	The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and												
sequences, z-domain analysis. The Sampling Theorem and its implications. Spectra of sampled signals.													
Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation													
between continuous an	d discrete time systems. Int	troduction to the	e applications	of signa	al and s	ystem t	heory:						
modulation for commu	inication, filtering, feedbacl	k control system	IS.										
		LECTURE	TUTORIA	Ĺ	TC	DTAL							
		30	15			45							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

TEXTBOOKS

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signals and systems", Prentice Hall India, 1997.
- 2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson, 2006.
- 3. H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
- 4. S. Haykin and B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.

REFERENCES

- 1. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
- 2. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	2	1				1			1	1	0
CO 2	3	3	2	1		3		1				2		1
CO 3	3			1		3		1			1			1
CO 4	3	2	2	2	1		1			2		2		1
CO 5	3			1						2				1
Total	15	7	6	7	2	6	1	2	1	4	1	5	1	4
Scaled	3	2	2	2	1	2	1	1	1	1	1	1	1	1

0 – No Relation 1 – Low Relation 2 – Medium Relation 3 – High

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headeee@pmu.edu Web: www. pmu.edu

SEMESTER V POWER SYSTEMS-I (APPARATUS AND MODELLING)

Cours	se Outcomes (XEE 501):	Domain	Level
CO1	Demonstrate the per phase analysis of power system	Cognitive	Understanding
CO2	Develop the model of various components of power	Cognitive	Applying
	system and Construct the Y Bus and Z Bus for a power		
	system.		
CO3	Analyse the power system network with symmetrical and	Cognitive	Analysing
	unsymmetrical faults. Calibrate the fault current in a	psychomotor	Complex
	power system.		
CO4	Summarize the power flow equation. Assess the voltage	Cognitive	Understanding
	profile of a power system by performing the load flow	psychomotor	Evaluating
	analysis and Identify the line loss and line flow.		Perception
CO5	Classify and determine the stability of power system.	Cognitive	Understanding
	Detect the transient behaviour of power system when it is	psychomotor	Evaluating
	subjected to a fault.		Perception

Learning Objectives:

Establish and use power system models based on nodal admittance and impedance matrices for the analysis of large-scale power networks. Model generators, transformers, lines and cables in the positive, negative and zero sequence systems as basis for the analysis of symmetrical and unsymmetrical faults. Perform analysis of power systems subject to symmetrical and unsymmetrical faults.

Use simulation tools to perform comprehensive short circuit studies, load flow studies, and optimal power flow studies.

COURSE CODE	COURSE NAME	L	Т	Р	С
	POWER SYSTEMS-I		4		_
XEE 501	(APPARATUS AND MODELLING)	3		1	5
C:P: A		L	Т	Р	Н
3:1:0		3	1	2	6
UNIT - I: INTROD	UCTION			9+3	
NT 1.C (1			1	1	•

Need for system analysis in planning and operation of modern power system – per phase analysis - Single line diagram - Per unit representation and Per unit calculations – Change of base – introduction to Electricity Deregulation.

UNIT -II: MODELLING OF POWER SYSTEM COMPONENTS

12+3+6

Primitive network and its matrices – bus incidence matrix – bus admittance and bus impedance matrix formation – Z – Bus building algorithm - Modelling of generator, load, transformer, transmission line for different power system studies.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

List of Experiments

1. Formation of Bus Admittance Matrix.

2. Formation of Bus Impedance Matrix using building Algorithm

UNIT - III: FAULT ANALYSIS-UNSYMMETRICAL FAULTS

Need for short circuit study - basic assumptions in fault analysis of power systems. Symmetrical (or) balanced three phase faults - problem formulation - fault analysis using Zbus matrix – algorithm and flow chart. Computations of short circuit capacity, post fault voltage and currents. Introduction to symmetrical components - sequence impedances - sequence networks Unsymmetrical fault analysis: L-G, L-L and L-L-G faults.

List of Experiments

3. Symmetrical Fault Analysis.

4. Unsymmetrical Fault Analysis.

UNIT- IV: POWER FLOW ANALYSIS

9+3+9

12+3+6

Need for Power Flow Analysis - bus classification - derivation of power flow equation solution by Gauss-Seidel, Newton-Raphson and Fast Decoupled Power Flow methods comparison of three methods

List of Experiments

5. Solution of power flow using Gauss-Seidel Method.

6. Solution of power flow using Newton Raphson Method.

7. Solution of power flow using Fast Decoupled Power Flow Method.

UNIT -V: STABILITY ANALYSIS

9+3+3

Types of stability - Swing equation in state space form - equal area criterion - stability analysis of single machine connected to infinite bus by modified Euler's method using classical machine model- critical clearing angle and time. Causes of voltage instability - voltage stability proximity indices for two-bus system – methods of improving power system stability. List of Experiments

9. Transient Stability Analysis of Single-Machine Infinite Bus System

• •	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	45	15	30	90

TEXT BOOKS

- 1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw-Hill Education; 2nd edition (December 28, 2015)
- 2. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1st July 2017.
- 3. A. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 2nd Edition, 2009.

REFERENCES

- 1. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill Education, 4th Edition (29 June 2011)
- 2. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems", Wiley, 5 edition (December 26, 2012)

E REFERENCES

www.nptel.ac.in

https://nptel.ac.in/courses/108104051/ https://nptel.ac.in/courses/108102047/

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3									1		1	3	2
CO 2	3									1		1	3	2
CO 3	3	2								1	1	2	3	2
CO 4	3	2			1					1	1	1	3	2
CO 5	3	2			1					1	1	1	3	2
Total	15	6	0	0	2	0	0	0	0	5	3	6	15	10
Scaled	3	1	0	0	0	0	0	0	0	1	1	1	3	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

CONTROL SYSTEMS

Cours	se Outcomes (XEE 502):	Domain	Level
CO1	Identify the basic elements, derive the transfer function and	Cognitive	Understanding
	Compute the overall gain of the control system and	Psychomotor	
	Construct the transfer function of DC motors and DC		
	generators.		
CO2	Explain the performance of First and Second order system	Cognitive	Understanding
	with static and dynamic error coefficients.	Psychomotor	Set
CO3	Describe the frequency domain specifications and show the	Cognitive	Remembering
	response of frequency response.	Psychomotor	Understanding
		-	Set
CO4	Determine the stability of the systems and Design the	Cognitive	Understanding
	suitable compensator and controller for the given	Psychomotor	Design
	performance criteria of the control system	-	Perception
CO5	Describe State transition matrix. Explain State space	Cognitive	Remembering
	model and construct and verify the canonical state model		
	and Kalman's test for controllability and observability.		

Learning Objectives: Control Systems is the engineering discipline that applies control theory to design systems with desired behaviours. To make students understand the concept of system representation for stability analysis and state –space analysis, to design the compensator in time and frequency domain, to design the PID compensator

COURSE CODE	COURSE NAME	L	Т	Р	С				
XEE 502		3	0	1	4				
C:P: A	CONTROL SYSTEMS	L	Т	Р	Η				
3:1:0		3	0	2	5				
UNIT - I: SYSTEMS AND THEIR REPRESENTATION 9+9									
Basic elements in control systems - Open and closed loop systems - Principles of feedback, Transfer									
function Block diagram reduction techniques - Signal flow graphs. Mason gain formula, Modelling of									
electric systems tran	nslation and rotational mechanical systems.								
List of Experimen	ts								
1. Transfer fun	ction and modelling of separately excited DC Generator.								
2. Transfer fun	ction and modelling of Armature & field-controlled DC Motor.								
3. Transfer fur	nction of AC Servomotor								
UNIT – II: TIME	RESPONSE ANALYSIS		9-	-9					
Time response – Time domain specifications - Standard test signals. Time response of first and second order									
systems for standard test inputs. Error coefficients – Generalized error series – Steady state error									
List of Experiments									

- 4. Analysis of Synchro Transmitter and Receiver.
- 5. Performance of DC Stepper Motor

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

6. Digital simulation of I order and II order system by using Scilab.

UNIT - III: FREQUENCY-RESPONSE ANALYSIS

Frequency domain specification - Bode plot - Polar plot - Determination of closed loop response from

open loop response - CorRelation between frequency domain and time domain specifications

List of Experiments

- 7. Frequency response of Lag, Lead & Lag Lead networks.
- 8. Determination of Phase margin and Gain margin of the Bode plot using Scilab.

UNIT – IV: STABILITY ANALYSIS AND CONTROLLER DESIGN

Characteristics equation – Location of roots in S plane for stability –Routh Hurwitz criterion – Root locus construction – Effect of pole, zero addition –Nyquist stability criterion. Introduction to design of Proportional, Integral and Derivative Controllers- Lead and Lag compensator- Analog and Digital implementation of controllers.

UNIT – V: STATE VARIABLE ANALYSIS

Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigenvalues and Stability Analysis. Physical variable phase variable and canonical variable forms State Space representation of continuous time system. Transfer function from state variable representation –. Concept of controllability and observability.

List of Experiments

9. Transfer function and modeling of Ward – Leonard speed control system applied to DC motor.

10.DC Position using feedback Control system.

<u> </u>				
	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	45	0	30	75
TEXTBOOKS				

- 1. I.J. Nagrath & M. Gopal, 'Control Systems Engineering', New Age International Publishers Pvt Ltd; Sixth edition (1 September, 2018)
- 2. Norman S. Nise, "Control System Engineering" Seventh edition, John Wiley & Sons, Inc, 2015.
- 3. M. Gopal, "Control Systems, Principles & Design", Tata McGraw Hill, New Delhi, 2002.
- 4. Richard C. Dorf & Robert H. Bishop, "Modern Control Systems", Addison-Wesley, 2012.

REFERENCES

- 1. B.C. Kuo, 'Automatic Control Systems', Prentice Hall of India Ltd., New Delhi, 2014.
- 2. K. Ogata, 'Modern Control Engineering', 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 3. N. Bandyopadhyay, 'Control Engineering Theory and Practice', Prentice Hall of India, 2009
- 4. John J.D'azzo & Constantine H.Houpis, 'Linear control system analysis and design', Tata McGrow-Hill, Inc., 2013

E - REFERENCES

1. NTPEL, Control Systems Engineering (Web Course), Prof. M. Gopal, IIT Kharagpur.

9

9+6

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1			1	1	1			1		
CO2	2	3	1		2	1	1	1	1	1		2	2	1
CO3	3	3	3	2			1		3				2	2
CO4	1	2	2	3	2	2	1	1	2	1	1	2	1	2
CO5	2	1	1	1	2	1	1	1	2	1		1	2	2
Total	10	10	9	7	4	4	5	4	9	3	1	6	7	7
Scaled	2	2	2	2	1	1	1	1	2	1	1	2	2	2

 $0 - No \ Relation \qquad 1 - Low \ Relation \qquad 2 - Medium \ Relation \ 3 - High \ Relation$

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

MICROPROCESSORS AND MICROCONTROLLERS

Cours	se Outcomes (XEE 503):	Domain	Level
CO1	To understand the fundamentals of microprocessors, microcontrollers and embedded systems	Cognitive	Understanding
CO2	To understand the architecture, Timing diagrams and Execution cycles of 8051	Cognitive	Understanding
CO3	To understand the types of addressing modes, Instruction	Cognitive	Understanding
	types and to understand the basic concepts of programming	Psychomotor	Set
		Affective	Responding
CO4	To understand interfacing design of peripherals like I/O,	Cognitive	Understanding
	A/D, D/A, timer etc.	Psychomotor	Set
		Affective	Responding
CO5	To understand communication protocols and interfacing	Cognitive	Understanding
	with external devices	Psychomotor	Set
		Affective	Responding

Learning Outcomes: Able to do assembly language programming, do interfacing design of peripherals like I/O, A/D, D/A, timer etc. and to develop systems using different microcontrollers.

COURSE CODE	COUDSE NAME	T	T	р	C					
COURSE CODE	COURSE NAME	L	I	ľ	C					
XEE 503	MICROPROCESSORS AND	3	0	1	4					
C:P: A	MICROCONTROLLERS	L	Т	Р	Н					
3:1:0		3	0	2	5					
UNIT- I: FUNDAMENTALS OF MICROPROCESSORS 9										
Fundamentals of M	Microprocessor Architecture. 8-bit Microprocessor	and	Micro	ocont	roller					
architecture, Comp	parison of 8-bit microcontrollers, 16-bit and 32-b	oit m	icroco	ontro	ollers.					
Definition of embedded system and its characteristics, Role of microcontrollers in embedded										
Systems. Overview of the 8051 family.										
UNIT -II: THE 8051 ARCHITECTURE 9										
Internal Block Diagra	am, CPU, ALU, address, data and control bus, working	g regi	sters,	SFR	s, Clock					
and RESET circuits,	Stack and Stack Pointer, Program Counter, I/O ports, N	Memor	ry Stru	uctur	es, Data					
and Program Memor	y, Timing diagrams and Execution Cycles.									
UNIT- III: INSTRU	CTION SET AND PROGRAMMING				9+12					
Addressing modes: In	ntroduction, Instruction syntax, Data types, Subroutines	Imme	diate a	addre	ssing,					
Register addressing,	Direct addressing, Indirect addressing, Relative addressing	ig, ind	exed a	addre	ssing,					
Bit inherent addressin	ng, bit direct addressing. 8051 Instruction set, Instruction	timin	gs. Da	ata tra	ansfer					
instructions. Arithmetic instructions. Logical instructions. Branch instructions. Subroutine										
instructions, Bit manipulation instruction. Assembly language programs, C language programs.										
Assemblers and compilers. Programming and Debugging tools.										

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

9+3

List of Experiments

- 1. Simple arithmetic operations with 8085 Microprocessors: Multi precision addition / subtraction / multiplication / division.
- 2. Programming with control instructions: Increment / Decrement, Ascending / Descending order, Maximum / Minimum of numbers, Rotate instructions.
- 3. Demonstration of basic instructions with 8051 Micro controller execution, including: a. Conditional jumps, looping b. Calling subroutines. c. Stack parameter testing
- 4. Design program for code conversions.

UNIT -IV: MEMORY AND I/O INTERFACING

Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters, memory devices.

List of Experiments

5. Interfacing Converters of 8-bit D/A and A/D.

UNIT -V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS 9+15

Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing. Stepper motor interfacing, DC Motor interfacing, sensor interfacing.

List of Experiments

- 6. Interfacing of Keyboard with 8085
- 7. Interfacing of seven segment display with 8085.
- 8. Serial communication, I/O Port operations.
- 9. Design and implementation of Traffic Light control.

10. Design and implementation of Stepper motor control

LECTURE	PRACTICAL	TOTAL
45	30	75

TEXTBOOKS

- 1. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.
- 2. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.
- 3. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.
- 4. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013

REFERENCES

- 1. D.A.Patterson and J.H.Hennessy, "Computer Organization and Design: The Hardware /Software interface", Morgan Kaufman Publishers, 5th Edition, 2013.
- 2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.

E REFERENCES

www.nptel.ac.in

https://onlinecourses.nptel.ac.in/noc19_ee11

https://nptel.ac.in/courses/Webcourse-contents/IISc

BANG/notused/Microprocessors% 20 and% 20 Microcontrollers-/Learning% 20 Material% 20 - Microcontrollers-/Learning% 20 - Microcontrollers-/Learning%

%20Microprocessors%20and%20microcontrollers.pdf

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO 1	1	0	2	0	0	0	0	0	0	1	1	0	1	1
CO 2	1	2	1	3	1	0	0	0	2	1	2	1	1	1
CO 3	0	0	0	0	0	1	2	0	1	2	0	0	1	1
CO 4	1	1	2	2	1	0	0	0	2	1	2	1	0	1
CO 5	1	2	2	1	0	0	3	0	3	2	1	0	0	1
Total	4	5	7	6	2	1	5	0	8	7	6	2	3	5
Scaled	1	1	2	1	1	1	1	0	2	2	1	1	1	1

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Email: headeee@pmu.eduWeb: www. pmu.edu

CONSTITUTION OF INDIA

Cours	se Outcomes:	Domain	Level
CO1	Understand the Constitutional History	Cognitive	Understanding
CO2	Understand the Powers and Functions	Cognitive	Understanding
CO3	Understand the Legislature	Affective	Remembering
CO4	Understand the Judiciary	Affective	Remembering
CO5	Understand the Centre State relations	Cognitive	Understanding

COURSE CODE	COURSE N	AME		L	Τ	Р	С	
XUM 506	CONSTITUTION	OF INDIA		3	0	0	3	
C:P: A				L	Τ	Р	Η	
3:0:0				3	0	0	3	
UNIT- I:							9	
Constitutional History-	The Constitutional Rights- Pr	eamble- Funda	mental l	Right	s- Fu	ndam	ental	
Duties- Directive princip	ples of State Policy.							
UNIT- II:							9	
The Union Executive- The President of India (powers and functions)- Vice-President of India-								
The Council of Minister	s-Prime Minister- Powers and	d Functions.						
UNIT- III:							9	
Union Legislature- Structure and Functions of Lok Sabha- Structure and Functions of Rajya								
Sabha- Legislative Proc	edure in India- Important Cor	nmittees of Lo	k Sabha	- Spe	aker (of the	: Lok	
Sabha.								
UNIT- IV:							9	
The Union Judiciary-	Powers of the Supreme	Court- Origi	nal Juri	isdict	ion-	Appe	ellate	
jurisdictions- Advisory.	Jurisdiction- Judicial review.							
UNIT- V:							9	
Centre State relations-	Political Parties- Role of	governor, pow	ers and	func	ctions	of C	Chief	
Minister-Legislative As	sembly- State Judiciary- Pow	ers and Function	ons of th	e Hig	<u>zh Co</u>	urts.		
		LECTURE	TUTO	RIA	L	TOT	AL	
45 0 45								
KEFEKENUES 1. W. H. Marria Sharas, Covernment and politics of India NavyDalki D. 1. Duklishers 1074								
1. w.m.worns Shores- Government and pointes of India, NewDeini, B.1.Publishers, 19/4.								
2. M.V.Pylee- Constitu	tional Government in India, I	Bombay, Asia I	Publishir	ng Ho	ouse,	1977.		

3. R. Thanker- The Government and politics of India, London: Macmillon, 1995.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

4. A.C.Kapur- Select Constitutions S, Chand & Co., NewDelhi, 1995

5. V.D.Mahajan- Select Modern Governments, S, Chand & Co, NewDelhi, 1995.

6. B.C.Rout- Democractic Constitution of India.

7. Gopal K.Puri- Constitution of India, India 2005.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO 2	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO 3	2	0	0	1	0	0	0	0	1	0	0	0	0	0
CO 4	2	0	0	1	0	0	0	1	1	0	0	0	0	0
CO 5	2	2	0	1	0	0	0	1	1	0	0	0	0	0
Total	10	2	0	5	0	0	0	2	3	0	0	0	0	0
Scaled	2	1	0	1	0	0	0	1	1	0	0	0	0	0

COs versus POs mapping

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

SEMESTER VI

ECONOMICS FOR ENGINEERS

Cours	se Outcomes:	Domain	Level
CO1	Understand the concepts of economics in engineering.	Cognitive	Remembering
CO2	Interpret Break-even analysis.	Cognitive	Understanding
CO3	Illustrate value engineering procedure.	Cognitive	Understanding
CO4	Understand and analyze replacement problem.	Cognitive	Understanding
CO5	<i>Explain</i> depreciation.	Cognitive	Understanding

Learning Objectives:

COURSE CODE	COURSE NAME	L	Т	Р	С			
XUM 601	ECONOMICS FOR ENGINEERS	3	0	0	3			
C:P: A		L	Т	Р	Н			
3:0:0		3	0	0	3			
UNIT- I: INTRODUC	FION TO ECONOMICS				8			
Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics- types of costing, element of costs, preparation of cost sheet and estimation, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost								
UNIT- II: BREAK-EV	EN ANALYSIS & SOCIAL COST BENEFIT	ANAL	YSIS		12			
Margin of Safety, Prof	t, Cost & Quantity Analysis-Product Mix decisior	is and (CVP a	nalys	sis,			
Profit/Volume Ratio (F	VV Ratio), Application of Marginal costing, Limit	ations						
Social Cost Benefit Analysis : compare different project alternatives, Calculate direct, indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.								
UNIT-III: VALUE E	NGINEERING & COST ACCOUNTING				10			
Value engineering - Function, aims, Value engineering procedure - Make or buy decision								
Business operating costs, Business overhead costs, Equipment operating costs								
UNIT- IV: REPLACEMENT ANALYSIS								
Replacement analysis – Types of replacement problem, determination of economic life of an asset,								
Replacement of an asset with a new asset.								
UNIT- V: DEPRECIA	ATION				8			

PERIODA DE ALIGOS ALCACIONAL ALCA

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the years digits method of depreciation, sinking fund method of depreciation, Annuity method of depreciation, service output method of depreciation.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXTBOOKS			

- 1. 1 Sp Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012
- 2. S.P.Jain & Narang, "Cost accounting Principles and Practice", Kalyani Publishers, Calcutta, 2012
- 3. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.
- 4. William G.Sullivan, James A.Bontadelli & Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

REFERENCES

- 1. Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 2. Truett & Truett, "Managerial economics- Analysis, problems & cases "Wiley India 8th edition 2004.
- 3. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

E REFERENCES

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

POWER SYSTEMS-II (OPERATION AND CONTROL)

Cours	se Outcomes (XEE 602):	Domain	Level
CO1	Explain power system load characteristics and	Cognitive	Understanding
	generation reserve requirements.		
CO2	Demonstrate and Apply the mathematical knowledge	Cognitive	Understanding
	to model and analysis of power system for frequency		Applying
	control.		
CO3	Identify fundamental aspects of reactive power and its	Cognitive	Applying
	effect on system voltage and Select the suitable voltage		
	control method for the system operating condition.		
CO4	Formulate economic dispatch and unit	Cognitive	Creating
	commitment problem and its solution.		
CO5	Apply computer control methods for power	Cognitive	Applying
	system operation and control		

Learning Objectives: To provide the knowledge of optimization techniques used in the power system and Load Frequency Control (LFC). To provide a solid foundation in mathematical and engineering fundamentals required to control the governing system in Turbine models. To provide the knowledge of Hydrothermal scheduling, reactive power control.

COURSE CODE	COURSE NAME	L	Τ	Р	С			
XEE 602	POWER SYSTEMS-II (OPERATION AND CONTROL)	3	1	1	5			
C:P: A = 3:1:0		L	Τ	Р	Η			
		3	1	2	6			
UNIT - I: INTRODUCTION 9+3								
An overview of power system operation and control - system load variation - load characteristics - load curves and load-duration curve - load factor - diversity factor - Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves - Importance of load forecasting - quadratic and exponential curve fitting techniques for forecasting – plant level and system level controls.								
UNIT - II: REAL POWER - FREQUENCY CONTROL								
Basics of speed governing mechanism and modelling - speed-load characteristics – load sharing between two synchronous machines in parallel - concept of control area - LFC control of a single-area system: static and dynamic analysis of uncontrolled and controlled cases - two-area system: modelling - static analysis of uncontrolled case - tie line with frequency bias control - state variable model.								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

List of Experiments

- 1. Simulink model of single area load frequency control with PI controller.
- 2. Simulink model of single area load frequency control without PI controller.
- 3. Simulink model for two area load frequency control.

UNIT - III, KEACIIVEIOVVER-VULTAGE CUNTKUL	UNIT -	III:	REA	CTIVE	POWER-	-VOLTA	GE CON	TROL
--	--------	------	-----	-------	--------	--------	--------	------

9+3+6

Generation and absorption of reactive power - basics of reactive power control - excitation systems- modelling - static and dynamic analysis - stability compensation - methods of voltage control: tap-changing transformer, injection reactive power - SVC (TCR + TSC) and STATCOM – secondary voltage control.

List of Experiments

4. Modelling of reactive power compensation using STATCOM in MATLAB.

5. Modelling of reactive power compensation using SVC in MATLAB.

UNIT -IV·	LINIT COMMITMENT AND ECONOMIC DISPATCH	12+3+9
	CITE COMMITMENT AND ECONOMIC DISTATCH	14+3+7

Formulation of economic dispatch problem – I/O cost characterization – incremental cost curve - coordination equations without and with loss (No derivation of loss coefficients) - solution by direct method and λ -iteration method - statement of unit commitment problem – priority-list method - forward dynamic programming.

List of Experiments

6. MATLAB program to find optimum loading of generators with penalty factor.

7. MATLAB program to find optimum loading of generators neglecting transmission losses.

8. MATLAB program to find economic load dispatch problem.

UNIT- V: COMPUTER CONTROL OF POWER SYSTEMS	9 +3
Need for computer control of power systems - concept of energy control centre -	functions -
system monitoring - data acquisition and control - system hardware configuration	i – SCADA
and EMS functions - network topology - state estimation - WLSE - Contingency	Analysis -
state transition diagram showing various state transitions and control strategies.	

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	15	30	90

TEXT BOOKS

1. Olle.I.Elgerd, 'Electric Energy Systems theory - An introduction', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.

- 2. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 3rd Edition ,2013.
- 3. Kundur P., 'Power System Stability and Control, Tata McGraw Hill, New Delhi, 5th reprint, 2014.

REFERENCES

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21streprint, 2010.
- 3. Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

E REFERENCES

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

1. www.nptel.ac.in

2. NPTEL : http://nptel.ac.in/courses/108104052/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	2	-	-	-	-	1	-	-	2	1
CO2	2	3	2	2	2	-	-	I	1	1	1	I	2	-
CO3	2	2	2	2	3	-	-	-	-	-	1	1	2	-
CO4	2	2	3	3	2	-	-	-	-	1	-	-	1	-
CO5	1	2	2	2	2	-	-	-	-	-	-	1	1	1
Total	10	12	10	10	11	0	0	0	1	3	2	2	8	2
Scaled	2	3	2	1	3	0	0	0	1	1	1	1	2	1

Mapping of COs with POs

0-No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

DISASTER MANAGEMENT

Cours	se Outcomes:	Domain	Level
CO1	Understanding the concepts of application of types of disaster preparedness	Cognitive	Application
CO2	On completion of this course the students will be able to understand planning essentials of disaster.	Cognitive	Analyze
CO3	Have a good understanding of importance of seismic waves occurring globally	Cognitive	Analyze
CO4	On completion of this course, the students will be able to perform drill essential for disaster mitigation	Cognitive	Application
CO5	Have a keen knowledge on essentials of risk reduction	Cognitive	Application

COURSE CODE	COURSE NAME	L	Т	Р	С		
XUM 606	DISASTER MANAGEMENT	3	0	0	3		
C:P: A		L	Т	P	Η		
3:0:0		3	0	0	3		
UNIT- I: INTRODUCTION							

Introduction – Disaster preparedness – Goals and objectives of ISDR Programme- Risk identification – Risk sharing – Disaster and development: Development plans and disaster management –Alternative to dominant approach– disaster-development linkages -Principle of risk partnership

UNIT- II: APPLICATION OF TECHNOLOGY IN DISASTER RISK REDUCTION 9

Application of various technologies: Data bases – RDBMS – Management Information systems – Decision support system and other systems – Geographic information systems – Intranets and extranets – video teleconferencing. Trigger mechanism – Remote sensing-an insight – contribution of remote sensing and GIS - Case study

UNIT- III: AWARENESS OF RISK REDUCTION

Trigger mechanism – constitution of trigger mechanism – risk reduction by education – disaster information network – risk reduction by public awareness

UNIT- IV: DEVELOPMENT PLANNING ON DISASTER

Implication of development planning – Financial arrangements – Areas of improvement – Disaster preparedness – Community based disaster management– Emergency response.

UNIT- V: SEISMICITY

Seismic waves – Earthquakes and faults – measures of an earthquake, magnitude and intensity – ground damage – Tsunamis and earthquakes

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

9

9

9

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

CO 5

Total

Scaled

]	LECT	URE	TUTO	RIAL	TOT	AL
									45		0		45	
]	ГЕХТІ	BOOK	S											
	 Side Poli Aru Aru REFEI Ency Prad PHI Ami 	dhartha icies", <u>n Kum</u> RENC yclopae leep Sa , 2002 ta Siny	i Gauta Vista I iar, "G E S edia of hni, M vhal "I	um and nternat lobal I Disast adhavi	K Lee tional I Disaster ter Mar i Malal	lakrish Pub Ho r Mana nagemo goda a	nna Rad ouse, 20 igemer ent, Ne ind Ari	o, "Dis 012, nt", SB eha Put iyabano disaste	aster N S Publ olishers du, "Di	Manager ishers, 2 s & Dist isaster r	nent Pro 2008 ributors isk redu 0	ogramm , 2008 ction in	es and	Asia",
2	 Pardeep Sahni, Alka Dhameja and Uma Medury, "Disaster mitigation: Experiences and reflections", PHI, 2000 													
I	E REF	EREN	CES											
					Μ	appin	g of C	Os wit	h POs					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
) 1		1	1					1			1	1	2	2
) 2			2		3						2	2	2	2
) 3						2	2				1	1		1
) 4		2	2		1	1	1	2	1	1	3	1	1	

1 – Low Relation 2 – Medium Relation 3 – High Relation 0 –No Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

SEMESTER VII HUMAN ETHICS, VALUES, RIGHTS AND GENDER

Cours	se Outcomes:	Domain	Level
CO1	Adapt the human values and Social Justice.	Cognitive	Knowledge and
		Affective	Responding
CO2	Discuss and accept Gender Equality,	Cognitive	Comprehension
	empowerment and feminism.	Affective	and Valuing
CO3	Recognize the status of women and analyse	Cognitive	Comprehension
	the issues related to women.	Affective	and Valuing
CO4	Demonstrate the human rights and good	Cognitive	Comprehension
	governance.	Affective	Responding
CO5	Adapt the human values and Social Justice.	Cognitive	Apply
		Affective	Responding

COURSE CODE	COURSE NAME	L	Т	P	С			
XUM 703	HUMAN ETHICS, VALUES, RIGHTS	3	0	0	3			
	AND GENDER							
C:P: A		L	Т	Р	Н			
3:0:0		3	0	0	3			
UNIT- I: Human Values 9								

Human Ethics and values - Understanding of oneself and others- Basic instincts, motives and needs- Social service, Social Justice, Dignity and worth, Harmony in human relationship: Family and Society, Integrity and Competence, Caring and Sharing, Honesty and Courage, Valuing Time, Co-operation, Commitment, Sympathy and Empathy, Self-Confidence and Personality- Living in harmony at various levels.

UNIT- II: Gender Equality

Gender Equality - Gender Vs Sex -, Concepts, definition, Gender equity, equality, and empowerment. Status of Women in India Social, Economic, Education, Health, Employment, HDI, GDI, GEM. Contributions of Dr.B.R. Ambethkar, Thanthai Periyar and Phule to Women Empowerment.

UNIT- III: Women issues and Challenges

9

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

0

45

Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures – Acts related to women: Political Right, Property Rights, and Rights to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act.

Medical Termination of Freghancy Act, and Dowry Tromotion Act.							
UNIT- IV: Human Rights	9						
Human Rights Movement in India – The preamble to the Constitution of India, Human R	ights						
and Duties Universal Declaration of Human Rights (UDHR), Civil, Political, Economic, Social							
and Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights of Children.							
UNIT- V: Good Governance9							
Good Governance - Democracy, People's Participation, Guaranteed Freedoms, Open	and						
Transparency governance, Combating corruption, Fairness in criminal justice administration	ation,						
Government system of Redressal, Judiciary, National Human Rights Commission and other							
statutory Commissions, Creation of Human Rights Literacy and Awareness.							
LECTURE TUTORIAL TOTAL							

TEXTBOOKS

1. Alam, Aftab ed., Human Rights in India: 1999Issues and Challenges (New Delhi: Raj Publications,)

45

- 2. Bajwa, G.S. and D.K. Bajwa, 1996 Human Rights in India: Implementation and Violations (New Delhi: D.K. Publications,)
- 3. Chatrath, K. J. S., (ed.), 1998) Education for Human Rights and Democracy (Shimala: Indian Institute of Advanced Studies,).
- 4.Jagadeesan.P., 1990. Marriage and Social legislations in Tamil Nadu, Elachiapen pub, Chennai,
- 5. Kaushal, Rachna, 2000 Women and Human Rights in India (New Delhi: Kaveri Books,)
- 6. Mani. V. S., 1998)Human Rights in India: An Overview (New Delhi: Institute for the World Congress on Human Rights,)
- 7. Singh Sehgal, B. P. 1999 (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep,)
- 8. Veeramani K. (1996), Periyar on Women Right, Emerald Publishers, Chennai, India.
- 9..Veeramani.K (2010) (ed) Periyar Feminism.Periyar ManiammaiUniversity,Vallam, Thanjavur.
- 10. Status Report 1976, Govt. of India.

REFERENCES

1.

E REFERENCES

INSTITUTE OF SCIENCE & TECHNOLOGY

think • innovate • transform

Establish

(Deemed to be University) ned Under Sec. 3 of UGC Act, 1956 • NAAC Accredited

Mapping of COs with POs

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1			3		3	2		2						
CO 2			3		1	2		3						
CO 3			2		2	2		3						
CO 4			3		3	3		3						
CO 5			1		1	1		1						
Total			12		10	10		12						
Scaled			3		2	2		3						

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headeee@pmu.edu Web: www. pmu.edu

SEMESTER VIII CYBER SECURITY

Cours	se Outcomes:	Domain	Level
CO1	Able to understand the Cyber Security Policy, Laws and Regulations	Cognitive	Remember
CO2	Able to discuss the Cyber Security Management Concepts	Cognitive	Understand
CO3	Able to understand the Cyber Crime and Cyber welfare	Cognitive	Understand
CO4	Able to discuss on issues related to Information Security Concepts	Cognitive	Understand
CO5	Able to understand various security threats	Cognitive	Understand

Learning Objectives:

To understand key terms and concepts in cyber law, intellectual property and cybercrimes, trademarks and domain theft. Able to examine secure software development practices. The learner will be able to incorporate approaches for risk management and best practices. To understand the basic knowledge of information security and security threats.

COURSE CODE	COURSE NAME	L	Т	P	С					
XUM 801	CYBER SECURITY	0	0	0	0					
C:P: A		\mathbf{L}	Т	Р	Η					
3:0:0		0	0	0	3					
UNIT-I INTRODUCTION 9										

Cyber Security – Cyber Security policy – Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration - Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges

UNIT-II: CYBER SECURITY OBJECTIVES AND GUIDANCE

9

Cyber Security Metrics – Security Management Goals – Counting Vulnerabilities – Security Frameworks – E Commerce Systems – Industrial Control Systems – Personal Mobile Devices – Security Policy Objectives – Guidance for Decision Makers – Tone at the Top – Policy as a Project– Cyber Security Management – Arriving at Goals – Cyber Security Documentation – The Catalog Approach – Catalog Format – Cyber Security Policy Taxonomy

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

9

9

15

UNIT- III: CYBER SECURITY POLICY CATALOG

Cyber Governance Issues – Net Neutrality – Internet Names and Numbers – Copyright and Trademarks – Email and Messaging - Cyber User Issues - Malvertising - Impersonation – Appropriate Use – Cyber Crime – Geo location – Privacy - Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare

UNIT-IV: INFORMATION SECURITY CONCEPTS

Information Security Overview: Background and Current Scenario - Types of Attacks - Goals for Security - E-commerce Security - Computer Forensics – Steganography

UNIT-V: SECURITY THREATS AND VULNERABILITIES

Overview of Security threats -Weak / Strong Passwords and Password Cracking - Insecure Network connections - Malicious Code - Programming Bugs - Cyber-crime and Cyber terrorism - Information Warfare and Surveillance

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXTBOOKS

1. Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs, Jeffrey Schmidt, Joseph Weiss "Cyber Security Policy Guidebook" John Wiley & Sons 2012.

REFERENCES

- 1. Rick Howard "Cyber Security Essentials" Auerbach Publications 2011.
- 2. Richard A. Clarke, Robert Knake "Cyberwar: The Next Threat to National Security & What to Do About It" Ecco 2010.
- 3. Dan Shoemaker Cyber security The Essential Body Of Knowledge, 1st ed. Cengage Learning 2011.
- 4. Rhodes-Ousley, Mark, "Information Security: The Complete Reference", Second Edition, McGraw-Hill, 2013.

E REFERENCES

- 1. https://www.coursera.org/specializations/cyber-security
- 2. www.nptel.ac.in
- 3. http://professional.mit.edu/programs/short-programs/applied-cybersecurity

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	0	0	2	3	3	1	2	2	1	0	1	1	2	2
CO 2	0	0	2	3	3	1	2	2	1	0	1	1	2	2
CO 3	0	0	2	3	3	1	2	2	1	0	1	1	2	2
CO 4	0	0	2	3	3	1	2	2	1	0	1	1	2	2
CO 5	0	0	2	3	3	1	2	2	1	0	1	1	2	2
Total	0	0	10	12	12	5	10	10	5	0	5	5	10	10
Scaled	0	0	2	3	3	1	2	2	1	0	1	1	2	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

SYLLABUS FOR ONE CREDIT (MINOR) COURSES

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ELECTRICAL SAFETY

Cours	se Outcomes (XEE M0*):	Domain	Level
CO1	Describe electrical hazards and safety equipment.	Cognitive	Understanding
CO2	Analyze and apply various grounding and bonding techniques.	Cognitive	Applying
CO3	Select appropriate safety method for low, medium and high voltage equipment.	Cognitive	Understanding

COURSE CODE	COURSE NA	ME		L	Т	Р	С
XEE M0*				1	0	0	1
C:P: A	ELECTRICAL S	L	Т	Р	Η		
3:0:0				1	0	0	1
Topics							15
Principles of electri	c safety - Electricity & Human b	ody - Earthing	/ Grou	nding	Risk	asses	sment
& management - S	afety against over voltage, extra	-low and residu	ual volta	ages -	Safe	pract	ices –
RCD, PPE, CB, loc	kout/tag out -Hazardous areas, E	lectrical insulat	tion - El	ectric	al fire	s, Arc	c flash
- Electrical safety i	n hospitals and Industries. Haza	rds of electricit	ty - basi	ic phy	vsics c	of eleo	ctrical
hazards - electrical	safety equipment safety procedu	res and method	ds - gro	undin	g and	bond	ing of
electrical systems	and equipment - electrical ma	intenance and	its Re	lation	ship	to sa	fety -
regulatory and le	gal safety requirements and	standards ac	cident	preve	ention	, ac	cident
investigation, rescu	e, and first aid - medical aspects	of electrical tr	auma -	low-v	voltage	e, me	dium-
and high-voltage sa	fety synopsis Human factors in	electrical safety	/.				
		LECTURE	TUT(ORIA	L	TOT	AL
		15		0		1:	5
TEXT BOOKS							
1. "Electrical Safet	y Handbook", John Cadick, Ma	ry Capelli-Sch	ellpfeff	er, De	ennis	Neitz	el, Al
Winfield, McGr	aw-Hill Education, 4 th Edition, 2	2012.					
REFERENCE BO	OKS						
1. "Electrical Safety- a guide to the causes and prevention of electric hazards", Maxwell Adams.J,							
The Institution of Electric Engineers, IET 1994(Reprint).							
2."Electrical Safety in the Workplace", Ray A. Jones, Jane G. Jones, Jones & Bartlett							
Learning, 2000.							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

MICROGRIDS

Cours	se Outcomes (XEE M0*):	Domain	Level	
CO1	Understand concept of microgrid and implementation	Cognitive	Understanding	
	issues.			
CO2	Understand issues related to power electronics	Cognitive	Understanding	
	interface.	-	_	
CO3	Acquire knowledge about modelling and stability	Cognitive	Understanding	
	analysis of solving power quality issues in Microgrid.	-	_	

COURSE CODE	COURSE NAME	L	Т	Р	С
XEE M0*	MICROGRIDS	1	0	0	1
C:P: A		L	Т	Р	Η
3:0:0		1	0	0	1
Topics					15
Concept and definition of microgrid, review of sources of microgrids, typical structure and					

Concept and definition of microgrid, review of sources of microgrids, typical structure and configuration of a microgrid: AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids, modes of operation and control of microgrid: grid connected and islanded mode, Power quality issues in microgrids- Modelling and Stability analysis of Microgrid, regulatory standards, Microgrid economics.

	LECTURE	LECTURE TUTORIAL		LECTURE TUTORIAL T		
	15	0	15			
TEVT DOOKS						

TEXT BOOKS

1. "Renewable Energy Resources", John Twidell and Tony Weir, Taylor and Francis Publications, 2006.

2."Microgrids and Active Distribution", S. Chowdhury, S. P. Chowdhury, P. Crossley The Institution of Engineering and Technology (June 24, 2009).

REFERENCE BOOKS

1. "Solar Photo Voltaics", Chetan Singh Solanki, PHI learning Pvt. Ltd., New Delhi, 2009.

2. "Wind Energy Conversion System", Freris, Prentice Hall, 1990.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Fax: +91 - 4362 - 264660Email: headeee@pmu.eduWeb: www. pmu.edu

PLC PROGRAMMING

Course Outcomes (XEE M0*):		Domain	Level
CO1	Understanding about the basics of PLC	Cognitive	Understanding
CO2	Describe different problems in PLC	Psychomotor	Perception

COURSE CODE	COURSE	NAME		L	Τ	P	C	
XEE M0*				1	0	0	1	
C:P: A	PLC PROGR	AMMING		L	Т	P	Η	
1:0:0				1	0	0	1	
Topics 6								
Definitions of PLC, basic structure of PLC, working principles, data storage methods, inputs /								
outputs flag processing's,	outputs flag processing's, types of variables, definition of firmware, software, programming							
software tool and interfaci	ng with PC (RS232 & TC	P-IP), methods	of PLC	C prog	gramr	ning (LD,	
ST, FBD & SFC), What	is logic, Conventional L	adder v/s PLC	ladder	, seri	es an	d par	allel	
function of OR, AND, NOT logic function blocks logical / mathematical operators & data							data	
types, array & data structu	ire.							
Lab Exercises							9	
1. Draw and verify the la	dder diagram for the give	n problem using	g the P	LC: -	Dou	ble ac	ting	
Cylinder operation usin	ng solenoid valves.							
2. Problems on OR logic e	ex: Stair case lighting prob	lems, Problems	s on AN	Dlog	gic ex	: Pres	sing	
unit other relevant sir	nple problems like Raily	way platform e	example	e, fla	shing	of l	ight,	
Burglar alarm, Selectio	on committee, testing unit	, Pressing unit p	problem	ı, Dri	lling	tool e	tc.	
3. Problems on Timers								
	LECTURE TUTORIAL TOTAL							
		15		0		15	;	
TEXT BOOKS								
1. "Programmable Lo	ogic Controllers" by W.Bo	olton, Newnes;	6 editio	on (M	arch	17, 20)15)	
2. "Programmable L	ogic Controllers and Ind	ustrial Automa	tion: A	n In	trodu	ction'	' by	
Madhuchhanda Mitra, Samarjit Sen Gupta Penram International Publishing (India) Pvt.								
Ltd, Second edition, 2017.								
REFERENCE BOOKS								
1. "Programmable I	Logic Controllers: Prog	gramming Me	thods	and	App	licati	ons"	
by Hackworth, Pre	by Hackworth, Prentice Hall (April 21, 2003)							

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ENERGY AUDITING

Course Outcomes (XEE M0*):		Domain	Level
CO1	Understand the importance of energy auditing & energy	Cognitive	Understanding
	management.		
CO2	Apply their own ideas in optimizing the energy	Cognitive	Applying
	requirements to overcome the demand.		
CO3	Acquire knowledge about energy monitoring and targeting	Cognitive	Understanding
	to improve the energy efficiency.		

COURSE CODE	COURSE	NAME		L	Т	P	C
XEE M0*				1	0	0	1
C:P: A	ENERGY AUDITING		L	Т	Р	Η	
1:0:0				1	0	0	1
Topics 15							
Energy Scenario: energy r	needs of growing economy	y, energy prici	ng, ener	gy sec	ctor re	form	s, Re-
structuring of the energy	supply sector, Energy Co	nservation Act	t-2010 a	nd its	featu	res -	Need
for energy audit - Energy	management & audit appr	oach: understa	nding e	nergy	, benc	h ma	rking,
energy performance, mat	ching energy use to req	luirement, max	ximizing	g syst	em e	fficie	ncies,
energy audit instruments.	Energy Monitoring and	Fargeting: Def	ining m	onitor	ing &	targ	eting,
elements of monitoring	& targeting, data and	information-	analysis	, tecł	nnique	es -e	energy
consumption, production,	cumulative sum of diff	ferences (CUS	UM) -	Energ	gy Ef	ficien	icy in
Electrical Utilities: electrical load management and maximum demand control, power factor							
Licentear Othines. cicen	ical load management an	nd max1mum o	iemand	contr	ol, po	wer	factor
improvement, energy savi	ng opportunities with energy	id maximum c	otors.	contr	ol, po	wer	factor
improvement, energy savi	ng opportunities with energy	nd maximum of rgy efficient m	otors.	contr RIA	ol, po	ower OTA	factor
improvement, energy savi	ng opportunities with ene	nd maximum of rgy efficient m	otors.	contr RIA 0	ol, po L T	ower OTA 1	factor
TEXT BOOKS	ng opportunities with energy	nd maximum of rgy efficient m LECTURE 15	otors.	contr DRIAI 0	ol, po L T	ower OTA 1	factor L 5
Improvement, energy savi TEXT BOOKS 1. "Energy Management	Principles: Applications,	d maximum of rgy efficient m LECTURE 15 Benefits, Sav	otors. TUTC	contr DRIA 0 Craig	ol, po <u>L</u> T B. Si	ower OTA 1: mith	factor L 5 Kelly
TEXT BOOKS 1. "Energy Management Parmenter, Elsevier,2nd	Principles: Applications, d Edition, 21st November	te maximum of rgy efficient m LECTURE 15 Benefits, Sav 2015 eBook I	iemand otors. TUTC rings", (SBN: 97	Contro ORIAI 0 Craig 78012	ol, po <u>L</u> T B. Si 80264	ower OTA 1: mith	factor L 5 Kelly
TEXT BOOKS 1. "Energy Management Parmenter, Elsevier,2nd 2. "Industrial Energy Man	Principles: Applications, d Edition, 21st November agement and Utilization "	d maximum of rgy efficient m LECTURE 15 Benefits, Sav 2015 eBook I by L.C. Witte,	rings", 0 SBN: 97 P.S. Sc	Craig 78012 hmidt	ol, pc L T B. Si 80264	ower OTA 1: mith 141 . Bro	factor L 5 Kelly wn
TEXT BOOKS 1. "Energy Management Parmenter, Elsevier,2nd 2. "Industrial Energy Man Hemisphere Publication	Principles: Applications, d Edition, 21st November agement and Utilization " h, Washington, 1988, Publ	te maximum of rgy efficient m LECTURE 15 Benefits, Sav 2015 eBook I by L.C. Witte, lished online 2	iemand otors. TUTC vings", (SBN: 97 P.S. Sc 010.	Craig 78012 hmidt	ol, pc L T B. Si 80264 c, D.R	ower OTA 1: mith 441 . Bro	factor L 5 Kelly wn
TEXT BOOKS 1. "Energy Management Parmenter, Elsevier,2nd 2. "Industrial Energy Man Hemisphere Publication REFERENCE BOOKS	Principles: Applications, d Edition, 21st November agement and Utilization " h, Washington, 1988, Publ	Id maximum of rgy efficient m LECTURE 15 Benefits, Sav 2015 eBook I by L.C. Witte, lished online 2	iemand otors. TUTC 'ings", (SBN: 97 P.S. Sc 010.	Craig 78012 hmidt	ol, pc L T B. Si 80264	ower OTA 1: mith 41 . Bro	factor L 5 Kelly wn
TEXT BOOKS 1. "Energy Management Parmenter, Elsevier,2nd 2. "Industrial Energy Man Hemisphere Publication REFERENCE BOOKS 1. "Industrial Energy Const	Principles: Applications, d Edition, 21st November agement and Utilization " h, Washington, 1988, Publ	Id maximum of rgy efficient m LECTURE 15 Benefits, Sav 2015 eBook I by L.C. Witte, lished online 2	iemand otors. TUTC ings", (SBN: 97 P.S. Sc 010. ulos, MI	Craig 78012 hmidt	ol, pc L T B. Si 80264 c, D.R ss, Mi	ower OTA 1: mith 41 . Bro ass, 1	factor L 5 Kelly wn 982©
TEXT BOOKS 1. "Energy Management Parmenter, Elsevier,2nd 2. "Industrial Energy Man Hemisphere Publication REFERENCE BOOKS 1. "Industrial Energy Cons 2019 The MIT Press	Principles: Applications, d Edition, 21st November agement and Utilization " n, Washington, 1988, Publ	Id maximum of rgy efficient m LECTURE 15 Benefits, Sav 2015 eBook Ia by L.C. Witte, lished online 2 ias P. Gyftopou	rings", 0 SBN: 97 P.S. Sc 010.	Craig 78012 hmidt	ol, pc L T B. Si 80264 c, D.R ss, Ma	0TA 1: mith 41 . Bro ass, 1	factor L 5 Kelly wn 982©

2. "Energy Conservation guide book" by Patrick/Patrick/Fardo, Prentice hall, Third Edition, 2014.

3. "Energy Management Handbook" by Wayne C. **Turner** & Steve Doty", John Wiley and Sons, A Wiley Interscience publication, 6th Edition, 2013.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

PROGRAMMING WITH ARDUINO

Course Outcomes (XEE M0*):		Domain	Level
CO1	Understand the basics of Arduino kit	Cognitive	Understanding
CO2	Applying the programming concept with different interfaces	Cognitive	Applying

COURSE CODE	COURSE NAME	L	Т	Р	С
XEE M0*	PROGRAMMING WITH ARDUINO	1	0	0	1
C:P: A		L	Т	Р	Η
1:0:0		1	0	0	1
					15

Arduino Basics - The Arduino platform - Block Diagram – Architecture. Basic programming essentials - Control structure - Functions - operators - Sketch Structure. Interfacing LED with Arduino. Interfacing 7-Segment display with Arduino. Interfacing LCD display with Arduino. Interfacing different sensors with Arduino

LECTURE	TUTORIAL	TOTAL
15	0	15

TEXT BOOKS

 "Arduino: 101 Beginners Guide: How to get started with Your Arduino (Tips, Tricks, Projects and More!)" by Erik Savasgard, 2nd Edition, July 2015.

2. "Exploring Arduino: Tools and Techniques for Engineering Wizardry" by Jeremy Blum, 2013.

REFERENCE BOOKS

1." Arduino Workshop: A Hands-On Introduction with 65 Projects" by John Boxall, No Starch Press; 1 edition (May 13, 2013)
Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headeee@pmu.edu

Fax: +91- 4362 - 264660 Web: www. pmu.edu

ELECTIVE GROUP - I

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

PROTECTION AND SWITCHGEAR

Cours	se Outcomes (XEE E11):	Domain	Level
CO1	To Illustrate and recall the principle, characteristics and working of different types of relay.	Cognitive	Understanding Remembering
CO2	To choose relevant protection systems for the Generator and Transformers.	Cognitive	Applying Evaluating
CO3	To compare the concepts of arc quenching techniques of different equipments	Cognitive	Analyzing
CO4	To classify the different type of Circuit breakers and its selection criteria.	Cognitive	Analyzing
CO5	To select of different type of equipments used for over voltage protection and Lightning arrestors.	Cognitive	Applying

COURSE CODE	COURSE NAME	L	Т	P	С		
XEE E11	PROTECTION AND SWITCHGEAR	3	0	0	3		
C:P: A		L	Т	Р	Н		
3:0:0		3	0	0	3		
UNIT- I: RELAYS 09							
General classification	n, Principle of operation, types, characteristics, Toro	ue ec	luation	n, R	elaying		

Schemes, Relay Co- ordination. Requirement of relays, Primary & backup protection, Desirable qualities of relays, Terminology used in protective relay, Over current relays directional, distance and differential, under frequency, negative sequence relays

UNIT -II: APPARATUS PROTECTION

Protection of Generator: Earth Fault, percentage, differential, Loss of excitation, Prime mover failure, over current, Negative phase sequence, heating, Reverse power protection schemes. Protection of Transformers: Internal and external fault protection, Differential, Earth fault, Over Current, Overheating. Transformer Protection - Incipient fault.

UNIT- III: THEORY OF CIRCUIT INTERRUPTION

Physics of arc phenomena and interruption- rate of rise of recovery voltage. Elementary principle of arc quenching, Recovery and re-striking voltage, arc quenching devices, current chopping, capacitive current, resistance switching, interruption of capacitive current

UNIT- IV: CIRCUIT BREAKERS

Switchgear, fault clearing, description and operation of Bulk oil, Minimum oil, Air break, Air blast, SF6, Vacuum circuit breakers and DC circuit breakers, LT Switch gear, HRC fuses, current limiting reactor & influence of reactors in CB ratings, selection of circuit breakers, Testing of circuit breaker, Intelligent circuit breakers.

UNIT -V: PROTECTION AGAINST OVERVOLTAGE

Switching surges, Phenomena of Lightning, over voltage due to lightning, Protection against lightning, Lightning arrestors, selection of lightning arrestors, Surge absorbers, and diverters, Rod gap, Horn gap

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

09

09

09

09

ELECTRONICS ENGINEERINGPeriyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Email: headeee@pmu.eduWeb: www. pmu.edu

coil, Earthing transformers, Earth wires, insulation co-ordination.

									LECTU	URE [FUTOR	IAL	TOTA	L
									45		0		45	
TE	EXTB(OOKS												
1.	Badr	i Ram,	Vishwa	akarma	1 D N.,	"Powe	r Syste	m Prot	ection a	nd Swit	chgear"	Tata Mo	Graw H	ill
	Publ	ishing [House 1	Limited	l, New	Delhi,	2005.							
2.	Soni, M.L., Gupta, P.V., Bhatnagar, U.S. and Chakrabarti, A., "A Text Book on Power Systems													
	Engi	Engineering", Dhanpat Rai& Sons Company Limited, New Delhi, 2008.												
3.	Sunil, S.Rao, "Switchgear Protection and Power Systems (Theory, Practice & Solved Problems",													
	Khanna Publishers Limited, New Delhi, 12th Edition, 2008.													
4.	B.Ravindranath, and N.Chander, 'Power System Protection and Switchgear', Wiley Eastern Ltd.,													
	2000).												
RE	EFERI	ENCES	<u>}</u>						~					
1.	Paithankar Y. G., Bhide S. R., "Fundamentals of Power System Protection" Prentice Hall of India													
~	Limited, New Delhi, 2nd Edition, 2010.													
2.	Wad	hwa, C	.L., "E	lectrica	I Powe	r Syste	ems", N	lew Ag	ge Intern	national	Publishe	ers Limit	ed, 2006),
2	New Dotro	Deini,	oth Edi	1000, 20	d Chow	dumi C	(Dow		toma De	ataction	Outon	land Int	amation	a1
э.	Patra	ι, δ. Ρ.,	Dasu, S Dublid	hing (ouri, S	., 'POw	er syst	lems Pro	blection	, Oxford	i and int	ernation	ai
	DEEE			sning C	.0, 200	0.								
E I	KEFE	RENC	ES	Carra		Tususan		and D		on Duck		Zathani (Canton	
IN I for	PEL, Fnoro	Power	System	i Gener	titute o	f Tech	nology	Dolbi	istriduti	on, Proi	. D. P. r		Lenter	
101	Life	y Stud	ics, mu	1an 1115			liology,	Denn						
					Ν	Iappin	g of C	Os wit	h POs					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	2	2	1	1	1	1	_	-	_	1	_	1	2	2
2	1	1	2	2	1	1	1	-	-	1	_	1	1	1
3	2	1	1	2	_	_	_	_	-	1	-	2	2	2
4	1	1	1	1	-	-	1	-	-	1	-	1	2	2
5	1	1	1	1	-	-	-	-	-	1	-	1	1	1
al	7	7	6	5	5	2	2	0	0	5	0	6	8	8

expulsion type & valve type lightning arrestors, solid resistance and reactance earthing, Arc suppression

0 – No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Scaled

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

XEE E12 ELECTRICAL MACHINE DESIGN

Cours	se Outcomes (XEE E12):	Domain	Level
CO1	Able to define and recall the different fundamental	Cognitive	Remembering
	concepts of electrical and magnetic circuit parameters.		
CO2	Categorize different types of Transformer based on its	Cognitive	Understanding
	design. Understand about single phase and three phase		Analyzing
	transformer parameters and its efficiency calculation.		
CO3	Compare the main dimensions of different machines, and	Cognitive	Understanding
	relate its impact on the Analyze various parts of induction		Analyzing
	machines.		
CO4	Classify types of three phase Synchronous motor. Analyze	Cognitive	Understanding
	the design procedure of each part of the motor	-	Analyzing
		Cognitive	Applying
CO5	Use of software tools to do design calculations.		Analyzing

Learning Objectives:

Understand the various factors which influence the design: electrical, magnetic and thermal loading of electrical machines

COUDSE CODE	COUDSE NAME	т	T	р	C				
COURSE CODE	COUKSE NAME		l	P ^					
XEE E12	FLECTRICAL MACHINE DESIGN	3	0	0	3				
C:P: A	ELECTRICAL MACHINE DESIGN	L	Т	Р	Η				
3:0:0		3	0	0	3				
UNIT – I: INTRODUCTION 9									
Major consideration	ons in electrical machine design, electrical engineering materials, sp	bace t	factor	, cho	oice				
of specific electric	al and magnetic loadings, thermal considerations, heat flow, tempera	ature	rise, r	ating	g of				
machines.	machines.								
UNIT – II: TRAN	SFORMERS				9				
Sizing of a transfor	Sizing of a transformer, main dimensions, kVA output for single- and three-phase transformers, window								
space factor, overa	all dimensions, operating characteristics, regulation, no load current	t, ten	nperat	ure 1	rise				
in transformers, de	sign of cooling tank, methods for cooling of transformers.		-						
UNIT – III: INDU	CTION MOTORS				9				
Sizing of an induc	tion motor, main dimensions, length of air gap, rules for selecting rot	or slo	ots of	squi	rrel				
cage machines, de	cage machines, design of rotor bars & slots, design of end rings, design of wound rotor, magnetic leakage								
calculations, leaka	calculations, leakage reactance of polyphase machines, magnetizing current, short circuit current, circle								
diagram, operating	diagram, operating characteristics.								
UNIT – IV: SYNCHRONOUS MACHINES 9									
Sizing of a synchr	onous machine, main dimensions, design of salient pole machines.	short	t circu	it ra	tio.				

shape of pole face, armature design, armature parameters, estimation of airgap length, design of rotor,

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

design of damper winding, determination of full load field mmf, design of field winding, design of turbo alternators, rotor design.

UNIT - V: COMPUTER AIDED DESIGN (CAD)

9

Limitations (assumptions) of traditional designs, need for CAD analysis, synthesis and hybrid methods, design optimization methods, variables, constraints and objective function, problem formulation. Introduction to FEM based machine design. Introduction to complex structures of modern machines-PMSMs, BLDCs, SRM and claw-pole machines.

LECTURE	TUTORIAL	TOTAL	
45	0	45	

TEXTBOOKS

- 1. A. K. Sawhney, "A Course in Electrical Machine Design", Dhanpat Rai and Sons, 2016.
- 2. M.G. Say, "Theory & Performance & Design of A.C. Machines", ELBS London.
- 3. S. K. Sen, "Principles of Electrical Machine Design with computer programmes", Oxford and IBH Publishing, 2006.

REFERENCES

- 1. K. L. Narang, "A Text Book of Electrical Engineering Drawings", Satya Prakashan, 1969.
- 2. A. Shanmugasundaram, G. Gangadharan and R. Palani, "Electrical Machine Design Data Book", New Age International, 1979.
- 3. K. M. V. Murthy, "Computer Aided Design of Electrical Machines", B.S. Publications, 2008.
- 4. Electrical machines and equipment design exercise examples using Ansoft's Maxwell 2D machine design package.

E REFERENCES

- 1. Web Content http://www.library.dce.edu/e-resources/books/ee/
- 2. Web Course http://elearning.vtu.ac.in/

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	_	-	2	1	1	2	_	_	1	-	-	1	1
CO2	3	3	-	3	3	3	-	3	-	1	3	-	1	1
CO3	2	-	-	-	2	2	2	3	-	-	-	-	2	2
CO4	-	1	3	-	-	1	-	-	1	-	-	-	2	2
CO5	-	-	1	-	3	-	-	2	-	-	-	-	1	2
Total	7	4	4	5	9	7	4	8	1	2	3	0	7	8

DEPARTMENT OF ELECTRICAL AND **ELECTRONIC** Periyar Nagar, Vallam,

ELECTRONICS ENGINEERING								
Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India							
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660							
Email: headeee@pmu.edu	Web: www. pmu.edu							

	Scaled	2	1	1	1	2	2	1	2	1	1	1	0	2	2
--	--------	---	---	---	---	---	---	---	---	---	---	---	---	---	---

ELECTRICAL SAFETY, OPERATIONS AND REGULATIONS

Course	Outcomes (XEE E13):	Domain	Level
CO1	Understand about modern safety techniques	Cognitive	Understanding
CO2	Understand about the various audit methods and components.	Cognitive	Understanding
CO3	List the various accidents investigations and reports	Cognitive	Understanding
CO4	Analysis the performance of the safety and monitoring.	Cognitive	Analysis
CO5	Understand the various training and education of electrical safety	Cognitive	Understanding

Learning Objectives:

Understand about the various audit methods and components and recent safety techniques. Understand about the various accidents' investigations and reports. Understand the various training and education of electrical safety.

COURSE CODE	COURSE NAMELTP							
XEE E13	ELECTRICAL SAFETY, OPERATIONS AND RECULATIONS BECHLATI							
C:P: A								
3:0:0	REGULATIONS	3	0	0	3			
UNIT- I: CONCEPTS AND TECHNIQUES 9								
History of Safety movement -Evolution of modern safety concept- general concepts of management -								
planning for safety for optimization of productivity -productivity, quality and safety-line and staff functions								
for safety-budgeting for safety-safety policy.								
UNIT- II: SAFETY AUDIT - INTRODUCTION 9								
Components of safety	audit, types of audit, audit methodology, non-confor	rmity re	porting	(NCR)), audit			
checklist and report –	review of inspection, remarks by government agencies,	consulta	ants, exp	erts – j	perusal			
of accident and safety	of accident and safety records, formats – implementation of audit indication - liaison with departments to							
ensure co-ordination – check list – identification of unsafe acts of workers and unsafe conditions in the								
shop floor.								
UNIT- III: ACCIDENT INVESTIGATION AND REPORTING 9								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Concept of an accident, reportable and non-reportable accidents, reporting to statutory authorities – principles of accident prevention – accident investigation and analysis – records for accidents, departmental accident reports, documentation of accidents – unsafe act and condition – domino sequence – supervisory role – role of safety committee –cost of accident.

UNIT- IV: SAFETY PERFORMANCE MONITORING

ANSI (Z16.1) Recommended practices for compiling and measuring work injury experience – permanent total disabilities, permanent partial disabilities, temporary total disabilities - Calculation of accident indices, frequency rate, severity rate, frequency severity incidence, incident rate, accident rate, safety "t" score, safety activity rate – problems.

UNIT- V: SAFETY EDUCATION AND TRAINING

Importance of training-identification of training needs-training methods – programmes, seminars, conferences, competitions – method of promoting safe practice - motivation – communication - role of government agencies and private consulting agencies in safety training – creating awareness, awards, celebrations, safety posters, safety displays, safety pledge, safety incentive scheme, safety campaign – Domestic Safety and Training.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS

- 1. John Cadick, 'Electrical Safety Handbook, 4th Edition Hardcover Import, 16 Mar 2012
- 2. James R white, 'Electrical Safety: A Practical Guide to OSHA and NFPA 7 2 Jul 2012

REFERENCE BOOKS

1. S. Rao, 'Electrical Safety, Fire Safety Engineering and Safety Management Paperback - 1997

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	0	2	1	0	2	0	1	0	1	0	0	0	0	3
CO2	0	0	0	1	2	0	1	0	0	0	0	0	3	1
CO3	1	2	3	1	2	0	0	1	1	0	0	0	1	2
CO4	0	2	0	1	3	0	1	0	0	0	0	0	2	1
CO5	2	0	1	0	0	1	1	1	1	0	0	1	1	2
Total	3	6	5	3	9	1	4	2	3	0	0	1	7	9
Scaled	1	2	1	1	2	1	1	1	1	0	0	1	2	3

Mapping of COs with POs

9

9

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

COMPUTER ARCHITECTURE

Course O	outcomes (XEE E14):	Domain	Level
C01	Understand the basic concepts of Computer organization	Cognitive	Understanding
CO2	Describe the various types and organization of memory	Cognitive	Understanding
CO3	Explain accessing of Input – Output devices	Cognitive	Understanding
CO4	Understand the various addressing modes and instruction set of 16 and 32 microprocessors	Cognitive	Understanding
CO5	Explain Pipelining and compare Different Architectures	Cognitive	Understanding

Learning Objectives:

Conceptualize the basics of organizational and architectural issues of a digital computer and understand various data transfer techniques in digital computer and processor performance improvement using instruction level parallelism

COURSE CODE	COURSE NAME	Т	Р	С							
XEE E14	COMDUTED ADCINTECTUDE	3	0	0	3						
C:P: A	COMPUTER ARCHITECTURE	L	Т	Р	Н						
3:0:0		3	0	0	3						
UNIT-I: INTROD	UCTION TO COMPUTER ORGANIZATION				06						
Architecture and funct	ion of general computer system, CISC Vs RISC, Data ty	pes, Ir	nteger	Arith	netic-						
Multiplication, Divisi	ion, Fixed and Floating-point representation and a	rithme	tic, C	ontro	unit						
operation, Hardware implementation of CPU with Microinstruction, microprogramming, System											
buses, Multi-bus organization											
UNIT- II: MEMORY ORGANIZATION											
System memory, Cache memory - types and organization, Virtual memory and its implementation,											
Memory management	unit, Magnetic Hard disks, Optica l Disks										
UNIT - III: INPUT-	OUTPUT ORGANIZATION				09						
Accessing I/O device	es, Direct Memory Access and DMA controller, In	nterrup	ots an	d Int	errupt						
Controllers, Arbitration	on, Multilevel Bus Architecture, Interface Circuits-P	arallel	and	serial	port.						
Features of PCI and P	CI Express bus.										
UNIT -IV: 16 AND 3	2 MICROPROCESSORS				08						
80x86 Architecture, I	A-32 and IA-64, Programming model, Concurrent ope	eration	of E	U and	BIU,						
Real mode addressing	g, Segmentation, addressing modes of 80x86, Instruc	tion s	et of	80x86	5, I/O						
addressing in 80x86.					-						
UNIT- V: PIPELINI	NG AND DIFFERENT ARCHITECTURES				16						
Introduction to pipeli	ning, Instruction level pipelining (ILP), compiler tec	chniqu	es for	· ILP,	Data						
hazards, Dynamic sche	eduling, Dependability, Branch cost, Branch Prediction,	Influe	nce or	n instr	uction						
set. VLIW Architectur	re, DSP Architecture, SoC architecture, MIPS Processor	and p	rograi	nming	5.						

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

	LECTURE	PRACTICAL	TOTAL
	45	0	45
TEXTBOOKS			
1. V.Carl, G.Zvonko and S.G.Zaky,"Computer organ	nization",McGra	wHill,1978.	
2. B.Brey and C.R.Sarma,"The Intel microprocessor	s", Pearson Educ	cation,2000.	
3. J.L.Hennessy and D.A.Patterson," Computer	Architecture A	Quantitative App	roach", Morgan
Kauffman,2017			
4. W.Stallings, "Computer organization", PHI, 1987.			
5. P.Barry and P.Crowley, "Modern Embedded Cor	nputing", Morga	n Kaufmann,2012	
6. N.Mathivanan, "Microprocessors, PC Hardware a	nd Interfacing",	Prentice Hall,2004	ł.
REFERENCES			
1.Y.C.Lieu and G.A.Gibson, "Microcomputer Sy	stems:The8086/	8088Family", Prer	ntice Hall
India,1986.			
2. J.Uffenbeck, "The 8086/8088 Design, Program	ming, Interfacin	g", Prentice Hall,1	987.
3. B.Govindarajalu,"IBMPC and Clones", TataM	cGrawHill,1991		
4. P. Able, "8086 Assembly Language Programm	ning", Prentice H	Iall India.	
E REFERENCES			
www.nptel.ac.in			
<u>_</u>			

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	1	1		1	1					1	2	1	1	1
CO 2	1	1		1	1					1	2	2		
CO 3	1	1		1	1					1	2	2	1	1
CO 4	1	1		1	1					1	2	1		
CO 5	1	1		1	1					1	2	2	1	1
Total	5	5	0	5	2	0	0	0	0	5	10	8	3	3
Scaled	1	1	0	1	1	0	0	0	0	1	2	1	1	1

0 -No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ELECTIVE GROUP - II

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

MEASUREMENTS AND INSTRUMENTATION

Cours	e Outcomes (XEE E21):	Domain	Level
CO1	Describe the different errors in measurements and Describe the working principle of different measuring instruments.	Cognitive Psychomotor	Remembering Perception
CO2	Understanding about the instruments used for different types of AC measurements. Carryout calibration test for measuring electrical instruments	Cognitive Psychomotor	Understanding Set
CO3	Use different types bridge circuits for the measurements of unknown passive elements. Relate the different types of the transducers. Demonstrate the use of different bridges and transducers.	Cognitive Psychomotor	Applying Mechanism
CO4	Explain the construction and operation of recording and display instruments. Establish Relations between analog and digital signal conversions.	Cognitive Psychomotor	Understanding Set
C05	Explain the construction and working of different types signal conditioners. Demonstrate the recent trends in measurement of AC quantities.	Cognitive Psychomotor	Remembering Mechanism

Learning Objectives:

Understanding about the instruments used for different types of AC measurements. Understanding about various types of AC and DC bridges. Understanding about various types of transducers and display units.

COURSE CODE	COURSE NAME	L	Т	Р	С				
XEE E21	MEASUREMENTS AND INSTRUMENTATION	3	0	1	4				
C:P: A		L	Τ	P	Η				
3:1:0		3	0	2	5				
UNIT-I: INTRODUCTION									
Measurements - Errors & classification, Measurement of voltage & current - permanent mag									
moving coil and moving iron meters, Measurement of power and energy - dynamometer									
induction instruments, Instrument transformers – Current and Potential transformers									
List of Experiments									
1. Calibration o	f Current Transformer and Potential transformer.								
2. Measurement	t of three phase active, Reactive Power and Power factor	ſ							
3. Calibration o	f Single phase / Three Phase Energy meter								
UNIT – II: DC A	ND AC BRIDGES				9+9				
Measurement of re	sistance, inductance and capacitance using dc and ac	bridge	es, V	Vhea	tstone				
bridge, Maxwell bri	dge, Kelvin's Bridge, Schering Bridge								
List of Experiment	S								
4. Resistance mea	surement using Wheat stone bridge								
5. Inductance mea	surement using Maxwell Bridge								
6. Capacitance me	asurement using Schering Bridge								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT - III: TRANSDUCERS				9+6				
Active and Passive transduce	ers, Piezoelec	tric transducer	, Photoelectric	transducers,				
Thermocouples, Strain gauge trans	ducers, LVDT	, differential cap	acitive transducer	rs, Fiber optic				
transducers, Resistive, Inductive an	d capacitive tra	ansducers.						
List of Experiments								
7. Study of Transducers				1				
UNIT-IV: SIGNAL CONDITI	IONING UNIT	ГS		9+3				
Signal conditioners - Instrumenta	ation amplifier	rs, voltage-curre	ent converters, A	A/D and D/A				
converters, voltage-frequency	converters, a	analog multipl	exers and de	-multiplexers.				
Microprocessor Based Measuremen	nts, Case Studie	es in Instrumenta	tion.					
List of Experiments								
8. A/D converters								
9. D/A converters								
UNIT -V: RECORDERS AND DISPLAY								
Signal sources – Oscillators, Function generator and pulse generators. Oscilloscopes -								
CRO, Digital storage and Analog	storage Oscillo	oscope, Digital F	Phosphor Oscillos	copes.				
Analog and Digital Recorders and p	rinters. Spectru	ım Analyzers, Da	ata and Logic Ana	lyzers.				
List of Experiments								
10. Measurement of Current / Vo	oltage / power /	Energy using A	rduino board.					
	LECTURE	TUTORIAL	PRACTICAL	TOTAL				
	45	0	30	75				
TEXTBOOKS								
1. A. K. Sawhney, 'A Course in H	Electrical and I	Electronic Measu	arements and Inst	rumentation',				
Dhanpat Rai & Co., 9th Edition, 2	2015.							
2 Bouwens A. I. 'Digital Instrume								
2.Douwens 11. 5., Digital institution	ntation', Tata N	AcGraw Hill Pub	olications, 16th Re	eprint (2008).				
3. Kalsi H.S, 'Electronic Instrumen	ntation', Tata N tation', Tata M	AcGraw Hill Pub cGraw-Hill Edu	olications, 16th Re cation, 3rd Editio	eprint (2008). n, 2010.				
 Kalsi H.S., 'Electronic Instrumen Deobelin, 'Measurements System 	ntation', Tata M tation', Tata M ns', Tata McG1	AcGraw Hill Pub lcGraw-Hill Edu raw Hill Publicat	blications, 16th Re cation, 3rd Editio ions, 2nd Edition	eprint (2008). n, 2010. , 2010.				
 3. Kalsi H.S., 'Electronic Instrumen 4. Deobelin, 'Measurements System REFERENCES 	ntation', Tata M tation', Tata M ns', Tata McG1	AcGraw Hill Pub IcGraw-Hill Edu raw Hill Publicat	olications, 16th Re cation, 3rd Editio ions, 2nd Edition	eprint (2008). n, 2010. , 2010.				
3. Kalsi H.S., 'Electronic Instrumen 4. Deobelin, 'Measurements System REFERENCES 1.W. D. Cooper, 'Electronic Instrum	ntation', Tata M tation', Tata M ns', Tata McGn nentation and M	AcGraw Hill Pub IcGraw-Hill Edu raw Hill Publicat Aeasurement Tec	olications, 16th Re cation, 3rd Editio ions, 2nd Edition chniques', Prentico	eprint (2008). n, 2010. , 2010. e Hall of India				
 3. Kalsi H.S., 'Electronic Instrumen 4. Deobelin, 'Measurements System REFERENCES 1.W. D. Cooper, 'Electronic Instrum Publications, 1st Edition, 2009. 	ntation', Tata M tation', Tata M ns', Tata McG1 nentation and N	AcGraw Hill Pub IcGraw-Hill Edu raw Hill Publicat Aeasurement Tec	olications, 16th Recation, 3rd Editio ions, 2nd Edition chniques', Prentico	eprint (2008). n, 2010. , 2010. e Hall of India				
 3. Kalsi H.S., 'Electronic Instrumental A. Deobelin, 'Measurements System REFERENCES 1.W. D. Cooper, 'Electronic Instrum Publications, 1st Edition, 2009. 2.Rangan C.S., 'Instruments Device 	ntation', Tata M tation', Tata M ns', Tata McGn nentation and M es and System	AcGraw Hill Pub IcGraw-Hill Edu raw Hill Publicat Aeasurement Tec ', Tata McGraw	blications, 16th Recation, 3rd Editio ions, 2nd Edition whniques', Prentico Hill Publications	eprint (2008). n, 2010. , 2010. e Hall of India , 2nd Edition,				
 Kalsi H.S., 'Electronic Instrumen 4. Deobelin, 'Measurements System REFERENCES W. D. Cooper, 'Electronic Instrum Publications, 1st Edition, 2009. Rangan C.S., 'Instruments Devic 2009. 	ntation', Tata M tation', Tata M ns', Tata McG nentation and N es and System	AcGraw Hill Pub IcGraw-Hill Edu raw Hill Publicat Aeasurement Tec ', Tata McGraw	blications, 16th Recation, 3rd Editio ions, 2nd Edition hniques', Prentico Hill Publications	eprint (2008). n, 2010. , 2010. e Hall of India , 2nd Edition,				

E REFERENCES

1. NTPEL, Electrical Machines (Web Course), Prof.N.K.De, Prof.T.K.Bhattacharya and Prof. G. D. Roy, IIT Kharagpur.

(Deemed to be University) ed Under Sec. 3 of UGC Act, 1956 • NAAC Accredited

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO 1	1			1		1	1			3			2	3
CO 2	1	1										1	2	3
CO 3	1		1		1			2		1			2	2
CO 4	1	2										1	2	2
CO 5									1		1	1	2	3
Total	4	3	1	1	1	1	1	2	1	4	1	3	10	13
Scaled	1	3	1	1	1	1	1	1	1	1	1	1	2	3

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

09

09

09

ELECTROMAGNETIC WAVES

Course	e Outcomes (XEE E22):	Domain	Level
CO1	Understand and Analyze transmission lines and estimate voltage and current at any point on transmission line for different load conditions.	Cognitive	Understanding Analyze
CO2	Understand and Provide solution to real life plane wave problems for various boundary conditions.	Cognitive	Understanding Analyze
CO3	Understand and Analyze the field equations for the wave propagation in special cases such as lossy and low loss dielectric media.	Cognitive	Understanding Analyze
CO4	Understand and Analyze TE and TM mode patterns of field distributions in a rectangular wave-guide.	Cognitive	Understanding Analyze
CO5	Understand and analyze radiation by antennas.	Cognitive	Remembering Understanding

COURSE CODE	COURSE NAME	L	Т	Ρ	С			
XEE E22	ELECTROMAGNETIC WAVES	3	0	0	3			
C:P:A		L	Т	Р	Н			
3:0:0		3	0	0	3			
UNIT- I: TRANSMISSION LINES								

UNIT- I: TRANSMISSION LINES

Introduction, Concept of distributed elements, Equations of voltage and current, Standing waves and impedance transformation, Lossless and low-loss transmission lines, Power transfer on a transmission line, Analysis of transmission line in terms of admittances, Transmission line calculations with the help of Smith chart, Applications of transmission line,

Impedance matching using transmission lines.

UNIT – II: MAXWELL'S EQUATIONS

Basic quantities of Electromagnetics, Basic laws of Electromagnetics Gauss's law, Ampere's Circuital law, Faraday's law of Electromagnetic induction. Maxwell's equations, Surface charge and surface current, Boundary conditions at media interface.

UNIT - III: UNIFORM PLANE WAVE

Homogeneous unbound medium, Wave equation for time harmonic fields, Solution of the wave equation, Uniform plane wave, Wave polarization, Wave propagation in conducting Medium, Phase velocity of a wave, Power flow and Poynting vector.

UNIT- IV: PLANE WAVES AT MEDIA INTERFACE

Plane wave in arbitrary direction, Plane wave at dielectric interface, Reflection and refraction of waves at dielectric interface, Total internal reflection, Wave polarization at media interface, Brewster angle, Fields and power flow at media interface, Lossy media interface, Reflection from conducting boundary.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT- V: WAVE GUIDES AND ANTENNAS

09

Parallel plane waveguide Transverse Electric (TE)mode, transverse Magnetic (TM)mode, Cut-off frequency, Phase velocity and dispersion. Transverse Electromagnetic (TEM)mode, Analysis of waveguide- general approach, Rectangular waveguides. Radiation parameters of antenna, Potential functions, Solution for potential functions, Radiations from Hertz dipole, Near field, Far field, Total power radiated by a dipole, Radiation resistance and radiation pattern of Hertz dipole, Hertz dipole in receiving mode.

LECTURE	TUTORIAL	TOTAL	
45	0	45	

TEXTBOOKS

1.R.K.Shevgaonkar, "ElectromagneticWaves", Tata McGraw Hill, 2005 2.D.K.Cheng, "Field and Wave Electromagnetics", Addison-Wesley, 1989.

REFERENCES

1. M.N.O.Sadiku, "Elements of Electromagnetics", Oxford University Press, 2007.

- 2. C.A.Balanis, "Advanced Engineering Electromagnetics" John Wiley & Sons, 2012.
- 3. C.A.Balanis,"Antenna Theory: Analysis and Design", John Wiley & Sons, 2005.

E REFERENCES

www.nptel.ac.in

Department of Physics, Indian Institute of Technology, Kharagpur.

Mapping of COs with POs

	PO	PO1	PO	PO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	11	12	1	2
CO1	2	1	1	1	-	-	-	-	-	1	-	1	1	1
CO2	1	1	1	1	-	-	-	-	-	-	1	-	1	1
CO3	1	2	-	-	-	-	-	-	-	-	-	1	1	1
CO4	1	3	-	-	-	-	-	-	-	-	-	-	2	2
CO5	1	2	1	-	-	-	-		-	-	-	1	1	1
Total	6	9	3	2	0	0	0	0	0	1	1	3	6	6
Scaled	2	2	1	1	0	0	0	0	0	1	1	1	2	2

0-No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

COMPUTATIONAL ELECTROMAGNETICS

Cours	se Outcomes (XEE E23):	Domain	Level
CO1	Understand the basic concepts of electromagnetics	Cognitive	Understanding
CO2	Understand computational techniques for computing fields	Cognitive	Understanding
CO3	Apply the techniques to simple real-life problems.	Cognitive	Apply
CO4	Understand computational techniques for finite element	Cognitive	Understanding
	method.		
CO5	Understand and analyze the field computation for different	Cognitive	Understanding
	application.		Analyze

COURSE CODE		COURSE NA	ME	L	Т	Р	С	
XEE E23	COMPU	FATIONAL ELEC	TROMAGNETICS	3	0	0	3	
C:P:A				L	Т	Р	Η	
3:0:0				3	0	0	3	
UNIT- I: INTROE	DUCTION						09	
Conventional desig	n methodol	ogy, Computer aided	d design aspects-Adva	antage	s. Rev	view o	f basic	
fundamentals of El	ectrostatics	and Electromagnetic	cs, Development of He	elmho	tz equ	ation,	energy	
transformer vectors	-Poynting a	nd Slepian, magnetic	Diffusion-transients a	and tir	ne-har	monic		
UNIT- II: ANALYTICAL METHODS								
Analytical methods	s of solving	field equations, met	hod of separation of v	ariabl	es, Ro	th's n	nethod,	
integral methods- C	Breen's func	tion, method of imag	es.					
UNIT - III: FINITE DIFFERENCE METHOD 0								
Finite Difference schemes, treatment of irregular boundaries, accuracy and stability of FD								
solutions, Finite-Difference Time-Domain (FDTD)method- Uniqueness and convergence								
UNIT -IV: FINIT	E ELEMEN	NT METHOD					09	
Overview of FEM,	, Vibrationa	l and Galerkin Metl	hods, shape functions,	lowe	r and	higher	order	
elements, vector ele	ements, 2D a	and 3D finite elemen	ts, efficient finite elem	nent				
computations.								
UNIT- V: SPECIA	ALTOPICS	AND APPLICATI	ONS				09	
Background of ex	perimental	methods- electrolyt	ic tank, R-C networ	k solı	ition,	Field	plotting	
(graphical method)	, hybrid me	thods, coupled circu	it-field computations,	electr	omagr	netic –	thermal	
and electromagneti	c-structural	coupled computation	ons, solution of equation	ions, 1	netho	d of n	noments,	
Poisson's fields, L	low frequer	ncy electrical device	es, static/time harmor	nic/ tr	ansien	it prol	olems in	
transformers, rotati	ng machines	s, actuators, CAD pa	ckages	-				
	LECTURE PRACTICAL TOTAL							
		45	0			45		
TEXTBOOKS								
1.R.K.Shevgaonkar, "ElectromagneticWaves", Tata McGraw Hill, 2005								
2.M.N.O.Sadiku,"	'Numerical '	Techniques in Electr	omagnetics", CRC Pre	ess, 20	01.			

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

REFERENCES

C.A.Balanis, "Advanced Engineering Electromagnetics", John Wiley & Sons, 2012.
 C.A.Balanis, "Antenna Theory: Analysis and Design", John Wiley & Sons, 2005.

E REFERENCES

www.nptel.ac.in Department of Physics, Indian Institute of Technology, Kharagpur

	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	1	1	1	1	1	1	-	-	1	-	1	1	1
CO2	1	1	1	1	-	-	-	-	-	-	1	-	2	1
CO3	2	2	-	-	-	1	-	-	-	-	-	1	1	2
CO4	2	2	-	-	-	-	1	-	-	-	-	-	1	2
CO5	2	2	-	-	-	-	-		-	-	-	-	1	1
Total	8	8	2	2	1	2	2	0	0	1	1	2	7	7
Scaled	2	3	1	1	1	1	1	0	0	1	1	1	2	2

Mapping of COs with POs

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

DIGITAL CONTROL SYSTEMS

Cours	se Outcomes (XEE E24):	Domain	Level
CO1	Obtain the discrete representation of LTI systems.	Cognitive	Remembering Understanding
CO2	Analyze stability of open loop and closed loop discrete-time systems.	Cognitive	Remembering Understanding
CO3	Design and analyze state space models of discrete system	Cognitive	Understanding Applying
CO4	Design state feedback controllers.	Cognitive	Understanding Applying
CO5	Design output feedback controllers.	Cognitive	Understanding Applying

Learning Objectives:

To make students understand the concept of nonlinear control, Internal Model Control and Optimal Control. To Study the stability of Non-Linear and Linear systems.

COURSE CODE	COURSE NAME	L	Т	Р	С				
XEE E24	DIGITAL CONTROL SYSTEMS	3	0	0	3				
C:P: A		L	Т	Р	Η				
3:0:0		3	0	0	3				
UNIT - I: DISCR	UNIT - I: DISCRETE REPRESENTATION OF CONTINUOUS SYSTEMS9								
Basics of Digital	Control Systems. Discrete representation of continuous syst	ems.	Samp	le an	ıd				
hold circuit. Math	nematical Modelling of sample and hold circuit. Effects	of Sa	mplir	ıg an	ıd				
Quantization. Cho	ice of sampling frequency. ZOH equivalent.								
UNIT - II: STAB	ILITY AND ANALYSIS OF DISCRETE TIME SYSTEM	M			9				
Z-Transform and	Inverse Z Transform for analyzing discrete time system	is. Pu	ılse tı	ansfe	er				
function of closed	l loop systems. Mapping from s-plane to z plane. Solution	of D	iscret	e tim	ne				
systems. Time re	sponse. Stability analysis by Jury test. Stability analys	is us	ing b	ilinea	ar				
transformation. De	esign of digital control system with dead beat response.								
UNIT – III: STAT	E SPACE APPROACH FOR DISCRETE TIME SYSTE	EMS			9				
State space model	s of discrete systems, State space analysis. Lyapunov Stabilit	y, Co	ntrolla	ability	у,				
reach-ability, Rec	onstructibility and observability analysis. Effect of pole zer	o can	cellat	ion o	n				
the controllability & observability.									
UNIT - IV: DESIGN OF DIGITAL CONTROL SYSTEM									
Design of Discrete PID Controller, Design of discrete state feedback controller. Design of set									
point tracker. Des	ign of Discrete Observer for LTI System. Design of Discrete	e com	pensa	tor.					

PERFORMANCE PROVIDE OF SC TO THE TOP OF SC TO THE TO T

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

UNIT – V: DISCRETE OUTPUT FEEDBACK CONTROL								
Design of discrete output feedback control. Fast output sampling (FOS) and periodic output feedback controller design for discrete time systems.								
	LECTURE	TUTORIAL	TOTAL					
	45	0	45					

TEXTBOOKS

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, Englewood Cliffs, 5th Edition,2009.
- 2. M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.
- 3. G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic Systems", Addison- Wesley, 3rd Edition, 1997.

REFERENCES

- Charles L. Phillips , Troy Nagle , James Brickley , Aranya Chakrabortty "Digital Control System Analysis & Design, Global Edition", by 4th edition, Pearsons, 2015
- 2. B.C. Kuo, "Digital Control System", Holt, Rinehart and Winston, 2nd Edition, 1980.

E-REFERENCES

NTPEL, Advanced Control Systems by Prof. Somanath Majhi, Department of Electronics & Electrical Engineering, IIT Guwahati.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	-	-	-	-	1	-	-	-	-	
CO2	2	1	2	2	-	-	-	-	-	1	-	2	-	-
CO3	1	3	-	3	1	-	2	3	-	1	1	-	2	1
CO4	2	2	-	1	1	1	-	-	2	2	-	1	1	-
CO5	2	1	1	1	-	-	-	-	-	-	2	-	1	1
Total	9	8	3	7	2	1	2	3	3	4	3	3	4	2
Scaled	2	2	1	2	1	1	1	1	1	1	1	1	1	1

Mapping of COs with POs

0 -No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

ELECTIVE GROUP - III

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

INDUSTRIAL AUTOMATION

Cours	se Outcomes (XEE E31):	Domain	Level
CO1	Able to define and Explain the fundamentals of Pneumatics, hydraulics and electrical drives. List out the advantages, disadvantages and its application	Cognitive Mechanism	Remembering Understanding Psychomotor
CO2	Apply the knowledge of electrical ladder diagram for hydraulic and pneumatic system and able to define pressure proximity switches and intelligent relays	Cognitive	Remembering Applying
CO3	Explain and Categorize different types of Sensors and their application. List out timer, counter and their application.	Cognitive Mechanism	Remembering Understanding Analyzing Psychomotor
CO4	Illustrate the knowledge in the PLC logic, Architecture and design the industrial automation system for specific applications and apply the knowledge for PLC programming to interface pneumatics.	Cognitive Mechanism	Applying Understanding Psychomotor
CO5	Outline the overview of robotics and their application. Apply the knowledge of robotics programming	Cognitive	Applying Understanding

COURSE CODE	COURSE NAME	L	Т	Р	С					
XEE E31	INDUSTRIAL AUTOMATION	3	0	1	4					
C:P: A		L	Т	Р	Η					
3:1:0		3	0	2	5					
UNIT -I: INTRODUCTION TO PNEUMATICS AUTOMATION 9+										
Introduction to Pneumatic	Introduction to Pneumatics- Overall structure- Electro pneumatic -hydraulics- Overall -structure -									
Advantages and disadvant	ages – Application-Electrical drives.									
List of Experiments										
1. Control of Pneumatical	ly operated single acting cylinder									
2. Extension and Retraction	on of double acting cylinder									
3. Control of pneumaticall	y operated double acting cylinder using sensor									
4. Control of pneumaticall	y operated double acting cylinder using timer									
5. Sequential control of tw	o double acting cylinder									
UNIT- II: APPLICATIO	ONS OF RELAYS				9+6					
Essential qualities of relay	s- NO & NC contacts- Electrical signal storage – Electrical storage – Electrical signal storage – Electrical signal storage – Electrical storage	ectrica	l Lado	ler Dia	agram-					
Pneumatic system- Hydrau	alic system-pressure and proximity switches- Intelli	gent F	Relays	•						
UNIT- III: SMART SEN	SORS AND TIMERS IN CONTROLLERS				9+6					
Introduction to sensors- characteristics- types of sensors-resistive - inductive-capacitive- magnetic-										
ultrasonic - photoelectric- Nano sensors- timers-counters-types-application.										
List of Experiments										
6. Study of Sensor										

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT -IV: PROGRAMMABLE LOGIC CO	NTROLLERS			9+12				
Evolution of PLC – Sequential and Programmable	le controllers – A	Architecture – Prog	ramming of	PLC –				
Relay logic and Ladder logic – Functional blocks – PLC interface to pneumatics.								
List of Experiments								
7. AND and OR Logical function PLC								
8. Automatic tank filing control using PLC								
9. Traffic light control using PLC								
10. Starter control of motor using PLC								
UNIT -V: ROBOTICS								
Introduction and overviews of Robotics - Terms	and Definition,	Historical develop	ment of rob	otics,				
classification and configuration of robots, Basic	components - Di	rives, controller grij	pper, applica	ation-				
programming in Robotics.								
	IFCTUPE	PRACTICAL	ТОТА	т				
	45	30		.L				
TEXTBOOKS			10					
1. James Dally, W., "Instrumentation for Er	ngineering Meas	urements". John W	ïlev & sons					
2. Patranabis, D., "Sensors and Transducers	", Wheeler Publ	ishing, 2000.	·)					
3. Harry Colestock, Industrial Robotics, Mc	Graw Hill Book	Co., New Delhi, 2	005.					
		, , ,						
REFERENCES								
1. Anthony Esposito, "Fluid Power with Applic 2000.	cations", Pearsor	n Education, 5th Ed	dition, New	Delhi,				
2. Stuart A. Boyer.," SCADA: Supervisory Cont	trol and Data Ac	quisition", 4 th Editi	on (Kindle)	, 2016.				
3. "The Instrumentation systems and Automation	n Society", 2013	3.						
4. "Micro-sensors; principles and applications" J	.W.Gardner", W	Viley, 1 edition (Au	gust 1994).					
5. "Semiconductor sensors and its application" S	S.M.Sze, Wiley-	Interscience, 1 editi	on (October	r 1994)				
E REFERENCES								
1. NPTEL- Industrial automation, Prof. S. Mukhopadhyay - IIT Kharagpur.								
2. Web Course - http://elearning.vtu.ac.in/	1	••						

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	-	2	1	1	1	-	-	1	1	-	2	1
CO2	3	2	-	-	1	1	-	1	-	1	3	2	2	1
CO3	2	3	1	-	1	1	1	-	1	-	-	1	2	1
CO4	2	1	3	-	-	1	-	1	1	-	-	1	-	2
CO5	2	2		-	1	-	-	2	-	-	-	1	-	2
Total	12	10	3	2	4	4	2	4	1	2	4	5	6	7
Scaled	3	2	1	1	1	1	1	1	1	1	1	0	2	2

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

DIGITAL SIGNAL PROCESSING

Cours	se Outcomes (XEE E32):	Domain	Level
CO1	Understand the signals mathematically in continuous and discrete-time, and in the frequency domain.	Cognitive	Understanding
CO2	Analyze discrete-time systems using z-transform.	Cognitive	Analyze
CO3	Understand the Discrete-Fourier Transform (DFT) and the FFT algorithms.	Cognitive	Understanding
CO4	Design and analyze digital filters for various applications.	Cognitive	Analyze
CO5	Apply digital signal processing for the analysis of real-life signals.	Cognitive	Applying

COURSE CODE	COURSE	NAME		L	Т	P	С		
XEE E32	DIGITAL SIGNA	L PROCESSIN	G	3	0	0	3		
C:P: A				L	Т	Р	Η		
3:0:0				3	0	0	3		
UNIT –I: DISCRET	FE-TIMESIGNALS AND	SYSTEMS					9		
Discrete time signals	and systems: Sequences; re	presentation of s	signals of	n orth	ogona	l basis	;		
Representation of discrete systems using difference equations, Sampling and reconstruction of									
signals-aliasing; Sam	pling theorem and Nyquist	rate.					-		
UNIT -II: Z-TRANS	SFORM						9		
z-Transform, Region	of Convergence, Analys	is of Linear Sh	ift Invar	iant s	ystem	ns using	g z-		
transform, Properties	of z-transform for causal si	ignals, Interpreta	tion of st	tabilit	y in z-	domai	n,		
Inverse z-transforms.	Frequency Domain Analys	sis, Discrete Fou	rier Tran	sform	(DFI	T), Prop	perties		
of DFT, Convolution	on of signals, Fast Four	ier Transform	Algorith	m, Pa	arseva	ıl's Id	entity,		
Implementation of D	iscrete Time Systems.								
UNIT - III: DISCRI	ETE FOURIER TRANSF	ORM					9		
Frequency Domain A	Analysis, Discrete Fourier T	ransform (DFT)	, Properti	ies of	DFT,	Convo	lution		
of signals, Fast Four	rier Transform Algorithm,	Parseval's Iden	tity, Imp	lemen	tation	of Di	iscrete		
Time Systems.							-		
UNIT- IV: DESIGN	OF DIGITAL FILTERS						9		
Design of FIR Digita	l filters: Window method, F	Park-McClellan's	method,	Desig	gn of I	IIR Dig	gital		
Filters: Butterworth,	Chebyshev and Elliptic App	proximations; Lo	w-pass, E	Band-p	bass, H	Band-			
Stop and High-pass f	ilters. Effect of finite registe	er length in FIR	filter desi	ign. Pa	arame	tric and	d non-		
parametric spectral estimation. Introduction to multi-rate signal processing.									
UNIT - V: APPLICATIONS OF DIGITAL SIGNAL 9									
CorRelation Functions and Power Spectra, Stationary Processes, Optimal filtering using ARMA									
Model, Linear Mean-Square Estimation, Wiener Filter.									
		LECTURE PRACTICAL TOTAL							
		45 0 45							

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

TEXTBOOKS

- 1. S. K. Mitra, "Digital Signal Processing: A computer-based approach", McGrawHill,2011.
- 2. A.V.Oppenheim and R.W. Schafer, "Discrete Time Signal Processing", Prentice Hall, 1989.
- 3. J.G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms and Applications", Prentice Hall, 1997.

REFERENCES

- 1. L.R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1992.
- 2. J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
- 3. D.J. De Fatta, J.G.Lucas and W.S.Hodgkiss, "Digital Signal Processing", John Wiley & Sons, 1988.

E REFERENCES

- 1. NPTEL- Industrial automation, Prof. S. Mukhopadhyay IIT Kharagpur.
- 2. Web Course http://elearning.vtu.ac.in/

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	-	2	1	1	1	-	-	1	1	-	2	1
CO2	2	2	-	-	1	1	1	1	-	1	3	2	2	1
CO3	2	3	-	-	2	2	1	-	-	-	-	1	1	1
CO4	2	1	3	-	-	1	-	1	1	-	-	1	-	2
CO5	2	2		-	1	-	-	2	-	-	-	1	-	2
Total	11	10	3	2	5	5	2	4	1	2	4	5	5	7
Scaled	3	2	1	1	1	1	1	1	1	1	1	0	2	2

Mapping of COs with POs

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ELECTRICAL ENERGY CONSERVATION AND AUDITING

Course	Outcomes (XEE E33):	DOMAIN	LEVEL
CO1	Understand the energy and environment, energy security and energy conservation	Cognitive	Understanding
CO2	Understand the various form of energy.	Cognitive	Remembering
CO3	Understand energy auditing and planning.	Cognitive	Understanding
CO4	Understand the various energy saving opportunities with energy efficient equipments	Cognitive	Remembering
CO5	Understand about industrial energy management systems.	Cognitive	Understanding

Learning Objectives: Understand about various energy conservation techniques and planning. Understand about basics of energy auditing and evaluation scheme. Understand about industrial based energy management systems.

COURSE CODE	COURSE NAME	L	Т	Р	С		
XEE E33	ELECTRICAL ENERGY CONSERVATION AND AUDITING	3	0	0	3		
C:P: A		L	Т	Р	Н		
3:0:0		3	0	0	3		
UNIT- I: ENERGY SCENARIO							

Commercial and Non-commercial energy, primary energy resources, commercial energy production, final energy consumption, energy needs of growing economy, long term energy scenario, energy pricing, energy sector reforms, energy and environment, energy security, energy conservation and its importance, restructuring of the energy supply sector, energy strategy for the future, air pollution, climate change. Energy Conservation Act-2012 and its features.

UNIT- II: BASICS OF ENERGY AND ITS VARIOUS FORMS

Electricity tariff, load management and maximum demand control, power factor improvement, selection & location of capacitors, Thermal Basics-fuels, thermal energy contents of fuel, temperature & pressure, heat capacity, sensible and latent heat, evaporation, condensation, steam, moist air and humidity & heat transfer, units and conversion.

UNIT- III: ENERGY MANAGEMENT & AUDIT

Definition, energy audit, need, types of energy audit. Energy management (audit) approach understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments. Material and Energy balance: Facility as an energy system, methods for preparing process flow, material and energy balance diagrams.

UNIT- IV: ENERGY EFFICIENCY IN ELECTRICAL SYSTEMS

Electrical system: Electricity billing, electrical load management and maximum demand control, power factor improvement and its benefit, selection and location of capacitors, performance assessment of PF

Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

9

9

9

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

capacitors, distribution and transformer losses. Electric motors: Types, losses in induction motors, motor efficiency, factors affecting motor performance, rewinding and motor replacement issues, energy saving opportunities with energy efficient motors.

UNIT- V: ENERGY EFFICIENCY IN INDUSTRIAL SYSTEMS

9

Compressed Air System: Types of air compressors, compressor efficiency, efficient compressor operation, Compressed air system components, capacity assessment, leakage test, factors affecting the performance and savings opportunities in HVAC, Fans and blowers: Types, performance evaluation, efficient system operation, flow control strategies and energy conservation opportunities. Pumps and Pumping System: Types, performance evaluation, efficient system operation, flow control strategies and energy conservation opportunities.

 LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS:

- 1. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-1, General Aspects
- 2. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-3, Electrical Utilities

REFERENCE BOOKS:

- 1. S. C. Tripathy, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1991.
- 2. Success stories of Energy Conservation by BEE, New Delhi (www.bee-india.org)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	0	2	1	0	2	0	1	0	1	0	0	0	0	3
CO2	0	0	0	1	2	0	1	0	0	0	0	0	3	1
CO3	1	2	3	1	2	0	0	1	1	0	0	0	1	2
CO4	0	2	0	1	3	0	1	0	0	0	0	0	2	1
CO5	2	0	1	0	0	1	1	1	1	0	0	1	1	2
Total	3	6	5	3	9	1	4	2	3	0	0	1	7	9
Scaled	1	2	1	1	2	1	1	1	1	0	0	1	2	3

Mapping of COs with POs

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

INDUSTRIAL ELECTRICAL SYSTEMS

Cours	e Outcomes (XEE E34):	Domain	Level
CO1	Understand the basic Electrical System Components	Cognitive	Understanding
CO2	Elaborate on Residential and Commercial Electrical Systems	Cognitive	Understanding
CO3	Understand Illumination Systems	Cognitive	Understanding
CO4	Understand various components of industrial electrical systems	Cognitive	Understanding
CO5	Understand various electrical system components and their role in Industrial Electrical System Automation	Cognitive	Understanding

Learning Objectives:

Understand the electrical wiring systems and the various components for residential, commercial and industrial consumers, representing the systems with standard symbols and drawings and SLD.

COURSE CODECOURSE NAMELTPCXEE E34 C.P: AINDUSTRIAL ELECTRICAL SYSTEMS3003C:P: AINDUSTRIAL ELECTRICAL SYSTEMSITPH3:0:03003UNIT -I: ELECTRICAL SYSTEM COMPONENTS9LT system wiring components, selection of cables, wires, switches, distribution box, metering system, rariff structure, protection components-Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices9Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme ant number of lamps, earthing of commercial installation, deciding lighting scheme ant number of lamps, earthing of commercial installation, selection and sizing of components9UNIT - III: ILLUMINATION SYSTEMS9Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting true9HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgar selection,									
XEE E34 C:P: AINDUSTRIAL ELECTRICAL SYSTEMS 3 0 0 3 $3:0:0$ 3 0 0 3 UNIT -I:ELECTRICAL SYSTEM COMPONENTS 3 0 0 3 0 0 3 UNIT -I:ELECTRICAL SYSTEM COMPONENTS 9 LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components-Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practicesUNIT -II:RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS 9 Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components 9 Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting tring 9 HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction KVAR calculations, type, of comp	COURSE CODE	COURSE NAME	L	Т	Р	С			
C:P: A INDUSTRIAL ELECTRICAL SYSTEMS L T P H 3:0:0 3 0 0 3 UNIT -I: ELECTRICAL SYSTEM COMPONENTS 9 LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components-Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD)of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices 9 UNIT -II: RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS 9 Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components 9 UNIT - III: ILLUMINATION SYSTEMS 9 Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting 9 HT connection, industrial substation, Transformer selection, Earthing design, Power factor correction-s, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design,	XEE E34		3	0	0	3			
3:0:0 3 0 0 3 UNIT -I: ELECTRICAL SYSTEM COMPONENTS 9 LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components-Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices 9 Types of residential and commercial wiring systems, general rules and guidelines for installation. load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components 9 UNIT - III: ILLUMINATION SYSTEMS 9 Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floculty-ing 9 HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction-KVAR calculations, type of compensation. Introduction to PCC. MCC panels. Specifications of LT <th>C:P: A</th> <th>INDUSTRIAL ELECTRICAL SYSTEMS</th> <th>L</th> <th>Т</th> <th>Р</th> <th>Н</th>	C:P: A	INDUSTRIAL ELECTRICAL SYSTEMS	L	Т	Р	Н			
UNIT -I: ELECTRICAL SYSTEM COMPONENTS9LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components-Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric slock and Electrical safety practices9UNIT -II: RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS9Types of residential and commercial wiring systems, general rules and guidelines for installation. load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components9Unit - III: ILLUMINATION SYSTEMS9Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy sa\ir in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting true9HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction- KVAR calculations, type of commensation. Introduction to PCC, MCC panels, Specifications of LT	3:0:0		3	0	0	3			
LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components-Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD)of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices UNIT -II: RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS 9 Types of residential and commercial wiring systems, general rules and guidelines for installation. load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components 9 UNIT - III: ILLUMINATION SYSTEMS 9 Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting UNIT - IV: INDUSTRIAL ELECTRICAL SYSTEMS 9 HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction- KVAR calculations, type of compensation. Introduction to PCC, MCC panels. Specifications of LT	UNIT -I:ELECTRICAL SYSTEM COMPONENTS9								
UNIT -II: RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS9Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components9UNIT - III: ILLUMINATION SYSTEMS9Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting9HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction- KVAR calculations, type of compensation, Introduction to PCC. MCC panels, Specifications of LT	LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components-Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD)of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices								
Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components 9 UNIT - III: ILLUMINATION SYSTEMS 9 Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting UNIT - IV: INDUSTRIAL ELECTRICAL SYSTEMS 9 HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction–KVAR calculations, type of compensation. Introduction to PCC. MCC panels, Specifications of LT	UNIT –II: RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS 9								
UNIT - III: ILLUMINATION SYSTEMS9Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting9UNIT - IV: INDUSTRIAL ELECTRICAL SYSTEMS9HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction- KVAR calculations, type of compensation. Introduction to PCC, MCC panels, Specifications of LT	Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation selection and sizing of components								
Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting UNIT – IV: INDUSTRIAL ELECTRICAL SYSTEMS 9 HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction–KVAR calculations, type of compensation, Introduction to PCC, MCC panels, Specifications of LT	UNIT - III: ILLUMINAT	ION SYSTEMS				9			
UNIT - IV: INDUSTRIAL ELECTRICAL SYSTEMS9HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction- KVAR calculations, type of compensation, Introduction to PCC, MCC panels, Specifications of LT	Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of alighting scheme for a residential and commercial premise, floodlighting								
HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction– KVAR calculations, type of compensation, Introduction to PCC, MCC panels, Specifications of LT	UNIT – IV: INDUSTRIAL ELECTRICAL SYSTEMS9								
	HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction–KVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Breakers, MCB and other LT panel components. DG Systems, UPS System, Electrical Systems for the								
elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks								
UNIT - V: INDUSTRIAL ELECTRICAL S	YSTEM AUTON	IATION	9					
Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system								
design, Panel Metering and Introduction to SC	ADA system for d	istribution automat	ion.					
	LECTURE	PRACTICAL	TOTAL					
45 0 45								
TEXTBOOKS								
1. S. L. Uppal and G. C. Garg, "Electrical Wiri	ing, Estimating &C	Costing", Khanna pi	ublishers, 2008.					
2. K.B. Raina, "Electrical Design, Estimating &	& Costing", New a	ge International, 20	07.					
3. S. Singh and R.D. Singh, "Electrical estima	ting and costing",	Dhanpat Rai and Co	o.,2014.					
REFERENCES								
1. Website for IS Standards.								
2. H. Joshi, "ResidentialCommercialandIndustrialSystems", McGrawHillEducation, 2008.								
E REFERENCES								
www.nptel.ac.in								

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	1	2	1	1	1	1	1	1	1	2	2
CO 2	3	2	2	1	2	1	1	1	1	1	1	1	2	2
CO 3	3	2	2	1	2	1	1	1	1	1	1	2	2	2
CO 4	3	2	2	1	2	1	1	1	1	1	1	1	2	2
CO 5	3	2	2	1	2	1	1	1	1	1	1	1	2	2
Total	15	10	10	5	2	5	5	5	5	5	3	6	10	10
Scaled	3	2	2	1	1	1	1	1	1	1	1	2	2	2

0 -No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

ELECTIVE GROUP - IV

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

HIGH VOLTAGE ENGINEERING

Cours	se Outcomes (XEE E41):	Domain	Level
CO1	Explain the different causes of overvoltage and Illustrate overvoltage control due to switching. Classify the various methods for protection of lightning overvoltage	Cognitive	Understanding
CO2	Explain and Classify breakdown mechanisms in solid, liquid and gases dielectrics and list out the application of insulating materials	Cognitive	Understanding
CO3	Able to define and Classify the different methods to generate the various types of high voltages and high currents	Cognitive	Understanding
CO4	Classify and analyze the different techniques used to measure the various types of high voltages and high currents.	Cognitive	Understanding Analyzing
CO5	Recall and Illustrate the different testing methods to test the various high voltage components of power System and define the International, Indian standards and insulation co-ordination.	Cognitive	Remembering Understanding

Learning Objectives:

Understand the basic physics related to various breakdown processes in solid, liquid and gaseous insulating materials. Knowledge of generation and measurement of D. C., A.C., & Impulse voltages. Knowledge of tests on H.V. equipment and on insulating materials, as per the standards. Knowledge of how over-voltages arise in a power system, and protection against these over-voltages.

COURSE CODE	COURSE NAME L T P 2 0 0												
XEE E41	HICH VOLTACE ENCINEEDING	3	0	0	3								
C:P: A	HIGH VOLTAGE ENGINEERING	L	Т	P	Η								
3:0:0	3 0 0												
UNIT - I: OVER VOLT	UNIT - I: OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS 9												
Natural Causes of overvoltage-Lightning phenomena and its effects on power system – Over voltage due													
to switching surge-power frequency overvoltage-control of overvoltage due to switching – protection of													
transmission lines against	t overvoltage – Becolevs lattice diagram	0	r		-								
transmission mes agams	t overvoltage "Decoley's lattice diagram.												
UNIT- II: ELECTRICA	L BREAKDOWN IN GASES, SOLIDS AND LIQUIDS				9								
Gaseous breakdown in u	Gaseous breakdown in uniform and non-uniform fields - corona discharges - Vacuum breakdown -												
conduction and breakdown in pure and commercial liquids - Breakdown mechanisms in solid and													
composite dielectrics-Applications of insulating materials.													
I III	composite dielectrics-Applications of insulating materials.												

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

UNIT – III: GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 Generation of High DC, AC, impulse voltages and currents. Tripping and control of impulse generators. **UNIT - IV: MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS** 9 Measurement of High direct current voltages - measurement of voltages: alternating and impulse voltages and measurement of currents: direct, alternating and impulse currents. Digital techniques in high voltage measurement **UNIT – V: HIGH VOLTAGE TESTING OF ELECTRICAL APPARATUS** 9 International and Indian standards-Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, power transformers and some high voltage equipment. -Insulation co-ordination. **LECTURE** PRACTICAL TOTAL 45 0 45 **TEXTBOOKS** 1. E. Kuffel and M. Abdullah, 'High Voltage Engineering', Pergamon press, Oxford, 2010. 2. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, 4th Edition, 2004. 3. E. Kuffel and W.S. Zaengl, 'High Voltage Engineering Fundamentals', Pergamon Press, Oxford, London. 2012 4. August F.Metraux. "Some problems and actual limits of test techniques at extra high voltages", Haefely publications EIS 14. REFERENCES 1. C.L.Wadhwa, 'High Voltage Engineering', New Age International (P) Ltd, 2nd Edition, 2006. 2. Ravindra Arora, Wolfgang Mosch, "High Voltage Insulation Engineering", New Age International (P) Limited, 2011. 3. Chinnappa, K.M., Need for next higher voltage level in India", National seminar on high voltage AC and Dc Transmission, New Delhi. **E-REFERENCES** 1. Web Content - http://www.library.dce.edu/e-resources/books/ee/ 2. NPTEL-High Voltage Engineering, C.L. Wadhwa -IIT Madras.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	-	-	1	-	1	-	I	-	2	2	2
CO2	3	2	-	_	-	-	-	-	-	-	-	1	1	2
CO3	2	2	-	-	1	1	-	1	-	-	-	1	1	1
CO4	2	2	-	-	-	-	1	-	-	-	-	1	2	2
CO5	2	2	-	2	-	1	-	-	-	I	-	2	2	2
Total	12	10	2	2	1	3	1	2	0	0	0	7	8	9
Scaling	3	2	1	1	1	1	1	2	0	0	0	2	2	2

Mapping of COs with POs

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

EMBEDDED SYSTEMS

Cours	se Outcomes (XEE E42):	Domain	Level
C01	Understand the structural units of Embedded Systems	Cognitive	Understanding
CO2	Explain and understand networking protocols and interfaces in Embedded Systems	Cognitive	Understanding
CO3	Understand and elaborate Embedded Firmware development	Cognitive	Understanding
CO4	Explain and understand the basic concepts of RTOS	Cognitive	Understanding
CO5	Understand how Embedded System Application Development is done	Cognitive	Understanding

Learning Objectives:

To introduce the Building Blocks of Embedded System, Bus Communication in processors, Input/output interfacing Basics of RTOS and to educate in Various Embedded Development Strategies, imparting knowledge in various processor scheduling algorithms.

COURSE CODE	COURSE NAME	L	Т	Р	С				
XEE E42	EMDEDDED SVSTEMS	3	0	0	3				
C:P: A	EWIBEDDED SISIEWIS	L	Т	Р	Н				
3:0:0		3	0	0	3				
UNIT –I: INTRODUCTION TO EMBEDDED SYSTEMS									

Introduction to Embedded Systems – The build process for embedded systems-Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging

UNIT- II: EMBEDDED NETWORKING

9

9

Embedded Networking: Introduction, I/O Device Ports & Buses– Serial Bus communication protocols – RS232 standard – RS422 – RS485 – CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I2C) –need for device drivers

UNIT –III: EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT

Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object-oriented Model

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT - IV: RTOS BASED EMBEDDED SYSTEM DESIGN 9 Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communication shared memory, message passing, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, µC/OS-II, RT Linu0078 **UNIT- V: EMBEDDED SYSTEM APPLICATION DEVELOPMENT** 9 Case Study of Washing Machine- Automotive Application- Smart card System Application, Mobile Embedded System LECTURE PRACTICAL TOTAL 45 45 0

TEXTBOOKS

- 1. Rajkamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013.
- 2. Peckol, "Embedded system Design", John Wiley & Sons, 2010
- 3. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013

REFERENCES

- 1. Shibu. K.V, "Introduction to Embedded Systems", Tata McGraw Hill, 2009.
- 2. Elicia White," Making Embedded Systems", O' Reilly Series, SPD,2011.
- 3. Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006.
- 4. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.
- 5. Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007

E REFERENCES

https://nptel.ac.in/downloads/108105057/

https://learnengineering.in/ee6602-embedded-systems/

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2				1				1	1	1	1	1	1
CO 2	2				1				1	1	1	1	1	1
CO 3	2				1				1	1	1	1	1	1
CO 4	2				1				1	1	1	1	1	1
CO 5	2				1				1	1	1	1	1	1
Total	10	0	0	0	5	0	0	0	5	5	5	5	5	5
Scaled	3	0	0	0	1	0	0	0	1	1	1	1	1	1

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

POWER SYSTEM RESTRUCTURING

Cours	se Outcomes (XEE E43):	Domain	Level
CO1	Understand the restructuring of power industry and market models	Cognitive	Understanding
CO2	Understand the transmission congestion management	cognitive	Understanding
CO3	Understand knowledge on fundamental concepts of	cognitive	Understanding
	congestion management.		
CO4	Analyze the concepts of locational marginal pricing and	cognitive	Analyze
	financial transmission rights.		
CO5	Analyze the various power sectors in India	cognitive	Analyze

COURSE CODE	COURSE NAME	L	Т	Р	С							
XEE E43		3	0	0	3							
C:P: A	POWER SYSTEM RESTRUCTURING	L	Т	Р	Н							
3:0:0		0	3									
UNIT- I: INTRODUCTION TO RESTRUCTURING OF POWER INDUSTRY 9												
Introduction: Deregulation of power industry, Restructuring process, Issues involved in deregulation,												
Deregulation of various po	ower systems – Fundamentals of Economics: Co	onsum	er beh	avior	, Supplier							
behavior, Market equilibri	um, Short and long run costs, Various costs of pr	oduct	ion – I	Aarke	et models:							
Market models based of	n Contractual arrangements, Comparison of	vario	ous m	arket	t models,							
Electricity vis other comm	odities, Market architecture, Case study.											
UNIT- II: TRANSMISS	ION CONGESTION MANAGEMENT			9								
Introduction: Definition of	of Congestion, reasons for transfer capability	limita	ation,	Impo	ortance of							
congestion management, Features of congestion management – Classification of congestion												
management methods – C	Calculation of ATC - Non - market methods -	– Mar	ket m	ethoo	is –Nodal							
pricing – Inter zonal and I	ntra zonal congestion management – Price area	conge	estion	mana	agement –							
Capacity alleviation metho	od.											
UNIT – III: LOCATION	NAL MARGINAL PRICES AND FINANCIA	4L		9								
TRANSMIS	SSION RIGHTS											
Mathematical preliminari	es: - Locational marginal pricing- Lossless	DCO	PF m	odel	for LMP							
calculation – Loss compe	ensated DCOPF model for LMP calculation -	- ACC)PF n	odel	for LMP							
calculation – Financial Tr	ansmission rights – Risk hedging functionality	/ –Sim	ultane	eous	feasibility							
test and revenue adequac	y – FTR issuance process: FTR auction, FTR	alloc	ation-	- Tre	atment of							
revenue shortfall – Second	dary trading of FTRs – Flow gate rights – FTF	R and	marke	t pov	ver - FTR							
and merchant transmission investment.												
UNIT - IV: ANCILLAR	Y SERVICE MANAGEMENT AND PRICIN	NG O	F	9								
TRANSMIS	SION NETWORK											
Introduction of ancillary services – Types of Ancillary services – Classification of Ancillary services												
– Load generation balanci	ng related services – Voltage control and reactiv	ve pov	ver suj	port	devices –							
Black start capability ser	vice - How to obtain ancillary service –Co-o	ptimiz	ation	of er	nergy and							

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

reserve services - Transmission pricing - Principles	- Classificatio	on– Rolled in transmi	ssion pricing							
methods - Marginal transmission pricing paradig	m -Composite	e pricing paradigm -	- Merits and							
demerits of different paradigm.										
UNIT - V: REFORMS IN INDIAN POWER SECTOR 9										
Introduction - Framework of Indian power sector - Reform initiatives - Availability based tariff-										
Electricity act 2003 - Open access issues - Power e	xchange – Refe	orms in the near futu	re							
	LECTURE	TUTORIAL	TOTAL							
	45	0	45							
TEXTBOOKS										
1. Mohammad Shahidehpour, Muwaffaq Alomoush, Marcel Dekker, "Restructured										
electrical power systems: operation, trading and volatility" Pub., 2001.										
2. Kankar Bhattacharya, Jaap E. Daadler, Mat	h H.J. Boolen,	"Operation of restruc	ctured							
power systems", Kluwer Academic Pub., 20	001.									
3. Paranjothi, S.R., "Modern Power Systems"	Paranjothi, S.F	R., New Age Internat	tional,							
2017.										
REFERENCES										
1. Sally Hunt," Making competition work in electric	city", John Wil	ley and Sons Inc. 200	02.							
2. Steven Stoft, "Power system economics: designing markets for electricity", John Wiley & Sons,										
2002.										
E REFERENCES										

www.nptel.ac.in

Learning objectives:

To study the complete process of deregulation and restructuring of Power Industry.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	1	2	1	1	1	1	-	-	-	-	-	1	2	2
CO 2	1	3	2	2	1	1	1	1	-	_	_	0	1	1
CO 3	1	1	1	2	1	0	-	1	-	_	_	2	1	1
CO 4	1	1	1	1	1	0	1	-	-	-	-	1	2	2
CO 5	1	1	1	1	0	1	-	-	-	-	-	1	0	0
Total	5	8	6	7	4	3	2	0	0	5	0	6	6	6
Scaled	2	2	2	1	1	1	1	0	0	1	0	2	2	2

Mapping of COs with POs
Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

LINE COMMUTATED AND ACTIVE RECTIFIERS

Cours	se Outcomes (XEE E44):	Domain	Level
CO1	Understand and Analyse controlled rectifier circuits.	Cognitive	Understand
			Analyse
CO2	Understand the operation of line-commutated rectifiers - six	Cognitive	Understand
	pulse and multi-pulse configurations.	C	
CO3	Understand the operation of PWM rectifiers – operation in	Cognitive	Understand
	rectification and regeneration modes and lagging, leading		
	and unity power factor mode.		
CO4	Understand the operation of Single-phase ac-dc single-	Cognitive	Understand
	switch boost converter and ac-dc Fly back converter.	C	
0.05		a ::	TT 1 . 1
CO5	Understand the operation of Ac-dc bidirectional boost	Cognitive	Understand
	converter.		

COURSE CODE	COUDSE NAME	т	Т	D	C
	LINE COMMUTATED AND ACTIVE	3	U	U	3
C:P: A	RECTIFIERS	L	Т	P	H
3:0:0		3	0	0	3
UNIT- I: DIODE RECTI	FIERS WITH PASSIVE FILTERING				09
Half-wave diode rectifier	with RL and RCloads;1-phase full-wave d	iode 1	rectifie	er wi	th L, C
andLCfilter;3-phase diode	e rectifier with L, C and LC filter; contin	uous	and d	lisco	ntinuous
conduction, input current v	vave shape, effect of source inductance; comm	utatio	n over	rlap.	
UNIT -II: THYRISTOR	RECTIFIERS WITH PASSIVE FILTERIN	ſG			09
Half-wave thyristor rectifi	er with RL and RC loads: single phase thyristo	r rect	ifier w	ith I	and LC
filter: 3-phase thyristor re	ctifier with L and LC filter: continuous and d	iscont	inuous	s con	duction
input current waveshape.	ethici with E and Ee inter, continuous and a	iscom	muou		duction,
UNIT - III: MULTI-PUL	SE CONVERTER				09
Review of transformer ph	ase shifting, generation of 6-phase ac voltage	from	3-pha	se ac	.6-pulse
converter and 12-pulse con	verters with inductive loads, steady state analys	sis. co	mmuta	ation	overlap.
notches during commutation	on.	,			· · · · · · · · · · · · · · · · · · ·
UNIT-IV: SINGLE-PHA	ASE AC- DC SINGLE- SWITCHBOOST	CON	VERT	'ER	09
AND AC-DC FLY BACK CONVERTER					
Review of dc-dc boost co	nverter, power circuit of single-switch ac-dc	conve	erter, s	teady	y state
analysis, unity power facto	or operation, closed-loop control structure. Dc	-dc fl	y back	con	verter,
output voltage as a funct	ion of duty ratio and transformer turns ratio.	Powe	er circu	uit of	ac-dc
fly back converter, stead	y state analysis, unity power factor operatio	n, clo	sed lo	op c	control
structure					

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT-V: AC-DC BIDIRECTIONAL BOOST CONVERTER 0					
Review of 1-phase inverter and 3-phase inverter, power circuits of 1-phase and 3-phase ac-dc boost					
converter, steady state analysis, operation at leading, lagging and unity power factors. Rectification					
and regenerating modes. Phasor diagrams, closed-lo	op control stru	cture.			
	LECTURE	TUTORIAL	TOTAL		
	45	0	45		
TEXTBOOKS					
1. G. De, "Principles of Thyristorised Converter	s", Oxford &IE	H PublishingCo	,1988.		
2. J.G. Kassakian, M. F. Schlecht and G.C. Verg	ghese, "Principl	es of Power Elec	etronics",		
Addison-Wesley, 1991.					
3. L.Umanand, "Power Electronics: Essentials an	d Applications	", Wiley India,20)09.		
REFERENCES					
1. N.Mohan and T.M.Undeland,"Power Electro	nics: Converte	ers, Applications	and Design",		
John Wiley & Sons, 2007.					
2. R.W.Erickson and D.Maksimovic, "Fundament	ntals of Power	Electronics", Sp	ringer Science		
& BusinessMedia,2001.					
E REFERENCES					
www.nptel.ac.in					

https://nptel.ac.in/courses/108105066/PDF/L-13(DK)(PE)%20((EE)NPTEL)%20.pdf

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	1	1	1	-	-	-	-	1	-	1	2	2
CO 2	3	2	1	2	1	-	-	-	-	1	-	1	1	1
CO 3	2	1	1	2	1	-	-	-	-	1	-	2	1	1
CO 4	1	1	0	0	1	-	-	-	-	1	-	1	0	0
CO 5	1	1	1	1	1	-	-	-	-	1	-	1	1	1
Total	9	7	4	5	5	0	0	0	0	5	0	6	6	6
Scaling	2	2	1	1	1	0	0	0	0	1	0	2	2	2

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

ELECTIVE GROUP -V

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

9

9

9

ELECTRICAL DRIVES

Course	Outcomes (XEE E51):	Domain	Level
CO1	Understand the characteristics of DC drives and its multi-quadrant operation	Cognitive	Understanding
CO2	Understand the various control techniques of DC Drives.	Cognitive	Remembering
CO3	Categorize the different speed control methods for an Induction motor drive at stator side.	Cognitive	Understanding
CO4	Illustrate the various control techniques of induction motor Drives at rotor side.	Cognitive	Understanding
CO5	Illustrate the various control techniques and application of Synchronous motor drives.	Cognitive	Understanding

COURSE CODE	COURSE NAME	L	Т	Р	C
XEE E51	ELECTRICAL DRIVES	3	0	0	3
C:P: A		L	Т	Р	Н
3:0:0		3	0	0	3

UNIT- I: DC MOTOR DRIVE CHARACTERISTICS AND ITS MULTI-QUADRANT OPERATIONS

Fundamentals of Electrical Drives - Advantage of Electrical Drives - Selection of Motor Power Rating - Review of emf and torque equations of DC machine - Review of torque-speed characteristics of separately excited dc motor - Four quadrant operation of dc machine - Steady state operation of multiquadrant chopper fed dc drive, regenerative braking.

UNIT- II: CONTROL OF DC DRIVES

DC Motor and their Performance - Transient Analysis - Ward Leonard Drives - Steady State Analysis of the Single and Three Phase Fully Controlled Converter Fed Separately Excited DC Motor Drive -Continuous and Discontinuous Mode Chopper Controlled DC Drives - Time Ratio Control and Current Limit Control – Industrial Applications of DC drives

UNIT- III: STATOR CONTROLLED INDUCTION MOTOR DRIVES

Induction Motor Drives - Stator Control - Stator Voltage and Frequency Control - VSI, CSI and Cycloconverter Fed Induction Motor Drives - Open Loop and Closed Loop V/f Control. Conventional space vector modulation; Steady-state performance analysis based on equivalent circuit, speed drop with loading, slip regulation - Industrial Applications of Stator controlled Induction Motor drives. 9

UNIT- IV: ROTOR CONTROLLED INDUCTION MOTOR DRIVES

Impact of rotor resistance of the induction motor torque-speed curve - Operation of slip-ring induction motor with external rotor resistance, starting torque - Power electronic based rotor side control of slip ring motor - Slip Power Recovery, sub-synchronous and Super Synchronous Operations - Power

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Fax: +91- 4362 - 264660 Web: www. pmu.edu

9

Factor Improvement - Closed Loop Control- - Industrial Applications of Rotor controlled Induction Motor drives.

UNIT- V: SYNCHRONOUS MOTOR DRIVES

Separate Controlled Mode - Self Controlled Mode of Synchronous Motor - Constant Marginal Angle Control and Motor Power Factor Control - Cycloconverter Fed Synchronous Motors - Digital Control and Drive Applications.

LECTURE	TUTORIAL	TOTAL	
45	0	45	

TEXT BOOKS

Phone: +91 - 4362 - 264600

Email: headeee@pmu.edu

- 1. Dubey G.K, 'Fundamentals of Electrical Drives', Narosa Publications, 2008.
- 2. B. K. Bose, 'Power Electronics and AC Drives', Prentice Hall Onglewood cliffs, New Jersey, 1998.
- 3. Krishnan. R, 'Electric motor& Drives; Modelling, Analysis and Control', Prentice Hall of India, 2001.
- 4. Dubey G. K., 'Power Semiconductor Controlled Drives', Prentice Hall, 1989.

REFERENCE BOOKS

- 1. Murphy, J.M.D and Turnbull F.G, 'Thyristor Control of AC Motors', Pergamon Press, 1990.
- 2. Sen. P.C, 'Thyristor D.C. Drives', John Wiley and Sons, 1981.
- 3. Vedam Subrahmaniyam, 'Electric Drives Concepts and Applications', Tata McGraw Hill Publishing company Ltd., 2011.
- 4. Leonhard. W, 'Control of Electric Drives', Springer Science & Business Media, 2001

E-REFERENCES

Lecture Series on Solid State Devices by Prof.S.Karmalkar, Department of Electrical Engineering, IIT Madras.

Mapping of COs with POs

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	1	0	2	0	1	0	0	0	0	0	0	3
CO2	3	1	0	0	2	0	1	0	0	0	0	0	3	2
CO3	1	2	3	0	2	0	0	1	0	0	0	0	1	2
CO4	0	2	0	0	3	0	1	0	0	0	0	0	2	2
CO5	3	1	1	0	0	1	1	1	0	0	0	1	1	2
Total	10	8	5	0	9	1	4	2	0	0	0	1	7	11
Scaled	2	2	1	0	2	1	1	1	0	0	0	1	2	3

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

0 – No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

POWER SYSTEM DYNAMICS AND CONTROL

Cours	se Outcomes (XEE E52):	Domain	Level
C01	Understand the problem of power system stability and its impact on the system.	Cognitive	Understand
CO2	Analyze linear dynamical systems and use of numerical integration methods.	Cognitive	Analyze
CO3	Understand different power system components for the study of stability.	Cognitive	Understand
CO4	Understand different power system components for the study of stability.	Cognitive	Understand
CO5	Understand the methods to improve stability.	Cognitive	Understand

Learning Objectives:

Remember the dynamic characteristics of power system equipment Recognize dynamic performance of power systems Illustrate the system stability and controls.

COURSE CODE	COURSE NAME	L	Т	Р	С		
XEE E52		3	0	0	3		
C:P: A	POWER SYSTEM DYNAMICS AND	L	Т	Р	Η		
3:0:0	CONTROL	3	0	0	3		
UNIT-I: INTRODUC	TION TO POWER SYSTEM OPERATIONS				09		
Introduction to power syst	tem stability. Power System Operations and Control.	Stabil	ity Pro	obler	ns in		
Power System. Impact on	Power System Operations and control.						
UNIT-II: ANALYSIS	OF LINEAR DYNAMICAL SYSTEM AND	NUM	ERIC	AL	09		
METHODS	METHODS						
Analysis of dynamical System, Concept of Equilibrium, Small and Large Disturbance Stability. Modal							
Analysis of Linear System. Analysis using Numerical Integration Techniques. Issues in Modelling: Slow							
and Fast Transients, Stiff	System.						
UNIT-III: MODELING	G OF SYNCHRONOUS MACHINES AND	ASSO	CIAT	ΈD	09		
CONTROLL	CONTROLLERS						
Modelling of synchronou	s machine: Physical Characteristics. Rotor position	n depe	ndent	mod	el. D-Q		
Transformation. Model with Standard Parameters. Steady State Analysis of Synchronous Machine. Short							
Circuit Transient Analysis of a Synchronous Machine. Synchronization of Synchronous Machine to an							
Infinite Bus. Modelling of Excitation and Prime Mover Systems. Physical Characteristics and Models.							
Excitation System Control. Automatic Voltage Regulator. Prime Mover Control Systems. Speed							
Governors.							
UNIT -IV: MODELING	UNIT –IV: MODELING OF OTHER POWER SYSTEM COMPONENTS 09						

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Modelling of Transmission Lines and Loads. Transmission Line Physical Characteristics. Transmission Line Modelling. Load Models - induction machine model. Frequency and Voltage Dependence of Loads. Other sub systems – HVDC and FACTS controllers, Wind Energy Systems.

UNIT -V: STABILITY ANALYSIS AND ENHANCING SYSTEM STABILITY

09

Angular stability analysis in Single Machine Infinite Bus System. Angular Stability in multi machine systems – Intra-plant, Local and Inter-area modes. Frequency Stability: Centre of Inertia Motion. Load Sharing: Governor droop. Single Machine Load Bus System: Voltage Stability. Introduction to Torsional Oscillations and the SSR phenomenon. Stability Analysis Tools Transient Stability Programs, Small Signal Analysis Programs. Planning Measures. Stabilizing Controllers (Power System Stabilizers). Operational Measures-Preventive Control. Emergency Control.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXTBOOKS

1. K.R. Padiyar, "Power System Dynamics, Stability and Control", B. S. Publications, 2002.

- 2. P. Kundur, "Power System Stability and Control", McGraw Hill, 1995.
- 3. P. Sauer and M. A. Pai, "Power System Dynamics and Stability", Prentice Hall, Stipes Publishing Co.; 1st edition (January 18, 2007)

REFERENCES

- 1. "Power System Dynamics: Stability and Control" by Dr Jonathan Moore and Prof. Hillary Simpson,2015.
- 2."Nonlinear Control Systems and Power System Dynamics" by Shengwei Mei, Yuanzhang Sun Qiang Lu Springer; 2001 edition (March 31, 2001).

E REFERENCES

www.nptel.ac.in

https://nptel.ac.in/courses/108101004/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	1	1	1	-	-	-	-	1	-	1	2	2
CO 2	2	3	2	2	1	-	-	-	-	1	-	0	1	1
CO 3	2	1	1	2	1	-	-	-	-	1	-	2	1	1
CO 4	1	1	0	0	1	-	-	1	-	1	-	1	0	0
CO 5	1	1	1	0	0	-	-	1	-	1	-	1	2	2
Total	8	8	5	5	4	-	-	0	0	5	0	6	6	6
Scaling	2	2	2	1	1	1	1	0	0	1	0	2	2	2

Mapping of COs with POs

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

HVDC TRANSMISSION SYSTEMS

Cours	se Outcomes (XEE E53)	Domain	Level			
CO1	Understand the advantages of dc transmission over ac	Cognitive	ognitive Understanding			
	transmission.					
CO2	Understand the operation of Line Commutated	Cognitive	Understanding			
	Converters and Voltage Source Converters.					
CO3	Understand the control strategies used in HVDC	Cognitive	Understanding			
	transmission system.					
CO4	Understand the improvement of power system stability	Cognitive	Understanding			
	using an HVDC system.					
CO5	Understand the concept of MTDC system.	Cognitive	Understanding			

COURSE CODE	COURSE NAME	L	Т	Р	С			
XEE E53		3	0	0	3			
C:P: A = 3:0:0	HVDC TRANSMISSION SYSTEMS	L	Т	Р	Н			
		3	0	3				
UNIT – I: DC TRANSMISSION TECHNOLOGY								
Comparison of AC and DC Transmission (Economics, Technical Performance and Reliability)- Application of DC Transmission –Types of HVDC Systems –Components of a HVDC System –Line Commutated Converter and Voltage Source Converter Based systems.								
UNIT– II: ANALYSIS CONVERT	OF LINE COMMUTATED AND VOLTAGE SOU ERS	URCE		()9			
Line Commutated Conv	verters (LCCs) Six Pulse Converter – Analysis neglect	ing Cor	nmutati	on Ov	erlap,			
Harmonics – Twelve Pu	Ilse Converters – Inverter Operation –Effect of Comm	utation	Overlap	– Effe	ect of			
Commutation Failure, Misfire and Current Extinction in LCC links. Voltage Source Converters (VSCs):								
Commutation Failure, N	distile and Current Extinction in LCC miks. Voltage S	Source (Converte	ers (v)	$\sim \sim \sim > > > > > > > > > > > > > > > > >$			
Two and Three-Level V	/SCs –PWM Schemes: Selective Harmonic Elimination	Source (on, Sinu	Converte	ers (v) Pulse v	width			
Two and Three-Level V Modulation. Analysis of	/SCs –PWM Schemes: Selective Harmonic Elimination of a six-pulse converter –Real and Reactive power contra	Source (on, Sinu col using	Converte isoidal 1 g VSC.	Pulse	width			
Two and Three-Level V Modulation. Analysis of UNIT– III: CONTROL	/SCs –PWM Schemes: Selective Harmonic Elimination f a six-pulse converter –Real and Reactive power contr L OF HVDC CONVERTERS AND COMPONENTS	Source (on, Sinu col using S OF	converte soidal l g VSC.	Pulse	width			

Principles of Link Control in LCC HVDC System - Control Hierarchy, Firing Angle Controls –Phase Locked Loop, Current and Extinction Angle Control – Starting and Stopping of a Link - Principles of Link Control in a VSC HVDC system: Power Flow and DC Voltage Control. Smoothing Reactors, Reactive Power Sources and Filters in LCC HVDC Systems DC Line, Corona Effects - Insulators, Transient Overvoltages DC Line faults in LCC Systems.

UNIT – IV: STABILITY ENHANCEMENT USING HVDC CONTROL09Basic Concepts:Power System Angular -Voltage and Frequency Stability –Power Modulation:BasicPrinciples –Synchronous and Asynchronous Links - Voltage Stability Problem in AC/DC Systems.09

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

UNIT – V: MTDC LINKS									
Multi-Terminal and Multi- Infeed Systems – Series and Parallel MTDC Systems using LCCs - MTDC									
Systems using VSCs – Modern Trends in HVDC Technology –Introduction to Modular Multi-level									
Converters.									
LECTURE TUTORIAL TOTAL									
	45	0		45					
TEXTBOOKS:									
1. Padiyar. K. R, 'HVDC Power Transmission Systems'	, New Age Inte	ernational publis	hers, 20)11.					
2. Arrillaga. J, 'High Voltage Direct Current Trans	smission', Peter	Peregrinus Lto	d., Inst	itution of					
Engineering and Technology; 2nd edition (30 June 1)	998)								
REFERENCES:									
1. Kimbark. E.W, 'Direct Current Transmission', Vol.1,	Wiley-Intersci	ence,1971.							
E-REFERENCES:									
1. www.nptel.ac.in									

Mapping of COs with POs

	PO 1	PO 2	РО 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO 12	PSO 1	PSO 2
CO1	2	1	1	1	-	1	-	-	1	1	_	1	2	1
CO2	1	1	1	1	-	-	-	-	-	-	1	1	1	2
CO3	1	3	-	-	-	I	1	-	-	-	-	-	2	2
CO4	2	3	1	1	-	I	1	-	-	-	-	-	2	2
CO5	1	2	-	-	-	-	I		-	-	_	1	1	1
Total	7	10	3	3	0	1	0	0	1	1	1	3	8	8
Scaled	2	2	1	1	0	1	0	0	1	1	1	1	2	2

0 – No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

POWER QUALITY AND FACTS

Cours	se Outcomes (XEE E54):	Domain	Level
CO1	Inference of series and shunt reactive power compensation in ac transmission line.	Cognitive	Remembering Understanding
CO2	Explain the working principles of thyristor-based flexible AC transmission controllers	Cognitive	Understanding Applying
CO3	Describe the various voltage source converter-based controllers in transmission line	Cognitive	Understanding Applying
CO4	Infer the electrical power quality terms, power quality events and causes of reduction of power and analyse the voltage sag performance, mitigation of sag	Cognitive	Remembering Understanding
CO5	Construct a circuit for harmonics and power factor improvement techniques	Cognitive	Understanding Applying

Learning Objectives: Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation. Understand the working principles of Thyristor based FACTS and Voltage source converter-based controller. Understand the basic concepts of power quality and devices to improve power quality.

COUDER CODE		-	m	D					
COURSE CODE	COURSE NAME	L	Т	P	C				
XEE E54	POWER QUALITY AND FACTS	3	0	0	3				
C:P: A	:P: A								
3:0:0		3	0	0	3				
UNIT-I: TRANSMISSION LINES AND SERIES/SHUNT REACTIVE POWER 9									
COMPE	COMPENSATION								
Basics of AC Transmission. Analysis of uncompensated AC transmission lines. Passive Reactive									
Power Compensation. Shunt and series compensation at the mid-point of an AC line. Comparison									
of Series and Shun	t Compensation.								
UNIT – II: THYR	ISTOR-BASED FLEXIBLE AC TRANSMISSION CO	NTRO	OLLE	RS	9				
Description and C	haracteristics of Thyristor-based FACTS devices: Static	VAR	Comp	ensa	tor				
(SVC), Thyristor C	Controlled Series Capacitor (TCSC), Thyristor Controlled E	Braking	g Resi	stor a	nd				
Single Pole Single	Throw (SPST) Switch. Configurations/Modes of Operat	ion, H	armor	nics a	ind				
control of SVC and	d TCSC. Fault Current Limiter								
UNIT - III: VOLT	AGE SOURCE CONVERTER BASED CONTROLLE	RS			9				
Voltage Source Converters (VSC): Six Pulse VSC, Multi-pulse and Multi-level Converters,									
Pulse-Width Modulation for VSCs. Selective Harmonic Elimination, Sinusoidal PWM and Space									
Vector Modulation	n. STATCOM: Reactive Power Control: Type I and Type	II cont	trollers	s, Sta	tic				

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

9

9

Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC): Interphase Power Flow Controller. Other Devices: GTO Controlled Series Compensator. Fault Current Limiter.

UNIT - IV: POWER QUALITY PROBLEMS IN DISTRIBUTION SYSTEMS

Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-form Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement. Tolerance of Equipment: CBEMA curve.

UNIT – V: DSTATCOM

Reactive Power Compensation, Harmonics and Unbalance mitigation in Distribution Systems using DSTATCOM and Shunt Active Filters. Current Control Techniques in for DSTATCOM. Dynamic Voltage Restorer-Unified Power Quality Conditioner (UPQC).

LECTURE	PRACTICAL	TOTAL
45	0	45

TEXTBOOKS

- 1. N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technology of FACTS Systems", Wiley-IEEE Press, 1999.
- 2. K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd. 2007.

3. T. J. E. Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, New York, 1983.

4. R. C. Dugan, "Electrical Power Systems Quality", McGraw Hill Education, 2012.

5. G. T. Heydt, "Electric Power Quality", Stars in a Circle Publications, 1991

REFERENCES

- 1. Roger. C. Dugan, Mark. F. Mc Granagham, Surya Santoso, H.Wayne Beaty, "Electrical Power Systems Quality" McGraw Hill, 2003
- 2. C. Sankaran, "Power Quality" CRC Press, 2002.
- 3. Alexander Kusko "Power Quality in Electrical Systems" The McGraw-Hill Companies, Inc, 2007.
- 4. Ewald F. Fuchs and Mohammad A.S. Masoum" Power Quality in Power Systems and Electrical Machines", 2011

E-REFERENCES

1. http://www.copper.org/applications/electrical/pq/issues.html

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	1	3	1	1	-	1	-	1	1	-	1	3	2
CO2	3	3	1	2	1	-	1	-	-	1	-	1	1	-
CO3	3	2	1	1	1	-	1	-	1	-	-	1	2	1
CO4	3	2	1	2	1	-	1	-	1	-	-	1	1	1
CO5	2	1	1	-	1	-	1	_	-	_	-	1	2	1
Total	14	9	7	6	5	_	5		3	2		5	9	5
Scaled	3	2	2	2	1		1		1	1		1	2	1

Mapping of COs with POs

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headeee@pmu.edu

Fax: +91- 4362 - 264660 Web: www. pmu.edu

ELECTIVE GROUP -VI

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ELECTRICAL AND HYBRID VEHICLES

Cours	se Outcomes (XEE E61):	Domain	Level	
CO1	To understand the working and performance of	Cognitive	Understanding	
	conventional vehicles			
CO2	To understand Hybrid Electric Vehicles and Drive-trains	Cognitive	Understanding	
CO3	To explain basic concepts of Electric Drive Trains	Cognitive	Understanding	
CO4	To explain the various types of Energy Storage Systems	Cognitive	Understanding	
CO5	To understand different types of Energy management	Cognitive	Understanding	
	strategies			

Learning Objectives:

Understand the models to describe hybrid vehicles and their performance and Understand the different strategies related to energy storage systems design.

COURSE CODE	COURSE NAME	L	Τ	P	С				
XEE E61		3	0	0	3				
C:P: A	ELECTRICAL AND HYBRID VEHICLES	L	Т	Р	Н				
3:0:0		3	0	0	3				
UNIT-I: INTRO	DUCTION			9					
Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization,									
transmission character	eristics, mathematical models to describe vehicle per	forma	nce.						
UNIT – II: HYBRID ELECTRIC VEHICLES 9									
Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and									
environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy									
supplies. Hybrid Ele	ctric Drive-trains: Basic concept of hybrid traction,	introd	uction	to var	ious hybrid				
drive-train topologies	s, power flow control in hybrid drive-train topologies	s, fuel	efficie	ncy an	alysis.				
UNIT – III: ELECT	TRIC DRIVE TRAINS			9					
Electric Drive-trains:	Basic concept of electric traction, introduction to va	rious o	electric	drive	-				
Train topologies, pov	wer flow control in electric drive-train topologies, fu	el effi	ciency	analys	sis. Electric				
Propulsion unit: Intro	oduction to electric components used in hybrid and e	lectric	vehic	les, Co	nfiguration				
and control of DC M	otor drives, Configuration and control of Induction M	lotor d	lrives,	config	uration and				
control of Permanen	t Magnet Motor drives, Configuration and control of	of Swi	tched]	Relucta	ance Motor				
drives, drive system	efficiency								
UNIT – IV: ENER	GY STORAGE			9					
Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery									
based energy storage	and its analysis, Fuel Cell based energy storage and	d its a	nalysis	, Supe	r Capacitor				

based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of Reg 2018 B.Tech.(FT) Electrical and Electronics Engineering (With effect from 26.6.2019)

PERIOD PERIOD

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subject systems

UNIT – V: ENERGY MANAGEMENT STRATEGIES

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies, Charging Stations. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

2.00			(22)
	LECTURE	PRACTICAL	TOTAL
	45	0	45

9

TEXTBOOKS

- 1. C. Mi, M.A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S.Onori, L.Serrao and G.Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

REFERENCES

1.M. Ehsani, Y.Gao, S.E.Gay and A.Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004.

2.T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016

E REFERENCES

www.nptel.ac.in

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3									1		1		2
CO 2	3									1		1		2
CO 3	3	2								1	1	2		2
CO 4	3	2			1					1	1	1		3
CO 5	3	2			1					1	1	1		3
Total	15	6	0	0	2	0	0	0	0	5	3	6		12
Scaled	3	1	0	0	1	0	0	0	0	1	1	1		3

Mapping of COs with POs

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

WIND AND SOLAR SYSTEMS

Course (Dutcomes (XEE E62):	Domain	Level
CO1	Understand the basic physics of wind and solar power	Cognitive	Understanding
	generation.		
CO2	Understand the various types of wind generators	Cognitive	Understanding
CO3	Understand the power electronic interfaces for wind	Cognitive	Understanding
	and solar generation.		
CO4	Understand the issues related to the grid- integration	Cognitive	Understanding
	of solar and wind		
	Energy systems.		
<i>CO</i> 5	Understand the issues related to the grid-integration	Cognitive	Understanding
	of solar and wind Energy systems.		

Learning Objectives:

Understand the technologies involved in wind power and solar power generation systems as well as grid network integration issues

COURSE CODE	COURSE NAME	L	Т	Р	С						
XEE E62	WIND AND SOLAR SYSTEMS	3	0	0	3						
C:P:A		L	Т	Р	Н						
3:0:0		3	0	0	3						
UNIT-I: PHYSICS (DF WIND POWER			9							
History of wind power, Indian and Global statistics, Wind physics, Betz limit, Tip speed ratio,											
stall and pitch control, Power from Wind, Parts of Wind Turbine, Characteristics of Wind											
Turbines, Wind speed statistics- probability distributions, Wind speed and power-cumulative											
distribution functions.	Review of modern wind turbine technologies, Fi	xed an	d Varia	able sp	eed						
wind turbines											
UNIT- II: WIND GENERATOR TOPOLOGIES 9											
Induction Generators, Doubly-Fed Induction Generators and their characteristics, Permanent-											
Magnet Synchronou	s Generators, Power electronics converters,	Gen	erator-	Conve	rter						
configurations, Conver	rter Control.										
UNIT –III: THE SO	LAR RESOURCE			9							
Introduction, solar rad	iation spectra, solar geometry, solar constant, Ear	th Sun	angles	s, obse	rver						
Sun angles, solar day l	ength, Estimation of solar energy availability.										
UNIT - IV: SOLAR I	PHOTOVOLTAIC			9							
Technologies- Amorph	nous, mono crystalline, polycrystalline V-I characte	eristics	of a P	V cell,	PV						
module, array, Power Electronic Converters for Solar Systems, Maximum PowerPoint Tracking											
(MPPT) algorithms. Converter Control. Technologies, Parabolic trough, central receivers,											
parabolic dish, Fresnel, solar pond, Solar chimney, elementary analysis.											
UNIT- V: NETWORK INTEGRATION ISSUES 9											
Overview of grid code technical requirements. Fault ride-through for wind farms-real and reactive											
power regulation, volt	age and frequency operating limits, solar PV and w	vind fai	rm beh	avior c	luring						

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

grid disturbances. Power quality issues. Power system interconnection experiences in the world. Hybrid and isolated operations of solar PV and wind systems.

, , , , , , , , , , , , , , , , , , ,	LECTUR	E TUTORIAL	TOTAL	
	45	0	45	
				-

TEXTBOOKS

- 1. T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2005.
- G.M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sons,2004.
 S.P.Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", McGraw Hill, 17
- Jun 2008.4. H.Siegfried and R.Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006.

REFERENCES

- 1. G.N.Tiwari and M.K.Ghosal, "Renewable Energy Applications", Narosa Publications, 2004.
- 2. J.A.Duffie and W.A.Beckman, "Solar Engineering of Thermal Processes", John Wiley & Sons, 17 May 2013.

E REFERENCES

www.nptel.ac.in

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3				1					1		1	1	3
CO 2	3				1					1		1	1	3
CO 3	3	2			1					1	1	2	1	3
CO 4	3	2			1					1	1	1	1	3
CO 5	3	2			1					1	1	1	1	3
Total	15	6	0	0	2	0	0	0	0	5	3	6	5	15
Scale	3	2	0	0	1	0	0	0	0	1	1	2	1	3

Mapping of COs with POs

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

POWER SYSTEM PROTECTION

Cours	se Outcomes (XEE E63):	Domain	Level
CO1	Understand the different components of a protection	Cognitive	Understand
	system.		
CO2	Evaluate fault current due to different types of fault in a	Cognitive	Evaluate
	network.		
CO3	Understand the protection schemes for different power	Cognitive	Understand
	system components.		
CO4	Understand the basic principles of digital protection.	Cognitive	Understand
CO5	Understand system protection schemes and the use of	Cognitive	Understand
	wide-area measurements.		

						1	1					
COURSE CODE	COURSE NA	AME		L	Т	P	С					
XEE E63	DOWED SYSTEM DI	DOTECTION		3	0	0	3					
C:P: A	10WER SISTEMIT	NOLECHON		L	Т	P	Η					
3:0:0				3	0	0	3					
UNIT- I: INTROD	UCTION AND COMPONEN	TS OF A PRO	TECTI	ION SY	STE	M 09						
Principles of Power	System Protection, Relays, Inst	rument transfo	rmers, C	Circuit I	Breake	ers.						
UNIT –II: FAULTS	S AND OVER-CURRENT PF	ROTECTION				09						
Review of Fault An	alysis, Sequence Networks. Int	troduction to C	Over cur	rent Pr	otectio	on and	over					
current relay co-ordi	current relay co-ordination.											
UNIT - III: EQUIPMENT PROTECTION SCHEMES 09												
Directional, Distance, Differential protection. Transformer and Generator protection. Bus bar												
Protection, Busbar and	rrangement schemes.			1								
UNIT- IV: DIGITA	AL PROTECTION					09						
Computer-aided prot	tection, Fourier analysis and est	timation of Pha	sors fro	m DFI	' Samp	oling,						
aliasing issues.												
UNIT -V: MODEL	ING AND SIMULATION O	F PROTECTI	ON SC	HEME	S AN	D 09						
SYSTEM	PROTECTION											
CT/PT modeling and	d standards, Simulation of tran	sients using E	lectro M	Iagneti	c Tran	sients ((EMT)					
programs. Relay Tes	ting. Effect of Power Swings of	n Distance Rela	aying. S	ystem l	Protect	tion Scl	nemes.					
Under-frequency, under-voltage and df/dt relays, Out-of-step protection, Synchro-phasors. Phasor												
Measurement Units and Wide-Area Measurement Systems (WAMS). Application of WAMS for												
improving protection systems.												
		LECTURE	TUTC	ORIAL		TOTA	L					
		45		0		45						

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

TEXTBOOKS

- 1. J. Lewis Blackburn and Thomas J. Domin, "Protective Relaying: Principles and Applications", Taylor & Francis Group, LLC, NewYork,2007.
- 2.Y.G.Paithankar and S.R.Bhide, "Fundamentals of power system protection", Prentice Hall,India,2010.
- 3. A.G.Phadke and J.S.Thorp, "Computer Relaying for Power Systems", John Wiley& Sons, 2nd Edition 2009.

REFERENCES

1. A. G. Phadke and J. S. Thorp, "Synchronized Phasor Measurements and their Applications" Springer, 2008.

2. D.Reimert, "Protective Relaying for Power Generation Systems", TaylorandFrancis, 2006.

E REFERENCES

www.nptel.ac.in https://nptel.ac.in/downloads/108101039/

	1	1	1	1	1		0	1	1	1	1	1	T	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	1	1	1	1	-	-	-	1	-	1	2	2
CO 2	2	3	2	2	1	1	1	-	-	1	-	0	1	1
CO 3	1	1	1	2	1	0	-	-	-	1	-	2	1	1
CO 4	1	1	1	1	1	0	1	-	-	1	-	1	0	0
CO 5	1	1	1	0	0	1	-	-	-	1	-	1	1	1
Total	7	8	6	6	4	3	2	0	0	5	0	6	5	5
Scaled	2	2	2	1	1	1	1	0	0	1	0	2	2	2

Mapping of COs with POs

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ADVANCED ELECTRIC DRIVES

Cours	se Outcomes (XEE E64):	Domain	Level
	Explain the operation of power electronic converters and		Remembering
CO1	their control strategies	Cognitive	Understanding
	then control strategies.		Applying
CO2	Categorize the different speed control methods for an	Cognitive	Remembering
002	Induction motor drive	Cognitive	Understanding
CO3	Detailed description of control strategies of synchronous	Cognitive	Remembering
005	motor drive.	Cognitive	Understanding
CO4	Classify various permanent magnet motor and explain its	Cognitive	Remembering
0.04	speed & torque control technique.	Cognitive	Understanding
CO5	Illustrate the different types of SRM drives	Cognitive	Remembering
005	Hustiate the unreferit types of SKW unves.	Cognitive	Understanding

COURSE CODE	COURSE NA	ME		L	Т	Р	C				
XEE E64				3	0	0	3				
C:P: A	ADVANCED ELECT	RIC DRIVES		L	Т	Р	Н				
3:0:0				3	0	3					
UNIT – I: POWE	ER CONVERTERS FOR AC I	DRIVES					12				
PWM Control of I	nverter - Selected Harmonic E	limination - Sp	pace Ve	ector M	[odulat	ion, C	urrent				
Control of VSI, Three Level Inverter - Different Topologies - SVM for Three Level Inverter, Diode											
Rectifier with Boost Chopper, PWM Converter as Line Side Rectifier, Current Fed Inverters with											
Self-Commutated Devices. Control of CSI, H bridge as a 4-Q drive. DSP Based Motion Control.											
UNIT - II: INDUCTION MOTOR DRIVES09											
Different Transformations and Reference Frame Theory -Modelling of Induction Machines -											
Voltage Fed Inverte	er Control- V/f Control, Vector (Control - Direct	t Torque	e and F	lux Co	ntrol (DTC).				
UNIT-III: SYNC	CHRONOUS MOTOR DRIVE	ES					08				
Modelling of Synch	ronous Machines - Open Loop	V/f Control - V	ector C	ontrol ·	- direct	torque	e				
Control - CSI Fed S	Synchronous Motor Drives.										
UNIT – IV: PER	MANENT MAGNET MOTOI	R DRIVES					08				
Introduction to Var	ious PM Motors - BLDC and P	MSM Drive C	onfigura	ation –	Compa	rison,	Block				
Diagrams, Speed an	nd torque control in BLDC and H	PMSM.									
UNIT - V:SWITCHED RELUCTANCE MOTOR DRIVES08											
Evolution of Switched Reluctance Motors - Various Topologies for SRM Drives, Comparison,											
Closed Loop Speed and Torque Control of SRM.											
		1									
		LECTURE	TUTC	ORIAL	,	TOTA	L				
		45		0		45					

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

TEXTBOOKS

- 1. Bose. B. K, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2003.
- 2. Krause. P. C, Wasynczuk. O and Sudhoff S. D, 'Analysis of Electric Machinery and Drive Systems', John Wiley & Sons, 2013.
- 3. Vedam Subrahmaniyam, "Electric Drives Concepts and Applications", Tata McGraw Hill Publishing Company Ltd., 2011.
- 4. Taliyat H. A and Campbell. S. G., 'DSP Based Electromechanical Motion Control', CRC Press, 2003.

REFERENCES

- 1. Murphy J.M.D. and Turnbull F.G, 'Thyristor Control of AC Motors', Pergamon Press, 1990.
- 2. Krishnan R, 'Permanent Magnet Synchronous and Brushless DC motor Drives', CRC Press, 2009.
- 3. Dubey G.K, 'Fundamentals of Electrical drives', Narosa Publications, 2008.

4. Bose B.K, 'Power Electronics and AC Drives', Prentice Hall Onglewood cliffs, New Jersey, 1998.

E REFERENCES

Lecture Series on Solid state devices by Prof. S.Karmalkar, Department of Electrical Engineering, IIT Madras.

http://nptel.ac.in/courses/108108077/

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	1	0	2	0	1	0	0	0	0	0	0	3
CO2	3	1	0	0	2	0	1	0	0	0	0	0	3	2
CO3	1	2	3	0	2	0	0	1	0	0	0	0	1	2
CO4	0	2	0	0	3	0	1	0	0	0	0	0	2	2
CO5	3	1	1	0	0	1	1	1	0	0	0	1	1	2
Total	10	8	5	0	9	1	4	2	0	0	0	1	7	11
Scaled	2	2	1	0	2	1	1	1	0	0	0	1	2	3

Mapping of COs with POs

0 - No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 6	13 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

VALUE ADDED COURSES

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ELECTRICAL SYSTEM DESIGN USING ETAP

COURSE CODE	COURSE NAME							
VAC1	ELECTRICAL SYSTEM DESIGN USING ETAP							
Topics								
Introduction to Electrica	al System Design, Intro	oduction to E	lectrical Power	system,				
Structure of Electrical po	ower system, Sources of	Electrical Ene	ergy, Elements of	of Power				
system, Generation, Tra	ansmission and Distrib	ution, Types	of systems for	or power				
transmission, Introduction	to Power Substation, B	us Bar, Single	Line Diagram,	Design a				
Single line diagram, inser	ting Circuit Elements, Lo	ad Flow Analy	sis, Short circui	t analysis				
and run the Relay Co-or	rdination, Motor Acceler	ation, Transfo	rmer Sizing wi	th ETAP				
software. Arc Flash. Introduction to Power System Protection. Types of Relay. Protective								
Relays, Relay Co-ordination.								
· · · ·		LECTURE TUTORIAL TOTAL						
		30	0	30				

ELECTRICAL SYSTEM DESIGN USING HMI

COURSE CODE	COURSE NAME							
VAC2	ELECTRICAL SYSTEM DESIGN USING HMI							
TOPICS								
Introduction to HMI, Ar	chitecture of HMI, KTP6	500 DP Basic	HMI device, Wo	orking with				
Control Panel, Changing	g MPI/DP settings, Worki	ing With HMI	, Create a Scree	n for HMI,				
Working with win CC fle	exible, Hardware Configu	ration inSTEP-	7, Interfacing Pl	LC to HMI.				
Transfer settings, Transfe	er the Screen from WinCC	Flexible Desig	gn, Data Logging	g, Real time				
trend, Historical trend, Industrial Level Practicals								
		LECTURE	TUTORIAL	TOTAL				
		30	0	30				

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

PERIVACE ACCEPTED

Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

AUTO CAD - ELECTRICAL

COURSE CODE	COURSE NAME							
VAC3	AUTO CAD - ELECTRICAL							
Topics								
Introduction about Auto	CAD, Advantages in usin	ig AutoCAD,	File managemer	nt, Drawing				
Tools, Object Properties,	, Layer Management, Bloo	ck, Creating &	Inserting Block	s, WBlock,				
Introduction about Auto	oCAD Electrical, Applic	ation of Auto	OCAD Electrica	l, Projects,				
Introduction to Project	Manager, Creating an	AutoCAD E	lectrical project	t, Drawing				
Properties, Symbol Libra	ries, Inserting Multiple Co	omponents, Ci	rcuit Builder, PI	.C, Point to				
Point Wiring Tools, Panel Layout, Generating Reports.								
		LECTURE	TUTORIAL	TOTAL				
		30	0	30				

ELECTRICAL SYSTEM DESIGN USING PLC & SCADA

COURSE CODE	COURSE NAME								
VAC4	ELECTRICAL SYSTEM DESIGNUSING PLC & SCADA								
Topics									
Introduction to Automation, Programmable Logic Controller, Introduction to Omron Cp1e Series Introduction to SCADA									
LECTURE TUTORIAL TOTAL									
30 0 30									

ELECTRICAL SYSTEM DESIGN USING VFD

COURSE CODE	COURSE NAME							
VAC5	ELECTRICAL SYSTEM DESIGN USING VFD							
Topics								
Introduction to VFD Driver, Architecture and Benefits of VFD, Types of Starters, Block Diagram for Sinamics G110VFD, Basic Commissioning in Sinamics G110VFD, Wire Connection between PLC and VFD, Manual Control and Auto Control method for Motor, Industrial Level Practicals								
LECTURE TUTORIAL TOTAL								
	30 0 30							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

ELECTRICAL SYSTEM DESIGN USING INTERNET OF THINGS

COURSE CODE	COURSE NAME							
VAC6	ELECTRICAL SYSTEM DESIGN USING INTERNET OF							
	THINGS							
Topics								
Basics of Electronics, Intr	oduction to IoT concepts a	and Technolog	ies, Arduino Pro	gramming				
Language concepts, Work	ing with Arduino IDE 1.8	.6 and program	nming Arduino N	MEGA				
Hardware, Serial Commun	nication – UART Protocol	, IoT Commur	nication Wired an	nd				
Wireless Protocols Layers	and Protocols - TCP/IP L	ayer, Collectin	ng Real time data	a using				
Temperature Sensor (DH)	Г11) – DHT11 libraries an	d principle, Cl	oud Computing	_				
Introduction, ESP8266 W	iFi Chip – Working Princi	iple, Send Mes	sages to IoT dev	rices using				
Talkback. REST Client, P	ython – Introduction, Env	ironment Setu	p, Python Comm	ion				
Gateway Interface – Introduction, Integration of Cloud with Raspberry pi as an IoT Gateway,								
IoT Protocol, IoT Data Analytics								
	•	LECTURE	TUTORIAL	TOTAL				
		30	0	30				

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

OPEN ELECTIVES

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

OE1 INDUSTRIAL AUTOMATION

Cours	se Outcomes (XEE OE1):	Domain	Level
CO1	Able to define and Explain the fundamentals of	Cognitive	Understanding
	Pneumatics, hydraulics and electrical drives. List out the		
	advantages, disadvantages and its application		
CO2	Apply the knowledge of electrical ladder	Cognitive	Applying
	hydraulic and pneumatic system and able to define		
	pressure, proximity switches and intelligent Relays.		
CO3	Explain and Categorize different types of Sensors and	Cognitive	Analyzing
	their application. List out timer, counter and their		
	application.		
CO4	Illustrate the knowledge in the PLC logic, Architecture	Cognitive	Applying
	and design the industrial automated system applications		
	and Apply the knowledge of PLC programming to		
	interface pneumatics.		
CO5	Outline the overview of robotics and their application.	Cognitive	Applying
	Apply the knowledge of robotics programming		

COURSE CODE	COURSE NAME	L	Т	Р	С	
XEE OE1	INDUSTRIAL AUTOMATION	3	3			
C:P: A		L	Т	Р	Н	
3:0:0		3	0	0	3	
UNIT-I: INTRO	DUCTION TO PNEUMATICS AUTOMATION				9	
Introduction to Pne	umatics- Overall structure- Electro pneumatic -hydra	aulics-	Over	all st	ructure –	
Advantages and dis	advantages – Application-Electrical drives.					
UNIT – II: APP	LICATIONS OF RELAYS				9	
Essential qualities of	of relays- NO & NC contacts- Electrical signal storage	-Ele	ctrical	Lade	der	
diagram-Pneumatic	system- Hydraulic system-pressure and proximity sw	itches	- Intel	ligen	t Relays.	
UNIT – III: SMA	ART SENSORS AND TIMERS IN CONTROLLER	RS			9	
Introduction to sensors- characteristics- types of sensors-resistive - inductive-capacitive- magnetic-						
ultrasonic - photoelectric- Nano sensors- timers-counters-types-applications.						
UNIT – IV: PROGRAMMABLE LOGIC CONTROLLERS 9						
Evolution of PLC – Sequential and Programmable controllers – Architecture – Programming of PLC						
–Relay logic and Ladder logic – Functional blocks – PLC interface to pneumatics.						

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

UNIT – V: ROBOTICS 9 Introduction and overviews of Robotics - Terms and Definition, Historical development of robotics, classification and configuration of robots, Basic components - Drives, controller gripper, application-programming in Robotics LECTURE **TUTORIAL** TOTAL 45 45 0 **TEXTBOOKS** 1. "Programmable Logic Controllers" by W.Bolton, Newnes; 6 edition (March 17, 2015) 2. "Programmable Logic Controllers and Industrial Automation: An Introduction" by Madhuchhanda Mitra, Samarjit Sen Gupta Penram International Publishing (India) Pvt. Ltd, Second edition, 2017. REFERENCES Programming 1. "Programmable Logic Controllers: Methods and Applications" by Hackworth, Prentice Hall (April 21, 2003) **E REFERENCES** https://www.automation.com/library/education/reference-guides

Mapping COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	-	2	1	1	1	_	-	1	1	-		
CO 2	3	2	-	-	1	1	-	1	-	1	3	2		
CO 3	2	3	-	-	1	1	1	-	-	-	-	1		
CO 4	2	1	3	-	-	1	-	1	1	-	-	1		
CO 5	2	2		-	1	-	-	2	-	-	-	1		
Total	12	10	3	2	4	4	2	4	1	2	4	5		
Scaled	3	2	1	1	1	1	1	1	1	1	1	2		

0 – No Relation 1 - Low Relation 2 - Medium Relation 3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

ENERGY MANAGEMENT AND AUDITING

Cours	se Outcomes (XEE OE2):	Domain	Level
CO1	Explain the stages and process of energy	Cognitive	Understanding
	management Programme.		
CO2	Analyze economic models of load management	Cognitive	Analyzing
	systems. Explain monitoring and control of energy		
	management systems.		
CO3	Compare different energy management techniques	Cognitive	Understanding
	for Electric loads and drives.		
CO4	Explain the different metering arrangement and	Cognitive	Understanding
	their performance in an electrical system.		
CO5	Define the lighting scheme and Standards for	Cognitive	Understanding
	energy conservation. Explain the methods of		
	improving the power quality.		

		T	<u> </u>	т	T			
COURSE CODE	COURSE NAME	L	Т	P	C			
XEE OE2	ENERGY MANAGEMENT AND AUDITING	3	0	0	3			
C:P: A		L	Т	Р	Η			
3:0:0		3	0	0	3			
UNIT-I: INTRODUCTION								
Need for energy management - energy basics- designing and starting an energy management program – energy accounting -energy monitoring, targeting and reporting-energy audit process								
UNIT – II: ENERG	Y COST AND LOAD MANAGEMENT				9			
Important concepts in an economic analysis - Economic models-Time value of money- Utility rate structures- cost of electricity-Loss evaluation Load management: Demand control techniques-Utility monitoring and control system- HVAC and energy management.								
UNIT-III: ENERGY MANAGEMENT FOR MOTORS, SYSTEMS AND 9 ELECTRICAL EQUIPMENT								
Systems and equipment- Electric Motors-Transformers and reactors-Capacitors and synchronous machines-Energy management in industrial drive.								
UNIT – IV: METERING FOR ENERGY MANAGEMENT								
Relationships between parameters-Units of measure-Typical cost factors- Utility meters - Timing of meter disc for kilowatt measurement - Demand meters - Paralleling of current transformers - Instrument transformer burdens-Multitasking solid-state meters - Metering location vs. requirements.								

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: +91 - 4362 - 264600
 Fax: +91- 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

9

UNIT - V: LIGHTING SYSTEMS & COGENERATION

Concept of lighting systems - The task and the working space -Light sources - Ballasts -Luminaries - Lighting Controls-Optimizing lighting energy - Power factor and effect of harmonics on power quality - Cost analysis techniques-Lighting and energy standards-BEE standards

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXTBOOKS

- 1. Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, "Guide to Energy Management", Fifth Edition, The Fairmont Press, Inc., 2006
- **2.** Eastop T.D. & Croft D.R., "Energy Efficiency for Engineers and Technologists", Longman Scientific & Technical, ISBN -0-582-03184, 1990.

REFERENCES

- **1.** IEEE Recommended Practice for Energy Management in Industrial and Commercial Facilities, IEEE, 2011.
- 2. Amit K. Tyagi, 'Handbook on Energy Audits and Management', TERI,2003

E REFERENCES

E-learning course on Energy audit and management, Dr.K.Shanti Swarup, Indian Institute of Technology, Chennai.

· · · · · · · · · · · · · · · · · · ·		1	1	1	1110	Phile Phile	0051		J B	1	1	1		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO 1	1	3							2	1			3	1
CO 2	1					1					2		3	1
CO 3	1			1	1			1		1			3	1
CO 4	1	2	2								3	1	3	1
CO 5		2					2					1	3	1
Total	4	7	2	1	1	1	2	1	2	2	5	2	15	5
Scaled	1	2	1	1	1	1	1	1	1	1	1	1	3	1

Mapping COs with POs

 $0 - No \ Relation \qquad 1 - Low \ Relation \qquad 2 - Medium \ Relation \ 3 - High \ Relation$

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

OE3 RENEWABLE ENERGY TECHNOLOGY

Cours	se Outcomes (XEE OE3):	Domain	Level
CO1	Infer Power Demand and Identify the various	Cognitive	Applying
	renewable energy systems to meet out the demand.		
CO2	Explain about the Performance of various solar	Cognitive	Applying
	collectors and Apply the recent advancement in PV		
	systems to improve the efficiency.		
CO3	Explain about the performance characteristics of wind	Cognitive	Understanding
	energy and its application in hybrid systems.		
CO4	Apply the Bio-energy in various conversion	Cognitive	Applying
	technologies and processes, for sustainable		
	development.		
CO5	Compare the role-play of various energy resources	Cognitive	Understanding

COURSE CODE	COURSE NAME	L	Т	Р	С			
XEE OE1	RENEWABLE ENERGY TECHNOLOGY	3	0	0	3			
C:P: A		L	Т	Р	Н			
3:0:0	:0:0 3 0 0							
UNIT-I: INTRODUCTION								
Primary energy source	s, Renewable Vs non-renewable primary e n e r g y	source	es, Rer	newał	ole			
energy resources in Inc	lia, Current usage of renewable energy sources in In	dia, fu	iture p	otent	ial			
of renewable energy in power production and development of renewable energy technologies.								
UNIT – II: SOLAF	RENERGY				9			
Solar Radiation and	ts measurements, Solar Thermal Energy Conversion	on fror	n					
Flat-plate Solar Conc	centrating Collectors and its Types, Efficiency	and p	erforn	nance	of			
collectors, Direct Sola	r Electricity Conversion from Photovoltaics- types	of sol	ar cell	s and	its			
application of battery of	charger, Recent Advances in PV Applications- Buil	lding I	integra	ated C	} rid			
Connected PV System	8							
UNIT – III: WIND	ENERGY				9			
Wind energy principl	es, wind site and its resource assessment, wind	assess	sment,	Fac	tors			
influencing wind, wi	nd turbine components, wind energy conversion	a syst	ems (WEC	CS),			
Classification of WEC	S devices, Hybrid systems - safety and environment	tal asp	ects, e	cono	mic			
aspects.								
UNIT – IV: BIO-ENERGY 9								
Energy from biomass, Principle of biomass conversion technologies process and their								
classification, Bio gas generation, types of biogas plants, selection of site for biogas plant,								
classification of bioga	s plants, Advantage and disadvantages of biogas g	genera	tion, t	oioma	ISS			
gasifier, Application of biomass and biogas plants and their economics.								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Web: www. pmu.edu Email: headeee@pmu.edu

UNIT – V: OTHER TYPES OF ENERGY			9
Energy conversion from Hydrogen and Fuel cells, G	eo thermal end	ergy Resources,	Potential in
India. Tidal and wave energy.			
	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXTBOOKS			
1. G.D. Rai, "Non-Conventional Energy Source	es"- Khanna P	ublishers,2004.	
2. Twidell and Wier, "Renewable Energy Res	ources" -CRC	2 Press (Taylor of	& Francis),
Third Edition ,2015.			
3. D.P.Kothari, K.C.Singhal and Rakesh Ra	anjan, "Renev	vable energy so	ources and
emerging technologies" - P.H.I., 2 nd Edition	, 2011.		
4. Mukund R.Patel ,"Wind And Solar Power S	ystems", Copy	right 1999 CR	C Press.
REFERENCES			
1. G.N.Tiwari and M.K.Ghosal, "Renewable En	ergy Resource	s: Basic Principl	es and
Applications", Narosa Publishing House (1 A	ugust 2004).		
2. K Mittal, "Non-Conventional Energy Systems	s", A H Wheel	er Publishing Co	o Ltd
(January 31, 1999)		a mand -	
3. Volker Quaschning, "Understanding the Rene	wable Energy	Systems", 2 nd E	dition,
2016 Earth Scan, London, UK,			
E REFERENCES			
1. <u>http://www.nptelvideos.in/2012/11/energy-re</u>	esources-and-t	echnology.html	
2. NPTEL, Lecture Series on Energy Resources	s and Technolo	ogy,	
Prof.S.Banerjee,Department of Electrical En	gineering, IIT	Kharagpur.	
3. <u>http://freevideolectures.com/Course/2352/Pc</u>	wer-System-C	Generation-	
Transmission-and-Distribution/6 NPTEL, Re	enewable Ener	gy Technology,	Prof.
D.P.Kothari IIT Delhi Course.			
4. <u>http://textofvideo.nptel.iitm.ac.in/112105051</u>	/lec43.pdfNP	<u>FEL,</u> Renewable	Energy
Technology, Prof. V. V. Satyamurty Departm	nent of Mechar	nical Engineering	g Indian
Institute of Technology, Kharagpur.	:41 DO		
Mapping COs	with POs		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
GO 1														
CO 1	2	2			1		3	1	1	1		1		3
CO 2	2	2	2	2			2	1	1	1	2	1		
CO 3	3	3												
CO 4	3	2	2		3		3	1	1	1		1		
CO 5		2												
Total	10	11	4	2	4	0	8	3	3	3	2	3		
Scaled	2	3	1	1	1	0	2	1	1	1	1	1		
	0 No Deletion 1 Law Deletion 2 Medium Deletion 2 High Deletion													

0 – No Relation

 $1 - Low Relation \quad 2 - Medium Relation 3 - High Relation$

Periyar Nagar, Vallam, Thanjavur	- 613 403, Tamil Nadu, India
Phone: +91 - 4362 - 264600	Fax: +91- 4362 - 264660
Email: headeee@pmu.edu	Web: www. pmu.edu

R