CURRICULUM AND SYLLABUS FOR B.Sc. (Mathematics) - BACHELOR OF SCIENCE (THREE YEAR - FULL TIME) REGULATION – 2017 REVISION -I

(Applicable to the students admitted from the academic year 2017-2018 onwards)

		SEMESTER I						
Туре	Course Code	Course Name	L	Т	Р	SS	Н	С
CC 3 (DSC 3A)	XMT101	Classical Algebra	3	2	0	-	5	4
UMAN 1	XMT102	Ariviyal Tamil	3	0	0	-	3	3
CC 1	XMT103	Fundamental Physics	3	1	0	-	4	4
CC 2 (DSC 2A)	XMT104	Foundation Course in Mathematics	3	2	0	-	5	4
AECC 1	XGE105	Study Skills	1	0	0	2	3	1
UMAN 2	XUM106	Human Ethics, Values, Rights and Gender Equality	1	0	0	2	3	1
CC 1 lab	-	Fundamental Physics(Practical -1*)	0	0	0	0	3	-
		Total	14	5	0	4	26	17

*Continued in XMT206

		SEMESTER II						
Туре	Course Code	Course Name	L	Т	Р	SS	Н	С
AECC 2	XGE201	Speech and Business Communication	3	0	0	-	3	3
AECC 3	XES202	Environmental Studies	2	1	0	0	3	2
CC 4	XMT 203	Modern Physics	3	1	0	-	4	4
CC 5 (DSC 2B)	XMT204	Calculus	4	2	0	-	6	5
CC 6 (DSC 3B)	XMT205	Sequences and Series	4	2	0	-	6	5
GE1	-	*Open Elective to be chosen by student	3	0	0	-	3	3
CC 4 Lab	XMT206	Fundamental Physics(Practical -1)	0	0	3	-	3	2
		Total	19	6	3	0	28	24

		SEMESTER III						
Туре	Course Code	Course Name	L	Т	Р	SS	Η	С
SEC 1	XMT301	Logic and Sets	2	0	0	2	4	2
CC 7	XMT302	Programming in C	3	1	0	0	4	4
CC 8 (DSC 2C)	XMT303	Real Analysis	4	1	0	0	5	5
CC 9 (DSC 3C)	XMT304	Analytical Geometry 3D	4	1	0	0	5	5
GE 1		*Open Elective - To be chosen by student	3	0	0	0	3	3
CC 7 lab	XMT305	Programming in C – Practical	0	0	2	0	4	2
UMAN 2	XUM306	Disaster Management	3	0	0	0	3	0
Minor Course * Extra Credit		Office Automation (15 hours)	0	0	0	0	0	1*
	1	Total	19	3	2	2	28	21+1*

		SEMESTER IV						
Туре	Course Code	Course Name	L	Т	Р	SS	Н	С
SEC 2	XMT401	Theory of Equations	2	0	0	2*	2	2
CC 10	XMT402	Introduction to Matlab	3	1	0	0	4	4
CC 11 (DSC 2D)	XMT403	Vector Calculus and Fourier Series	4	1	0	0	5	5
CC 12 (DSC 3D)	XMT404	Algebra	4	1	0	0	5	5
GE 2		*Open Elective - To be chosen by student	3	0	0	0	3	3
CC 10 Lab	XMT405	Introduction to Matlab - Practical	0	1	2	0	3	2
Minor Course * Extra Credit		Animation Software I (15 hours)	0	0	0	0	0	1*
		Total	16	4	2	2*	22	21+1*

		SEMESTER V						
Туре	Course Code	Course Name	L	Т	Р	SS	Η	С
SEC 3	XMT501	Probability and Statistics	2	0	0	2*	2	2
DCE 1 A	XMT502A	Matrices	4	2	0	0	6	6
DSE 1A	XMT502B	Discrete Mathematics						
DSE 2A	XMT503A	Numerical Methods	4	2	0	0	6	6
DSE 2A	XMT503B	Mechanics						
	XMT504A	Linear Algebra	4	2	0	0	6	6
DSE 3A	XMT504B	Astronomy						
GE 3		*Open Elective - To be chosen by student	3	0	0	0	3	3
Minor Course * Extra Credit		Animation Software II (15 hours)	0	0	0	0	0	1*
		Total	17	6	0	2*	23	23+1*

		SEMESTER VI						
Туре	Course Code	Course Name	L	Т	Р	SS	Η	С
SEC 4	XMT601	Graph Theory	2	0	0	2*	2	2
DSE 1B	XMT602A	Complex Analysis	4	2	0	0	6	6
DSLID	XMT602B	Number Theory						
	XMT603A	Linear Programming	4	2	0	0	6	6
DSE 2B	XMT603B	Stochastic Processes						
DSE 3B	XMT604	Project	0	0	0	0	8	6
	-	NSS/NCC/NSO	0	0	0	0	0	1*
		Total	10	4	0	2*	22	20+1*

DSC: Department Specific CoreDSE: Discipline Specific Elective*Extra CreditSEC: Skill Enhancement courseAECC: Ability Enhancement Compulsory Course*Extra CreditGE: Generic ElectiveUMAN: University Mandatory*Extra Credit

L - Lecture T - Tutorial P – Practical

C-Credit

Summary

Semester	S1	S2	S 3	S4	S 5	S 6	P1	P2	Others
I	AECC 1	LAN	CC 1	CC 2 (DSC 2A)	CC 3 (DSC 3A)	UMAN 1	CC 1 Lab		
II	AECC 2	AECC 3	CC 4	CC 5 (DSC2B)	CC 6 (DSC3B)			CC 4 Lab	
III	SEC 1	CC 7	CC 8 (DSC2C)	CC 9 (DSC3C)	GE1	UMAN2	CC 7 Lab		Minor Course*
IV	SEC 2	CC 10	CC 11 (DSC2D)	CC 12 (DSC3D)	GE2		CC 10 Lab		Minor Course*
V	SEC 3	DSE 1A	DSE 2A	DSE3A	GE3				Minor Course*
VI	SEC 4	DSE1B	DSE 2B	DSE3B (PROJECT)					NSS/ NCC/NSO

* Extra Credit

Total Number of subjects proposed with the credits is given below:

S. No.	Type of Courses	Numbers	Total Credit	UGC Norms
1	AECC (Theory)	03	06	04
2	Core Course (Theory & Lab)	12	64	72
3	DSE (Theory & Lab)	06	36	36
4	SEC	04	08	08
5	GE	03	09	
6	UMAN	02	00	
7	LAN	01	03	
	Minor courses, NSS / NCC	4*	4*	
	Total	31 + 4*	126 + 4*	120

*Extra credit

DSC:	Branch	Total Credit	Core DSC (%)	DSE (%)	SEC (%)	AECC (%)	GE (%)	UMAN (%)	LAN (%)	Minor Course, IPT& NSS/NCC
	B.Sc.(Maths)	126+4*	64 (50.80%)	36 (28.57%)	8 (6.35%)	6 (4.76%)	9 (7.14%)	0 (0%)	3 (2.38%)	4* (Extra Credit)

Department Specific Core SEC: Skill Enhancement course DSE: Discipline Specific Elective

AECC: Ability Enhancement Compulsory Course GE: Generic Elective

UMAN: University Mandatory

C P A L T P I	C	OURSE	CODE	COUR	SE NAME	L	Т	P	С
4 0 0 3 2 0 4 PREREQUISITE: Basic concept of Algebra and Trigonometry COURSE OUTCOMES: Course outcomes: Domain Level Coll Define set, the axioms of set theory and to construct arbitrary cartesian product of sets. Cognitive Remembering Understanding CO2: Define relation, function and apply properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets. Cognitive Remembering Understanding Applying Cod: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series. Cognitive Remebering Applying Cognitive Remebering Applying Addet and apply formations of series by difference series, successive difference series and Recurring series. Cognitive Remebering Applying Cognitive Remebering Applying Add to find Exponential and Logarithmic Series. Cognitive Remebering Applying Cognitive Remebering Applying Applying After theory, Euler's	XMT	101		Classic	al Algebra	3	1	0	4
PREREQUISITE: Basic concept of Algebra and Trigonometry COURSE OUTCOMES: Domain Level COURSE OUTCOMES: Course outcomes: Domain Level COI Define set, the axioms of set theory and to construct arbitrary cartesian product of sets. Cognitive Remembering Understanding CO2: Define relation, function and apply properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets. Cognitive Remembering Understanding Applying about countable and uncountable sets. Cognitive Remembering Understanding Applying CO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series. Cognitive Remembering Applying CO4: Explain Summations of series by difference series, Successive difference series and Recurring series. Cognitive Remembering Applying CO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem. Its UNIT I 15 Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. Its UNIT II 15 Relations and their types – F	С	Р	Α			L	Т	P	Η
COURSE OUTCOMES:Course outcomes:DomainLevelCO1 Define set, the axioms of set theory and to construct arbitrary cartesian product of sets.CognitiveRemembering UnderstandingCO2: Define relation, function and apply properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets.CognitiveRemembering Understanding ApplyingCO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering UnderstandingCO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemebering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15INIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.	4	0	0			3	2	0	5
Course outcomes:DomainLevelCO1 Define set, the axioms of set theory and to construct arbitrary cartesian product of sets.CognitiveRemembering UnderstandingCO2: Define relation, function and apply properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets.CognitiveRemembering Understanding ApplyingCO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering Understanding ApplyingCO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemembering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15UNIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.	PREF	REQUIS	ITE: Basic	c concept of Algebra an	d Trigonometry				
CO1 Define set, the axioms of set theory and to construct arbitrary cartesian product of sets.CognitiveRemembering UnderstandingCO2: Define relation, function and apply properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets.CognitiveRemembering Understanding ApplyingCO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering UnderstandingCO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemembering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15UNIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.	COU	RSE OU	TCOMES	:					
to construct arbitrary cartesian product of sets. Understanding CO2: Define relation, function and apply properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets. CO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series. CO4: Explain Summations of series by difference series, Successive difference series and Recurring series. CO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem. UNIT I COccept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. UNIT II IVNIT I IVNIT I IS Relations and their types – Functions and their types-Countable and Uncountable sets.	Cours	se outcor	nes:		Domain	Lev	vel		
CO2: Define relation, function and apply properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets.CognitiveRemembering Understanding ApplyingCO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering Understanding ApplyingCO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemembering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15UNIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.	CO1	Define se	et, the axio	ms of set theory and	Cognitive	Rer	nemb	ering	
properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets.Understanding ApplyingCO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering UnderstandingCO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemebering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15UNIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.15	to con	struct arl	oitrary cart	esian product of sets.		Unc	lersta	nding	
properties to determine whether a function is one-one, many-one, onto or into and to explain about countable and uncountable sets.Understanding ApplyingCO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering UnderstandingCO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemebering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15UNIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.15	CO2:	Define r	elation fu	nction and apply	Cognitive	Rer	nemb	ering	
one-one, many-one, onto or into and to explain about countable and uncountable sets.Applying CO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering Understanding CO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemebering Applying CO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering Applying UNIT I 15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15 UNIT II 15Relations and their types – Functions and their types-Countable and Uncountable sets.					coginitie	1		0	
about countable and uncountable sets.CognitiveRemembering UnderstandingCO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering UnderstandingCO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemebering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15UNIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.15								0	
CO3: Explain Binomial theorem for any rational index and to find Exponential and Logarithmic Series.CognitiveRemembering UnderstandingCO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemebering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15UNIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.15							, <u> </u>	2	
rational index and to find Exponential and Logarithmic Series. Understanding CO4: Explain Summations of series by difference series, Successive difference series and Recurring series. Cognitive Remebering Applying CO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem. Cognitive Remembering Applying UNIT I 15 Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. I5 UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets.	CO3:	Explain	Binomial	theorem for any	Cognitive	Rer	nemb	ering	
Logarithmic Series. Cognitive Remebering CO4: Explain Summations of series by difference series, Successive difference series and Recurring series. Cognitive Remebering CO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem. Cognitive Remembering Applying UNIT I 15 Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. I5 UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets. I5		-		•				0	
CO4: Explain Summations of series by difference series, Successive difference series and Recurring series.CognitiveRemebering ApplyingCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering 				1				υ	
and Recurring series.CognitiveCO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem.CognitiveRemembering ApplyingUNIT I15Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets.15UNIT II15Relations and their types – Functions and their types-Countable and Uncountable sets.	CO4 :	Explain	Summatic	ons of series by	Cognitive	Rer	neber	ing	
CO5: Explain Number theory, Euler's functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem. Cognitive Remembering Applying UNIT I 15 Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. 15 UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets.	differe	ence serie	es, Success	ive difference series		App	olying	ŗ	
functions Divisibility and Congruence relations and to state and apply Fermat's theorem and Wilson's theorem. Applying UNIT I 15 Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. Set Algebra – Cartesian UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets. Set	and R	ecurring	series.						
and to state and apply Fermat's theorem and IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CO5:	Explain	Number t	heory, Euler's	Cognitive	Rer	nemb	ering	
Wilson's theorem. 15 UNIT I 15 Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. 15 UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets. 15	functi	ons Divis	sibility and	Congruence relations		App	olying	5	
UNIT I 15 Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. 15 UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets. 15	and to	state an	d apply Fe	ermat's theorem and					
Concept of a set- Finite and Infinite set – Axiom of extension – Set Algebra – Cartesian Product of sets. UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets.	Wilso	n's theor	em.						
Product of sets. 15 UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets.	UNIT	ľ					15	5	
UNIT II 15 Relations and their types – Functions and their types-Countable and Uncountable sets.		1		nd Infinite set – Axiom	of extension – Set	t Algebra – O	Cartes	sian	
Relations and their types – Functions and their types-Countable and Uncountable sets.	Produ	ct of sets	•						
Relations and their types – Functions and their types-Countable and Uncountable sets.									
								-	
UNIT III 15	Relati	ons and t	heir types	– Functions and their ty	ypes-Countable and	d Uncountab	ole set	ts.	
	UNIT	' III					15	5	
Binomial theorem for any rational index - Exponential and Logarithmic Series.	Binon	nial theor	em for any	rational index - Expor	nential and Logarit	hmic Series.			

Summations of series – summation by differ	ence series – Succe	essive difference s	series-
Recurring series.			
UNIT V			15
Number Theory: Prime Numbers and Comp	osite Numbers - Eu	ler's function -	i
Divisibility and Congruence relations - Fern			
	LECTURE	TUTORIAL	TOTAI
	45	30	75
TEXT BOOKS 1. S. Narayanan& T. K. ManickavasagamPi	llai "Algebra" Vo	1 S Viewanath	an Pyt
	liai, Aigeora , vo	I. I, S. VISwanau	all I vi.
Ltd., Chennai, 1999.			
Unit 1, 2: Chapter 2.			
2. S. Narayanan& T. K. ManickavasagamPi	llai, "Algebra", Vol	l. 2, S. Viswanath	an Pvt.
Ltd. Chennai, 2004.			
,			
Unit 2: Chapter 2. Unit 5: Chapter 5.			
3. S. Narayanan & T. K. ManickavasagamP	illai, "Modern Alge	bra", Vol. 1,	
S. Viswanathan Pvt. Ltd. Chennai, 2004.			
Unit 3, 4: chapter: 3, 4, 5.			
REFERENCES			
			·
1. Seymour Lipschutz, Set theory & Related	d Topics, Schaum's	outlines, 2nd Edi	tion, Tata
McGraw Hill, New Delhi, 2005.			
2. Arumugam&Issac, Classical Algebra, Ne	w gamma Publishin	g house, Tirunely	veli, 2003.
	-	_	
E REFERENCES			

CO	URSE	CODE	COURSE NAME	L	Т	Р	С
XM	T 104		Foundation Course in Mathematics	3	1	0	4
С	Р	Α		L	Т	P	Η
4	0	0		3	2	0	5
PRI	EREQU	JISITE :	Basic concept of Algebra and Trigonometry				
CO	URSE	OUTCO	OMES:				

Course outcomes:	Domain	Level
CO1: Define and Apply fundamental theorem of algebra to find the relation between roots and coefficients.	Cognitive	Remembering Applying
CO2: Explain the transformation of equation and to solve the reciprocal equation using Newton's method.	Cognitive	Understanding Applying
CO3: Expand the trigonometric functions and to find the series of trigonometric functions by apply the related properties to Solve the problems.	Cognitive	Understanding Applying
CO4: Explain hyperbolic and inverse hyperbolic functions and to find the logarithm of the complex numbers.	Cognitive	Remembering Applying
CO5: Explain Summations of trigonometric series and apply properties to find their related problems.	Cognitive	Remembering Applying

U	UNIT I		15
	• •	ions: Fundamental Theorem of Algebra - Relations betw mmetric functions of roots.	ween roots and
ι	NIT II		15
		of Equations - Reciprocal Equations - Newton's Method of signs – Horner's Method.	d of Divisors -
τ	NIT III		15
		Expansion of functions, sinnx, cosnx, tannx- Expansion and cosx - Properties and their -related problems.	of sin ⁿ x and cos ⁿ x
	NIT IV		15
E	Iyperbolic funct	tions -Inverse hyperbolic functions- Logarithm of Comp	plex Numbers.
τ	NIT V		15
S	ummations of t	rigonometric series- Properties and their related problem	ms.
S	ummations of t	rigonometric series- Properties and their related problem TUTORIAL	ms. TOTAL
	LECTURE 60	TUTORIAL 15	
	LECTURE 60 EXT BOOKS	TUTORIAL 15	TOTAL 75
	LECTURE 60 EXT BOOKS	TUTORIAL 15	TOTAL 75
	LECTURE 60 EXT BOOKS 1. S. Naraya	TUTORIAL 15	TOTAL 75
	LECTURE 60 EXT BOOKS 1. S. Naraya Ltd., Che	TUTORIAL 15 anan & T. K. ManickavasagamPillai, "Algebra", Vol. 2	TOTAL 75
	LECTURE 60 EXT BOOKS 1. S. Naraya Ltd., Cho Unit 1: C	TUTORIAL 15 anan & T. K. ManickavasagamPillai, "Algebra", Vol. 2 ennai, 2004.	TOTAL 75
	LECTURE 60 EXT BOOKS 1. S. Naraya Ltd., Cha Unit 1: C Unit 2 : C	TUTORIAL 15 anan & T. K. ManickavasagamPillai, "Algebra", Vol. 2 ennai, 2004. Chapter 6, Secs 6.1- 6.14.	TOTAL 75
	LECTURE 60 EXT BOOKS 1. S. Naraya Ltd., Cha Unit 1: C Unit 2 : C 2. S. Naraya	TUTORIAL 15 anan & T. K. ManickavasagamPillai, "Algebra", Vol. 2 ennai, 2004. Chapter 6, Secs 6.1- 6.14. Chapter 6, Secs 6.15- 6.30.	TOTAL 75
	LECTURE 60 EXT BOOKS 1. S. Naraya Ltd., Cha Unit 1: C Unit 2 : C 2. S. Naraya	TUTORIAL 15 anan & T. K. ManickavasagamPillai, "Algebra", Vol. 2 ennai, 2004. Chapter 6, Secs 6.1- 6.14. Chapter 6, Secs 6.15- 6.30. anan & T. K. ManickavasagamPillai, "Trigonometry", S ennai, 2001.	TOTAL 75
	LECTURE 60 EXT BOOKS 1. S. Naraya Ltd., Che Unit 1: C Unit 2 : C 2. S. Naraya Ltd., Che Unit 3: C	TUTORIAL 15 anan & T. K. ManickavasagamPillai, "Algebra", Vol. 2 ennai, 2004. Chapter 6, Secs 6.1- 6.14. Chapter 6, Secs 6.15- 6.30. anan & T. K. ManickavasagamPillai, "Trigonometry", S ennai, 2001.	TOTAL 75

Unit 5: Chapter 6.

REFERENCE

1. Arumugam & Issac, "Theory of Equations, Theory of Numbers and Trigonometry",

New gamma Publishing house, Tirunelveli, 2011.

COURSE CODE		DE	COURSE NAME		L	Т	Р	С
XMT204			Calculus		4	1	0	5
С	P	Α						
5	0	0			L	Т	Р	Η
					4	2	0	6
PRE	REQUIS	ITE:					•	
COU	RSE OU	TCOME	S:					
Cour	se outco	mes:		Domain	Lev	vel		
CO1	: Find th	e radius a	nd centre of	Cognitive	Ren	nemb	ering	
curva	ture,evol	utes and to	o apply successive		Ap	plying	5	
differ	rentiation	and Leibi	nitz theorem.					
CO2	: Explain	Propertie	es of definite integrals -	Cognitive	Une	dersta	nding	
Integ	ration by	parts , Re	duction formulae					
and E	Bernoulli'	s formula						
CO3	: Evalua	ate doub	le integral both in	Cognitive	Une	dersta	nding	
Carte	esian and	polar coor	dinates.		Арј	plying	5	
	-	and evalu	ate beta and gamma	Cognitive	Uno	dersta	nding	

	Change of variable		ive	Rememberin
the case of two variable		oles		
,Transformation from C	Cartesian to polar			
coordinates.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
UNIT I Differential Calculus:			1	18
Successive Differentiation - Leibnitz theory	orem and its appli	rations - Curvati		
Curvature and Centre of Curvature - Evo				•
UNIT II Integral Calculus:]	18
Properties of definite integrals - Integratie formula.	on by parts - Redu	action formula	e - Bernoulli'	S
UNIT III Integration as limit of an in				18
Definition of double integral - Evaluation coordinates.	n of double integra	al - double integr	al in polar	
UNIT IV Triple integrals. Improper I	Integrals:			18
Beta and Gamma integrals and their relat	ions.			
UNIT V Change of Variables:				18
Jacobian - Change of variable in the case				
Transformation from Cartesian to polar c	oordinates - Trans	sformation from	Cartesian to	
spherical polar coordinates.		mumo du A	TOTAL	
	LECTURE	TUTORIA L	TOTAL	
		30	90	
	60			
TEXTBOOKS	60	30	70	
TEXTBOOKS		1	1	
TEXTBOOKS 1. S. Narayanan & T. K. Manickavasagar		1	1	
		1	1	
1. S. Narayanan & T. K. Manickavasagar	n Pillai, "Calculus	1	1	
1. S. Narayanan & T. K. Manickavasagar Ltd., Chennai, 2004.	n Pillai, "Calculus .2.1-10.3.1	s", Vol.1. S. Vis	wanathan Pvt.	

- Unit 2: Chapter 1 Secs 1.1.1-1.15.1
- Unit 3: Chapter I Secs 1.15.2, Chapter 5 Secs 5.1-5.3.2
- Unit 4 : Chapter 5 Secs 5.4-5.5.4 Chapter 7 Secs 7.1.1-7.5
- Unit 5: Chapter 6

REFERENCES

- 1. George B. Thomas, JR & Ross L. Finney, "Calculus and Analytic Geometry", Sixth edition,
 - Narosa Publishing House, New Delhi, 1986.
- 2. Arumugam & Isaac, "Calculus", Vol.1&2, New Gamma Publishing House, 1999.

COU	JRSE CO	DE	COURSE NAME		L	Т	P	С
XM	Г205		Sequences and Series		4	1	0	5
С	Р	Α						
4	0.5	0.5			L	Т	Р	Η
					4	2	0	6
PRE	REQUIS	ITE: Fou	ndation course in Mathematics					
COU	JRSE OU	TCOME	S:					
Cou	rse outcor	nes:		Domain	L	evel		
CO1	-	gent Sequ	d Sequences, Monotonic Sequences, ence, Divergent Sequences, Oscillating	Cognitive	U	nderst	andir	ng
CO2	: Explair	1 Behavio	r of Monotonic functions.	Cognitive Psychomotor	G	nderst uided espon		ıg
CO3	Explain sequence		ences, limit points and Cauchy	Cognitive	U	nderst	andir	ıg
CO4		gence and	on test to infinite series to test the to Explain Cauchy's general principal of	Cognitive		nderst pplyir		ıg
CO5	converg	ence and	ert's ratio test, Cauchy's root test to test to test the Alternating Series and gence of the series	Cognitive Affective		pplyir eceivi	-	

UNIT I Sequences	15
Bounded Sequences – Monotonic Sequences – Convergent Sequence – Divergent S	Sequences –
Oscillating sequences.	

UNIT II Algebra of Limits	15
Behavior of Monotonic functions.	
UNIT III Some theorems on limits	15
Subsequences – limit points : Cauchy sequences.	
UNIT IV Series	15
Infinite series - Cauchy's general principal of convergence - Comp	
convergence using comparison test (comparison test statement on	
UNIT V Test of convergence using D Alembert's ratio test	15
Cauchy's root test – Alternating Series – Absolute Convergence (S	tatement only for all tests).
LECTURE TUTORIAL	TOTAL
60 15	75
TEXT BOOKS	
TEXT BOOKS 1. Dr. S.Arumugam & Mr. A.Thangapandi Isaac "Sequences a	nd Series" – New Gamma
	nd Series" – New Gamma
1. Dr. S.Arumugam & Mr. A.Thangapandi Isaac "Sequences a	nd Series" – New Gamma
 Dr. S.Arumugam & Mr. A.Thangapandi Isaac "Sequences a Publishing House, Edition 2002. 	nd Series" – New Gamma
 Dr. S.Arumugam & Mr. A.Thangapandi Isaac "Sequences a Publishing House, Edition 2002. Unit I : Chapter 3 : Sec. 3.0 – 3.5 Page No : 39-55 	nd Series" – New Gamma
 Dr. S.Arumugam & Mr. A.Thangapandi Isaac "Sequences a Publishing House, Edition 2002. Unit I : Chapter 3 : Sec. 3.0 – 3.5 Page No : 39-55 Unit II : Chapter 3 : Sec. 3.6, 3.7 Page No:56 – 82 	nd Series" – New Gamma
 Dr. S.Arumugam & Mr. A.Thangapandi Isaac "Sequences a Publishing House, Edition 2002. Unit I : Chapter 3 : Sec. 3.0 – 3.5 Page No : 39-55 Unit II : Chapter 3 : Sec. 3.6, 3.7 Page No:56 – 82 Unit III : Chapter 3 : Sec. 3.8-3.11, Page No:82-102 	
 Dr. S.Arumugam & Mr. A.Thangapandi Isaac "Sequences a Publishing House, Edition 2002. Unit I : Chapter 3 : Sec. 3.0 – 3.5 Page No : 39-55 Unit II : Chapter 3 : Sec. 3.6, 3.7 Page No:56 – 82 Unit III : Chapter 3 : Sec. 3.8-3.11, Page No:82-102 Unit IV: Chapter 4: Sec. (4.1 & 4.2) Page No: 112-128. 	
 Dr. S.Arumugam & Mr. A.Thangapandi Isaac "Sequences a Publishing House, Edition 2002. Unit I : Chapter 3 : Sec. 3.0 – 3.5 Page No : 39-55 Unit II : Chapter 3 : Sec. 3.6, 3.7 Page No:56 – 82 Unit III : Chapter 3 : Sec. 3.8-3.11, Page No:82-102 Unit IV: Chapter 4: Sec. (4.1 & 4.2) Page No: 112-128. Unit V: Relevant part of Chapter 4 and Chapter 5: Sec. 5.1 	& 5.2 Page No:157-167.

CO	URSE	CODE	COURSE NAME	L	Т		P	С
XMT301			Logic and Sets	2	0	0		2
С	Р	Α						
2	0	0		L	Т	Р	SS	Η
				2	0	0	2	4

PREREQUISITE: Foundation course in Mathematics		
COURSE OUTCOMES:		
Course outcomes:	Domain	Level
CO1: Define and Explain	Cognitive	Remembering
Statements and Notations, Connectives, Statements formula and		Understanding
truth tables-Conditional and biconditional, Well formed formulae-		
Equivalence of formulae and Normal forms.		
CO2: Define and Explain	Cognitive	Remembering
Theory of inference for a statement calculus, rules of inference,		Understanding
related problems and Indirect method of proof.		
CO3: Define and Explain	Cognitive	Remembering
Predicate Calculus, The statement functions, variables and		Understanding
quantifiers predicate formulae, free and bounded variables and the		
universe of discourse.		
CO4: Define and Explain	Cognitive	Remembering
The rule of sum and product – permutation – combination of		Understanding
binomial theorem – Multinomial theorem.		
CO5: Define and Explain	Cognitive	Remembering
Mathematical Induction, The pigeon hole principle and The		Understanding
principle of inclusive and exclusive Derangements.		

UNIT I Logic	6
Statements and Notations- Connectives- Statements formula and truth tables-Conditional	and
biconditional – Well formed formulae- Equivalence of formulae- Normal forms.	
UNIT II	6
Theory of inference for a statement calculus – rules of inference – related problems –	
Indirect method of proof.	
UNIT III	6
Predicate Calculus – The statement functions – variables and quantifiers – predicate form	ulae –
free and bounded variables – the universe of discourse.	
UNIT IV Combinatorics	6

The rule of sum and p theorem.	roduct – permutation – combination of bino	miai theorem – Multinomial
		1
UNIT V :		6
Mathematical Induction	on – The pigeon hole principle – The princip	ple of inclusive and exclusive
Derangements.		
LECTURE		TOTAL
30		30
TEXTBOOK		······
1. R.P. Grimaldi, "Dis 1998.	crete Mathematics and Combinatorial Math	ematics", Pearson Education,
REFERENCES		
1. P.R. Halmos, Naiv	e "Set Theory", Springer, 1974.	
2. E. Kamke, "Theory	of Sets", Dover Publishers, 1950.	
2 G. Damach and Dr	C. Ganesamoorthy, Discrete Mathematics,	Pasaarchgata Fab 2018

CC	OURS	E CODE	COURSE NAME	COURSE NAME				С
	XMT	302	Programming In C			1	0	4
С	Р	Α						
3	0.5	0.5			L	Т	Р	Η
		.			3	1	0	4
PR	RERE	QUISITE	Nil					
CC	OURS	E OUTCO	OMES:					
Co	urse	Outcomes		Domain		Leve	2 1	
CC		xplain Cons Expression	stants, Variables, Data types, Operator and s.	Cognitive	Unders		erstar	nding
CC)2: Ex	plain Input	and Output operations, Decision Branching, Decision making and Looping.	Cognitive Psychomotor	•	Unde Guid Resp	ed	nding

CO3: Explain Character Arrays and Strings and User defined Cognitive Un Functions.						
CO4: Explain and Apply Structures and unions, Pointers a File management in C.	and Cognitive	Understanding Applying				
CO5: Apply Dynamic memory allocation, Linked lists, Preprocessors and Programming Guide lines.	Cognitive	Applying				
	Receiving					
UNIT I		12				
Introduction to C – Constants, Variables, Data types – Oper	rator and Expressions.					
UNIT II						
Managing Input and Output operations – Decision Making	and Branching – Decis	sion making and				
Looping.	_					
UNIT III		12				
Arrays – Character Arrays and Strings – User defined Func	tions.					
UNIT IV		12				
Structures and unions – Pointers – File management in C.						
UNIT V		12				
Dynamic memory allocation - Linked lists- Preprocessors -	- Programming Guide	lines.				
LECTURE TUTORIAL		TOTAL				
45 15		60				
TEXT BOOK						
1. Balagurusamy E .,"Programming in ANSI C", Sixt	h Edition, McGraw-Hi	ill, 2012.				
REFERENCE						
1. Bichkar, R.S., "Programming with C", University P	ress, 2012.					

CO	URSE (CODE	COURSE NAME		L	Т	P	С	
XM	T303		Real Analysis		4	1	0	5	
~							-		
C	P	A			L	T	P	H	
5	0	0	N 711		4	1	0	5	
•••••	EREQU		Nil						
Cou	irse Ou	comes:		D	<u>т</u> .	vel			
CO	1. F l	- !		Domain	······			~	
The valu	ie, Comp aight lir	ioms, Fie pleteness	eld properties, Order in R, Absolute , Representation of Real numbers on vals , Countable and Uncountable	Cognitive	Un	uersu	andin	g	
		e and Ex	zolain	Cognitive	Rei	neml	bering	2	
			s, Limit points of a set and Closure	8			andin		
of a	,				onderstanding				
CO	3: Defin	e and Ex	plain	Cognitive	Rei	Remembering			
Lim Algo	its, Con ebra of (tinuous fi	unctions, Types of discontinuities, us functions and Boundedness of			Understanding			
		e and Ex	-	Cognitive	Rei	neml	bering	2	
Der: Inve	ivability	and cont	inuity, Algebra of derivatives, rem for derivatives and Darboux's	game	1		andin	-	
		and Exp	lain	Cognitive	Rei	neml	bering	2	
cono func	ditions f ctions, c	or integra	bility, properties of integrable and derivability of integral		Remembering Understanding				
			e theorems, the fundamental						
		Calculus Real num	and the first mean value theorem.	I	15				
				alua Completa	L — -	00000	anati	~ n	
			eld properties-Order in R- Absolute va straightline – Intervals – Countable a	1		epres	enati	on	
UN	ITIN	leighbou	rhoods and limit points:		15				

Open sets – Closed sets –Limit points of a set – Closure of a set.	
UNIT III Limits and Continuity:	15
Limits - Continuous functions - Types of discontinuities- Algebra of Co	ontinuous functions –
Boundedness of continuous functions.	
UNIT IV Derivatives:	15
Introduction – Derivability and continuity- Algebra of derivatives – Inve	erse function theorem for
derivatives – Darboux's theorem.	
UNIT V	15
Riemann Integration- Definition – Daurboux's theorem – conditions for of integrable functions – continuity and derivability of integral functions – the fundamental theorem of Calculus and the first mean value theorem	– Mean value theorems
LECTURE TUTORIAL	TOTAL
60 15	75
TEXT BOOKS	
1. M.K.Singhal and Asha Rani Singhal, "A first course in Real Analysis	s"., R. Chand & Co.,
June,1997 (Units I to IV).	
2. Shanthi Narayan, "A Course of Mathematical Analysis", S.Chand & C	Co. 1995 (Unit-V).
Unit-I Chapter 1, Sec. 1.1 – 1.10	
Unit-II Chapter 2 Sec 2.1 – 2.6	
Unit-III Chapter 5 Sec 5.1 – 5.5	
Unit – IV Chapter 6 Sec 6.1 – 6.5	
Unit – V Chapter 6 Sec 6.2, 6.3 & 6.5 6.7 6.8, 6.9 of [2]	

C	OURSE	CODE	COURSE NAME	L	Т	P	С
XMT	304		Analytical Geometry 3D	4	1	0	5
С	Р	Α					
5	0	0		L	Т	Р	Н
				4	1	0	5
PRE	REQUIS	SITE: Nil					
COU	RSE OU	TCOMES:					
Cour	se outco	mes:		Domai	n]	Level	
CO1	: Find co	ordinates in sp	ace, direction cosines of a line, angle	Cognit	ive 1	Rememl	bering
		n line and to ex e of a plane fro	plain angle between planes and m a point.		1	Underst	anding

	60 15		75	
	LECTURE TUT	ORIAL	TOTA	L
cone. (Condition that the cone has three mutually perpendicular gene ction of a line and quadric – tangents and tangent planes – con	rators- Centra	l quadrics	s –
	ion for plane to touch the quadric cone - angle between the lin	nes in which the	ne plane o	
normal UNIT				15
	uation of surface – cone – intersection of straight line and qua	udric cone – t	angent pl	-
UNIT		eratea by a sp	nere und	15
	of spheres generated by two spheres - System of spheres gen			
UNIT	III l equation of a sphere-Section of sphere by plane-tangent pla	nos condition	oftonco	nov
	nes and shortest distance between skew lines- length of the	erpendicular	from poir	it to lin
Straigh	t lines in space – line of intersection of planes – plane contain	ning a line. Co	oplanar li	nes –
UNIT	II			15
a plane	in normal form. Angle between planes – Distance of a plane			
	nates in space-Direction cosines of a line in space-angle betw	een lines in sp	bace – equ	
UNIT	I			15
	generators and condition for the plane to totell the concold.		.[
	condition that the cone has three mutually perpendicular generators and condition for the plane to touch the conicoid.			
CO5:	Explain the condition for plane to touch the quadric cone,	Cognitive	Underst	anding
	intersection of straight line and quadric cone , tangent plane and normal.		Underst	
	Explain and to find the equation of surface, cone,	Cognitive	Remem	bering
	Explain section of sphere by plane-tangent planes, condition of tangency and system of spheres generated by two spheres.	Ŭ	Underst	landing
	Shortest distance between skew lines.	C it i	TI.	
	Find line of intersection of planes, coplanar lines, skew lines	, Cognitive	Kenieni	bering

- Shanthi Narayanan and Mittal P.K, "Analytical Solid Geometry" 16th Edition S.Chand & Co., New Delhi,2005.
- 2. Narayanan and Manickavasagam Pillay, T.K.," Treatment as Analytical Geometry"
 - S.Viswanathan (Printers & Publishers) Pvt. Ltd., 2008
 - Unit I : Chapter I, Sec 1.5 to 1.9, Chapter II Sec 2.1 to 2.3, Pages : 10-31

Chapter II Sec 2.4 to 2.8 pages : 32-47 of [1]

Unit II : Chapter III section 3.1-3.7, pages 55-89 of [1]

Unit III : Chapter VI Sec. 6.1 to 6.6 pages : 121-143 of [1]

Unit IV : Chapter V Sec.43 to 47 pages : 103-113 of [2]

Unit V : Chapter V Sec.49 to 53, Pages:115-125 of [2]

REFERENCE

1. P.Duraipandian & others, "Analytical Geometry 3 Dimensional", Edition, 1998.

CC	DURS	RSE CODE COURSE NAME		L	Т	P	С	
	XMI	r 305	Programming In C (Practical)		0	0	2	2
С	P	Α						
2	0	0			L	Т	P	H
					0	0	2	4
PR	PREREQUISITE: Nil							
CC	DURS	SE OUTC	OMES:					
Co	ourse	Outcomes	:	Domain		Level		
CC	CO1: Apply Constants, Variables, Data types, Operator and Cognitive Expressions to write simple programmes			Cognitive		Understanding		
CC	CO2: Apply Input and Output operations, Decision Cognitive		Cognitive Psychomotor		Understandin Guided Response		U	
CC	CO3: Apply Character Arrays and Strings and User defined Cognitive Functions to write simple programmes		Cognitive		Understandin			
CC	CO4: Apply Structures and unions, Pointers and File management in C to write simple programmes			Understanding Applying		nding		
CC			mic memory allocation, Linked lists, ors and Programming Guide lines to write	Cognitive		Appl	ying	
	si	mple prog	rammes	Affective		Receiving		

List of Programmes	
1. Write a Program to convert temperature from degree Centigrade to Fahrenheit.	L
2. Write a Program to find whether given number is Even or Odd.	
3. Write a Program to find greatest of three numbers.	
4. Sorting given list of names in alphabetical order	
5. Sorting given list of numbers in ascending order	
6. Write a Program to using switch statement to display Monday to Sunday.	
7. Write a Program to display first Ten Natural Numbers and their sum.	
8. Write a Program to find Sum and Multiplication of Two Matrices.	
9. Write a Program to find the maximum number in Array using pointer.	
10. Write a Program to reverse a number using pointer.	
11. Write a Program to solve Quadratic Equation using functions.	
12. Write a Program to find factorial of a number using Recursion.	
13. Write a program to calculate Mean, Variance and SD of N numbers	
14. Write a Program to create a file containing Student Details.	

COU	URSE	CODE	COURSE NAME	L	Т		P	C
XM	T401		Theory of Equations	2 0		0	2	
С	Р	Α						
2	0	0		L	Т	Р	SS	Η
				2	0	0	2	4

COURSE OUTCOMES:				
Course outcomes:	Domain	Level		
CO1: Explain Graphical representation of a polynomials, maximum and minimum values of a polynomials.	Cognitive	Remen Apply	mbering ing	
CO2: Apply General properties of equations, Descarte's rule of signs positive and negative rule to find the Relation between the roots and the coefficients of equations.	Cognitive	Remen Apply	mbering ing	
: Define and Explain Sets, subsets, Set operations, the laws of cognitive eory and Venn diagrams. Examples of finite and infinite sets.				
CO4: Define and Explain with Examples Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set.	Cognitive	ve Understanding Applying		
CO5: Solve reciprocal and binomial equations, and to find algebraic solutions of the cubic and biquadratic with Properties of the derived functions.	Cognitive	Understanding		
UNIT I			6	
General properties of polynomials, Graphical representation of a poly minimum values of a polynomials,	nomials, ma	ximum a	and	
UNIT II			6	
General properties of equations, Descarte's rule of signs positive and Relation between the roots and the coefficients of equations.	negative rule	е,		

UNIT II	6
General properties of equations, Descarte's rule of signs positive and negative rule, Relation between the roots and the coefficients of equations.	
UNIT III	6
	· · ·
Sets, subsets, Set operations, the laws of set theory and Venn diagrams. Examples of fi infinite sets.	nite and
Sets, subsets, Set operations, the laws of set theory and Venn diagrams. Examples of fi infinite sets. UNIT IV	nite and
infinite sets.	6
infinite sets. UNIT IV Finite sets and counting principle. Empty set, properties of empty set. Standard set ope	6

LECTURE	TOTAL
30	30
EXTBOOKS	
. W.S. Burnside and A.W. Panton, "The Theory of	Equations", Dublin University Press, 1954.

CC	URSE CODE COURSE NAME		L	Τ	P	С	
XMT402			Introduction to Matlab	3	1	0	4
С	P	Α					
4	0	0		L	Т	Р	Η
				3	1	0	4
PR	ERF	EQUISITE: Nil	•				
CC	DUR	SE OUTCOME	S:				
Co	urse	outcomes:		Doma	in	Lev	el
CC	CO1: Apply Variables, assignment, statements, expressions, characters, encoding, vectors and matrices.					Applying	
CC	CO2: Explain about creating row vectors and column vectors, dimensions in using functions with vectors and matrices.			Cogni	tive	App	lying

CO3: Apply Matlab Scripts, Input and Output, scripts with input and output, user defined functions in simple applications.	Cognitive	Applying
CO4: Apply Selection Statement, relational expressions,SWITCH statement, menu function, looping, FOR loop, nested FOR loop, WHILE loop.	Cognitive	Applying
CO5: Apply String manipulations, creating string variable, operations on strings, fundamentals of arrays, structure and file operations with simple applications.	Cognitive	Applying

UNIT I	12
Introduction to MATLAB – Variables and assignment statements –expressions –	
characters and encoding – vectors and matrices	
UNIT II	12
Creating row vectors and vectors – matrix variables – dimensions in using functions vectors and matrices.	with
UNIT III	12
MATLAB Programmes - Matlab Scripts, Input and Output, scripts with input and output,	utput,
	utput,
MATLAB Programmes - Matlab Scripts, Input and Output, scripts with input and output,	utput,
MATLAB Programmes – Matlab Scripts, Input and Output, scripts with input and output of file input and output – user defined functions – simple applications.	12
MATLAB Programmes – Matlab Scripts, Input and Output, scripts with input and ou Introduction to file input and output – user defined functions – simple applications. UNIT IV Selection Statement – relational expressions, SWITCH statement, menu function, lo	12
MATLAB Programmes – Matlab Scripts, Input and Output, scripts with input and output of Introduction to file input and output – user defined functions – simple applications. UNIT IV Selection Statement – relational expressions, SWITCH statement, menu function, log – FOR loop, nested FOR loop, WHILE loop,	12 boping

45	15 60
TEXT BO	OOK
1.	Stormy Attaway, "MATLAB - A Practical Approach", Butterworth-Heinemann Publications, 2009.

COURSE CODE		CODE	COURSE NAME	L	Т	P	С
XM	T403	3 Vector Calculus & Fourier Series 4		1	0	5	
С	Р	Α					
5	0	0		L	Т	P	Η
				4	1	0	5
PRF	EREQU	ISITE: 1	Differential Calculus and Integral Calculus				
CO	URSE (OUTCO	AES:				
Cou	rse out	comes:		Domain	Leve	1	
CO	D1: Find Gradient of a vector, Directional derivative, divergence & curl of a vector, solenoidal & irrotational vector functions, Laplacian double operator and to solve simple problems.Cognitive ApplyRemen Apply			ing			

CO2: Find vector integration ,tangential line integral ,conservative force field, scalar potential, work done by a force, Normal surface integral, Volume integral and to solve simple problems.	Cognitive	Remembering Applying
CO3: Use Gauss Divergence Theorem, Stoke's Theorem, Green's Theorem and to solve Simple problems & Verification of the theorems for simple problems.	Cognitive	Remembering Applying
CO4: Explain Fourier Series expansion of periodic functions with Period 2π Make Use of odd & even functions in Fourier Series.	Cognitive	Understanding Applying
CO5: Explain Half-range Fourier cosine Series & sine series, Change of interval & Combination of series.	Cognitive	Understanding

UNIT I	15
Vector differentiation -velocity & acceleration-Vector & scalar fields -Gradient of a ve	ector-
Directional derivative - divergence & curl of a vector solinoidal & irrotational vectors	-Laplacian
double operator –simple problems.	
UNIT II	15
Vector integration – Tangential line integral – Conservative force field – scalar	
potential- Work done by a force - Normal surface integral- Volume integral - simple	
problems.	
UNIT III	15
Gauss Divergence Theorem - Stoke's Theorem - Green's Theorem - Simple problems &	& Verification
of the theorems for simple problems.	
UNIT IV	15
Fourier series- definition - Fourier Series expansion of periodic functions with period	2π – Use of
odd & even functions in Fourier Series.	
UNIT V	15
Half-range Fourier Series - definition- Development in Cosine series & in Sine series -	change of
interval – Combination of series.	
LECTURE TUTORIAL	TOTAL
60 15	75
TEXT BOOKS	

 M.L. Khanna, "Vector Calculus", Jai Prakash Nath and Co., 8th Edition, 1986.
 S. Narayanan, T.K. Manicavachagam Pillai, "Calculus", Vol. III, S. Viswanathan Pvt Limited, and Vijay Nicole Imprints Pvt Ltd, 2004. UNIT – I - Chapter 1 Section 1 & Chapter 2 Sections 2.3 to 2.6, 3, 4, 5, 7 of [1] UNIT – II - Chapter 3 Sections 1, 2, 4 of [1] UNIT – III - Chapter 3 Sections 5 & 6 of [2] UNIT – IV - Chapter 6 Section 1, 2, 3 of [2] UNIT – V - Chapter 6 Section 4, 5.1, 5.2, 6, 7 of [2]
 REFERENCES
 P.Duraipandiyan and Lakshmi Duraipandian, "Vector Analysis", Emarald publishers 1986.
 Dr. S.Arumugam and prof. A.Thangapandi Issac, "Fourier series", New Gamma publishing house 2012.

CO	COURSE CODE COURSE NAME		L	Т	P	С		
XM	XMT404 Algebra		4	1	0	5		
С	P	Α						
5	0	0		L	Т	Р	Η	
				4	1	0	5	
PRF	EREQU	ISITE: N	Vil					
CO	URSE O	UTCON	IES:					
Cou	rse outc	omes:		Domain	Leve	1		
CO1: Define groups, abelian and non-abelian groups with examples				Cognitive	nitive Rememberi		ing	
and	to explai	n integer	under addition and multiplication modulo n.					
CO2: Explain Cyclic groups from number systems, complex roots of unity, circle group, the general linear group GLn (n,R), groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group Sym (n), Group of quaternions.		Cognitive Understar		erstand	ing			
CO3: Explain Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of group, examples of subgroups including the center of a group.		Cognitive	e Understandi		ing			
CO ²	I: State	and Exp	lain Cosets, Index of subgroup, Lagrange's	Cognitive	Rem	Remembering		
theorem, order of an element, Normal subgroups, Quotient groups.				Unde	erstand	ing		

rings with rings from number systems, Zn the ring of integers modulo n, rings of matrices, polynomial rings, and rings of continuous	Cognitive	Remembering Understanding
functions.		

		1.7
		15
	mples of groups, examples of abelian and non-abelian groups, the	
integers under addi	tion modulo n and the group U(n) of units under multiplication mo	dulo n.
UNIT II		15
Cyclic groups from	n number systems, complex roots of unity, circle group, the general	1
0 1	n,R), groups of symmetries of (i) an isosceles triangle, (ii) an	
equilateral triangle	, (iii) a rectangle, and (iv) a square, the permutation group Sym (n)),
Group of quaternio	ns.	
UNIT III		15
Subgroups, cyclic s	subgroups, the concept of a subgroup generated by a subset and the	e
commutator subgro	oup of group, examples of subgroups including the center of a grou	ıp.
UNIT IV		15
Cosets, Index of su	bgroup, Lagrange's theorem, order of an element, Normal subgrou	ups: their
definition, example	es, and characterizations, Quotient groups.	
UNIT V :		15
Definition and example	mples of rings, examples of commutative and non-commutative rin	ngs: rings
from number syste	ms, Zn the ring of integers modulo n, ring of real quaternions, ring	s of
matrices, polynomi	al rings, and rings of continuous functions. Subrings and ideals, In	ntegral
domains and fields	, examples of fields: Zp, Q, R, and C. Field of rational functions.	
LECTURE	TUTORIAL	TOTAL
60	15	75
TEXT BOOKS		
1. S. Naravana	an& T. K. ManickavasagamPillai, "Algebra", Vol. 1, S. Viswanath	nan Pvt. Ltd
•		
Chennai, 20	004.	
2. S. Naravana	an& T. K. ManickavasagamPillai, "Algebra", Vol. 2, S. Viswanath	nan Pvt. Ltd.
5		

Chennai, 2004.

- 3. Joseph A Gallian, "Contemporary Abstract Algebra", 4th Ed., Narosa, 1999.
- 4. George E Andrews, "Number Theory", Hindustan Publishing Corporation, 1984.

REFERENCES

- 1. John B. Fraleigh, "A First Course in Abstract Algebra", 7th Ed., Pearson, 2002.
- 2. M. Artin, "Abstract Algebra", 2nd Ed., Pearson, 2011.

COI	COURSE CODE COURSE NAME		URSE CODE COURSE NAME		RSE CODE COURSE NAME		Т	P	С
XMT 405			Introduction to Matlab(Practical)	0	0	2	2		
С	P	Α							
2	0	0		L	Т	P	Η		
				0	0	2	4		
PRE	REQU	ISITE: Ni	1						
COI	URSE O	UTCOM	ES:						
Cou	rse outo	comes:		Domain	Leve	l			
CO1: Find the prime numbers, Fibonacci series, ascending order, alphabetical order.			Cognitive	e Remembering					
CO2: Compute simple and compound interest values, biggest among three numbers, biggest among N integers.		Cognitive	Cognitive Understand		ling				
CO3: Compute factorial of a given number using recursive function		Cognitive Underst		erstand	ling				
CO4: Solve a quadratic equation and test with three types of roots.		Cognitive Applyi		ying					
COS	5: Com	pute matri	x multiplication using functions	Cognitive	ve Understand		ling		

List of Programmes	
1. List the prime numbers in a given range	
2. Display Fibonacci series	
3. Sorting given list of names in alphabetical order	
4. Sorting given list of numbers in ascending order	

- 5. Read and display for a given matrix of any order
- 6. Compute simple and compound interest values
- 7. Computer biggest among three numbers
- 8. Compute biggest among N integers
- 9. Compute factorial of a given number using recursive function
- 10. Write a program to swap the values using functions
- 12. Write a program to solve a quadratic equation and test with three types of roots.
- 14. Write a program to calculate variance and SD of N numbers
- 15. Write a program to read two matrices and compute matrix multiplication using functions

COURSE CODE		CODE	COURSE NAME	L	Т		P	C
XM	XMT501 Probability and Statistics		2	0	0		2	
С	P	Α						
2	0	0		L	Т	P	SS	H
				2	0	0	2	4
PRE	REQU	ISITE: A	lgebra					
COU	URSE C	OUTCON	IES:					
Cou	rse outo	comes:		Domain	Lev	el		
CO1	CO1: Define and Explain Sample space, probability axioms, real			Cognitive	Remembering			
rand	om vari	ables (dis	crete and continuous), cumulative distribution		Und	lersta	nding	5
func	tion, and	d probabi	lity mass/density functions.					
CO2: Define and Explain Mathematical expectation, moments,			Cognitive	e Remembering				
mom	nent gen	erating fi	inction, characteristic function.		Und	lersta	nding	5
	_	_					_	

CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential.	Cognitive	Remembering Understanding
CO4: Define and Explain Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions.	Cognitive	Remembering Understanding
CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables.	Cognitive	Remembering Understanding

UNIT I	6
Sample space, probability axioms, real random var	iables (discrete and continuous), cumulative
distribution function, and probability mass/density	functions.
UNIT II	6
Mathematical expectation, moments, moment gene	erating function, characteristic
function.	
UNIT III	6
Discrete distributions: uniform, binomial, Poisson,	continuous distributions: uniform, normal,
exponential.	
UNIT IV	6
Joint cumulative distribution function and its prope	erties, joint probability density functions,
marginal and conditional distributions.	
UNIT V	6
Expectation of function of two random variables, c	conditional expectations, independent random
variables.	
LECTURE	TOTAL
30	30
TEXT BOOK	
1. S.C.Gupta and Kapoor, "Fundamentals of N	Mathematical Statistics", tenth revised edition
Sultan Chand and Song New Dalhi 2002	
Sultan Chand and Sons, New Delhi, 2002.	

REFERENCES

1. Irwin Miller and Marylees Miller, John E. Freund, "Mathematical Statistics with Application", 7th Ed., Pearson Education, Asia, 2006.

2. Sheldon Ross, "Introduction to Probability Model", 9th Ed., Academic Press, Indian

Reprint, 2007.

CO	COURSE CODE COURSE NAME			L	Т	Р	С	
XMT502A			Matrices		4	2	0	6
С	Р	Α			-			
6	0	0			L	Т	Р	Н
					4	2	0	6
PRI	EREQU	ISITE: N	lil					
CO	URSE O	UTCON	IES:					
Cou	irse outo	omes:		Don	nain	Leve	l	
CO1: Explain Concept of Linear Independence and examples of				Cognitive Underst		rstand	standing	
diffe	erent bas	es. Subsp	aces of R2, R3.	-				•
CO	2: Expl	in Matri	x form of basic geometric transformations.	Cog	nitive	Unde	rstand	ing
Inte	rpretatio	n of eigei	n values and eigen vectors for such					
tran	sformation	ons and e	igen spaces as invariant subspaces.					
CO	CO3: Solve linear homogeneous and non-homogeneous equations with			Cognitive Apply		ying		
num	ber of ed	quations a	and unknowns upto four.					
CO4: Explain Matrices in diagonal form upto matrices of order 3, the			Cognitive Understan		rstand	ing		
com	putation	of matrix	k inverses using elementary row operations and to					-
find	rank of	the matri	х.					
CO	5: Solve	a system	of linear equations using matrices.	Cog	nitive	Appl	ying	

UNIT I		18
R, R2, R3 as	vector spaces over R. Standard basis for each of them. Concept of Linear	Independence
and examples	of different bases. Subspaces of R2, R3.	
UNIT II		18
Translation, I	Dilation, Rotation, Reflection in a point, line and plane. Matrix form of	
	tic transformations. Interpretation of eigen values and eigen vectors for	
	nations and eigen spaces as invariant subspaces.	
UNIT III		18
• •	rices. Rank of a matrix. Invariance of rank under elementary transformati	
	n, Solutions of linear homogeneous and non-homogeneous equations wit	h number of
	unknowns upto four.	
UNIT IV		18
	agonal form. Reduction to diagonal form upto matrices of order 3. Comp	outation of
	es using elementary row operations. Rank of matrix.	
UNIT V		18
	system of linear equations using matrices. Illustrative examples of above	e concepts
······	ry, Physics, Chemistry, Combinatorics and Statistics.	TOTAL
LECTUR		TOTAL
60	30	90
TEXT BOO		
1. A.I. K	ostrikin, "Introduction to Algebra", Springer Verlag, 1984.	
2. S. H. I	riedberg, A. L. Insel and L. E. Spence, "Linear Algebra", Prentice Hall o	of India Pvt.
Ltd	New Delhi, 2004.	
3. Richar	d Bronson, "Theory and Problems of Matrix Operations", Tata McGraw	Hill, 1989.
REFERENC	E	
1. S. Na	ayanan& T. K. ManickavasagamPillai, "Algebra", Vol. 2, S. Viswanatha	n Pvt. Ltd.
Chan	ai, 2004.	
Chem	$a_1, 2_{00+}$	

	COURSE CODE	COURSE NAME	L	Т	P	С	
--	-------------	-------------	---	---	---	---	--

XMT502B			Discrete Mathematics			2	0	6
С	Р	Α						
6	0	0			L	Т	Р	H
					4	2	0	6
PRE	REQU	I SITE: I	Logic and Sets					
COU	JRSE O	UTCON	AES:					
	rse outc			Doma		Leve		
CO1:Define and Apply truth tables and the rules of propositional and					tive	Reme		ing
predicate calculus.						Apply		
CO2: Apply the following methods direct proof, indirect proof, and			Cogni	tive	Apply	ying		
			on, and case analysis to formulate short proofs.					
			currence relation with constant coefficients, non	Cogni	tive	Apply	ying	
			ence relations and non homogeneous recurrence					
		<u> </u>	ds of generating functions.		•	TT T		•
	-		theorems on Boolean Algebra, Duality principle	Cogni	tive	Unde	rstand	ing
	ean. fun			<u> </u>		A 1	•	
			n algebra, Logic gates and circuits combinatorial	Cogni	tive	Apply	ying	
		lean exp	ression and karnaugh map.				~	Г
UNI					-	1	-	
		0	Propositional calculus- Basic Logical operators- co		il sta	tement	s- B1	
		tatement	- tautologies- contradictions- equivalence implication	ons.		1	0	
UNI'				- 4 1 -	1	1	0	
Norms forms- Theory of inference for the statement calculus- The predicate calculus								
inference theory and predicate calculus. UNIT III					1	8		
Recurrence relations and generating functions- recurrence relation- solution of linear recu					i	-		
			t coefficients- Non homogeneous recurrence relation					
			ence relations- Methods of generating functions.	15 Soluti	511 0	011		
UNI						1	8	
	-	ms on Bo	oolean Algebra- Duality principle Boolean function	s.			-	
	TV :					1	8	
		ctions- A	pplications of Boolean algebra- Logic gates and cir	cuits -co	ombi	i		

LECTURE	TUTORIAL	TOTAI
60	30	90
ТЕХТ ВООК	- -	
1 I R Trembla	\mathbf{D} \mathbf{M}_{1} \mathbf{M}_{2} $$	
	y, R. Manohar, "Discrete Mathematical structure ta McGraw Hill, International edition New Delh	11 1
	ta McGraw Hill, International edition New Delh	11 1

COURSE CODE		CODE	COURSE NAME		L	Т	P	С	
XMT503A			Numerical Methods	4		2	0	6	
С	Р	Α							
6	0	0			L	Т	Р	Η	
					4	2	0	6	
PRF	EREQU	ISITE: [Differential Calculus and Integral Calculus				******		
CO	URSE C	UTCON	IES:						
Cou	rse outo	comes:		Domai	n	Leve	1		
CO	CO1: Explain and Solve Algorithms, Convergence, Bisection					Remembering			
metl	nod, Fals	se positio	n method, Fixed point iteration method, Newton's			Appl	ying		
meth	nod.								
CO2	2: Solve	e system o	of linear equations using iterative methods	Cognit	ive	Remembering			
Gau	ss-Jacob	i, Gauss-	Seidel and SOR iterative methods.			Appl	ying		
CO3	3: Expla	in Lagra	nge and Newton interpolation: linear and higher	Cognit	ive	Reme	emberi	ing	
orde	er, finite	differenc	e operators.			Appl	ying		
CO ₄	CO4: Apply forward difference, backward difference and central			Cognit	ive	Understandi		ling	
Difference to find Numerical differentiation:				Applying					
CO	5: Solve	Integrat	gration using trapezoidal rule, Simpson's rule, and Cognitive				e Understanding		
Eule	er's meth	od.							

Algorithms, Co Newton's meth	nvergence, Bisection method, False position method, Fixed point iteration	on method,
UNIT II		18
Secant method, methods.	LU decomposition, Gauss-Jacobi, Gauss-Siedel and SOR iterative	
UNIT III		18
Lagrange and N	ewton interpolation: linear and higher order, finite difference operators.	•
UNIT IV		18
Numerical diffe	rentiation: forward difference, backward difference and central Differen	nce.
UNIT V :		18
Integration: trap	bezoidal rule, Simpson's rule, Euler's method.	
LECTURE	TUTORIAL	TOTAL
60	30	90
TEXT BOOKS	5	
2. M.K. Jain, S.	Friendly Introduction to Numerical Analysis", Pearson Education, Ind R.K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Eng 5th Ed., New age International Publisher, India, 2007.	

COURSE CODE		CODE	COURSE NAME	L	Т	Р	С
XM	T503B		Mechanics	4	2	0	6
С	P	Α					
6	0	0		L	Т	Р	Η
				4	2	0	6
PRF	EREQU	ISITE: A	Algebra				

COURSE OUTCOMES:		
Course outcomes:	Domain	Level
CO1: Define basic Concepts and Principles ,Forces acting at a Point to	Cognitive	Remembering
Explain Lami's Theorem and Applications, Parallel Forces, Like and Unlike Parallel Forces, Moment of a force, Couples related Problems.		Understanding
CO2: Explain Equilibrium of Three Forces acting on a rigid body, Friction, Laws of Friction, Angle of Friction, Cone of Friction, Properties and related problems.	Cognitive	Understanding
CO3: Explain Motion in a Straight line under uniform acceleration, Newton's Laws of motion. Projectiles: Define and explain Path of Projectile, Range on an inclined Plane, Properties and Problems.	Cognitive	Remembering Understanding
CO4: Explain Collision of Elastic Bodies , Direct and oblique Impact , Loss of Kinetic Energy related properties and problems.	Cognitive	Understanding
CO5: Explain central Orbits Properties and related problems.	Cognitive	Understanding

UNIT I	18
Basic Concepts and Principles - Forces acting at a Point - Lami's Theorem and Applica	tions - Parallel
Forces - Like and Unlike Parallel Forces - Moment of a force - Couples - Related prob	lems.
UNIT II	18
Equilibrium of Three Forces acting on a rigid body - Friction - Laws of Friction - Angle of Friction - Cone of friction - Properties and related problems.	
UNIT III	18
Motion in a Straight line under uniform acceleration - Newton's Laws of motion. Project	ectiles: Definition
- Path of Projectile - Range on an Inclined Plane - Properties and Problems.	
UNIT IV	18
Impulse and Impact: Collision of Elastic Bodies – Direct and Oblique Impact – Loss of	f Kinetic Energy –
Related Properties and Simple Problems.	
UNIT V :	18
Central Orbits: Motion under the action of Central Forces - Properties and Related Prob	olems -
Differential Equation of Central Orbit - Pedal Equation of Central Orbit - Velocities in	a Central Orbit -
Law of Forces - Properties and Related Problems	

LECTURE	TUTORIAL	TOTAL
60	30	90
TEXT BOOK	S	
1. M. K. Venka	taraman, "Statics", Agasthiar Publications, Trichy, 2004.	
Unit 1: Cha	pters 2, 3, 4 Unit 2: Chapters 5, 7	
2. M. K. Venka	taraman, "Dynamics", Agasthiar Publications, Trichy, 2004.	
Unit 3: Cha	pters 3: section 3.22, Chapter 4: Section 4.3, Chapter 6	
Unit 4: Cha	pter 8 Unit 5: Chapter 11	
REFERENCE	S	
1. T. K. Manic	kavasagamPillai, "Statics", S. Viswanathan & Co., Chennai, 1980.	
2. S. Narayana	n, "Dynamics", S. Chand & Co., New Delhi, 1980.	

COURSE CODE		CODE	COURSE NAME	L	Т	P P	С
XM	T504A		Linear algebra	4	2	0	6
С	P	Α					
6	0	0		L	Т	P	Η
				4	2	0	6
PRF	REQU	ISITE: 1	Matrices				
CO	URSE C	UTCO	MES:				
Cou	rse outo	comes:		Domain	Lev	vel	
CO	l: Defir	ne and E	xplain vector spaces, subspaces, linear	Cognitive	Rei	nembe	ering
	trans	formatio	n, and span of a set with examples.		Un	dersta	nding
CO2	2: Defir	e Linea	Independence, Basis and Dimension and to find	Cognitive	Rei	nembe	ering
	Rank	and Nu	ıllity.				
CO3	8: Expl	ain matr	ix of a linear transformation ,Inner product space	Cognitive	Rei	nembe	ering
	and to	Define	with examples orthogonality, Gram Schmidt		Un	dersta	nding
	ortho	gonalisat	tion process and orthogonal complement.				
CO4			ra of Matrices, Types of Matrices and to find the natrix and Rank of a matrix.	Cognitive	Rei	nembo	ering

-	Characteristic equation and Cayley -Hamilton theorem	Cognitive	Remembering
and to f	ind Eigen values and Eigen vectors.		Understanding
UNIT I : Vect	or Spaces		18
	Definition and examples – Subspaces-linear transformation	tion – Span o	f a set.
UNIT II : Bas	sis and Dimension		18
Linear Independ	lence – Basis and Dimension –Rank and Nullity.		
UNIT III : M	latrix and Inner Product Space		18
Matrix of a line	ar transformation -Inner product space – Definition and e	examples – O	rthogonality –
	orthogonalisation process – Orthogonal Complement.		
UNIT IV : Th	eory of Matrices		18
0	rices - Types of Matrices – The Inverse of a Matrix – Ele	mentary Trar	sformations –
Rank of a matri			
UNIT V : Cha	aracteristic equation and Bilinear forms		18
Characteristic e	equation and Cayley -Hamilton theorem – Eigen values a	nd Eigen vec	tors
LECTURE	TUTORIAL		TOTAL
60	30		90
TEXT BOOK			
1. Arumugam S	and Thangapandi Isaac A, "Modern Algebra", SciTech	Publications ((India) Ltd.,
Chennai, Edi	tion 2012.		
Unit1: C	Chapter 5, Sec 5.1 to 5.4 Unit2: Chapter 5, Sec 5.5 to	5.7	
Unit3: C	Chapter 5, Sec 5.8, Chapter 6, Sec 6.1 to 6.3		
Unit4: C	Chapter 7 Sec 7.1 to 7.5Unit5: Chapter 7, Sec 7.7, 7	7.8	
REFERENCE			
1. I. N. Herst	ein, "Topics in Algebra", Second Edition, John Wiley &	Sons (Asia),	1975.

COU	RSE (CODE	COURSE NAME	L	Т	Р	C
XMT	'504B		Astronomy	4	2	0	6
С	P	Α					

6	0	0			L	Т	Р	H
	-				4	2	0	6
PRE	REQU	ISITE: N	lil					
COL	JRSE (DUTCON	1ES:					
Cou	rse out	comes:		Doma	nin	Leve	l	
	: Expl			Cogni	itive	Unde	rstand	ing
	-	-	f sphere and formulae in spherical trigonometry					
` 1	· ·	1	ns), Celestial sphere and diurnal motion, Celestial					
		and sider						
		ne and Ex	-	Cogni	itive	1	emberi	<u> </u>
			stars, circumpolar stars, diagram of the celestial			Unde	rstand	ing
·····			, perpetual day, dip of horizon and twilight.					
		e and Ex		Cogni	itive		emberi	
			refraction, tangent formula, Cassini's formula,			Unde	rstand	ing
			geocentric parallax and horizontal parallax.	~				
				Cogni	tive	Remembering		
Kepl	er's lav	vs, verific	ation of 1st and 2nd laws in the case of earth,			Unde	rstand	ing
			equation, Seasons, causes and kinds of years.		••	~		
		ne and Ex	A	Cogni	itive	1	emberi	-
	,	•	nodic months, elongation, phase of moon,			Unde	rstand	Ing
			enumbra, lunar and solar eclipses, ecliptic limits,					
	Saros.	na minim	um number of eclipses near a node and in a year					
						1	0	
		norting	f sphere and formulae in spherical trigonometry (no	proof	n o n		-	
	-	1	liurnal motion -Celestial coordinates-sidereal time.	proor,	no pi		5) -	
UNI	.					1	Q	
		davaning	stars -circumpolar stars- diagram of the celestial sp	horo 7	0000		0	
	0	0	lip of horizon-twilight.	mere -z	ones	01		
	T -perpe T III	tual uay-C	np of nonzon-twinght.			1	8	
		lowe of r	efraction -tangent formula-Cassini's formula - horiz	zontal r	afraci	i	U	
			orizontal parallax.	Lonial I		1011-		
<u> </u>	T IV	aranan -1				1	Q	

UNIT V $:$		18
	nd synodic months - elongation - phase of r clipses - ecliptic limits - maximum and mir aros.	1 1
LECTURE	TUTORIAL	TOTA L
60	30	90
TEXT BOOK		
1. Kumaravel, Unit 1: Sec:	S. and Susheela Kumaravel, "Astronomy", 39-79	8th Edition, SKV Publications, 2004
	80-90.106-116	
Unit 2: Sec:	80-90,106-116 117-144	
Unit 2: Sec: Unit3: Sec:	117-144	
Unit 2: Sec: Unit3: Sec: Unit 4: Sec		
Unit 2: Sec: Unit3: Sec: Unit 4: Sec	117-144 : 146-162,173-178	

COURSE CODE		CODE	COURSE NAME	L	Т		P	С
XM	T601		Graph Theory	2 0 0			0	2
С	Р	Α						
2	0	0		L	Т	P	SS	Η
		••••••		2	0	0	2	4
PRE	EREQU	ISITE: 1	Aatrices					
COI	URSE (OUTCO	AES:					
Cou	rse out	comes:		Domain	L	Level		
CO1: Define and Explain The Konigsberg Bridge Problem, Graphs			Cognitive Rememberi		ng			
	subgrap covering	, U	es, Subgraphs, Isomorphism., independent sets	1 0		ing	_	

CO2: Define and Explain Matrices, Operations on Graphs, Walks, Trails and Paths, Connectedness and Components and Eulerian Graphs.	Cognitive	Remembering Applying
CO3: Define and Explain Hamiltonian Graphs, Characterization of	Cognitive	Remembering
Trees and Centre of a Tree.		Applying
CO4: Define and Explain Planarity, Properties and Characterization	Cognitive	Understanding
of Planar Graphs.		Applying
CO5: Define and Explain Directed Graphs, Basic Properties, Some	Cognitive	Understanding
Applications, Connector Problem, Kruskal's algorithm, Shortest Path		
Problem and Dijkstra's algorithm.		

UNIT I	6
Introduction - The Konigsberg Bridge Problem - Graphs and subgraphs: Definition and Examples - Degrees - Subgra	phs –
Isomorphism. –independent sets and coverings.	
UNIT II	6
Matrices - Operations on Graphs - Walks, Trails and Paths – Connectedness and Components - Eulerian Graphs.	
UNIT III	6
Hamiltonian Graphs (Omit Chavatal Theorem) - Characterization of Trees - Centre of a Tree.	t.
UNIT IV	6
Planarity: Introduction - Definition and Properties - Characterization of Planar Graphs.	
UNIT V :	6
Directed Graphs: Introduction - Definitions and Basic Properties - Some Applications: Connector Problem - Kruskal	's algorithm -
Shortest Path Problem – Dijkstra's algorithm.	
LECTURE	TOTAL
30	30
TEXT BOOK	
1. S. Arumugam and S. Ramachandran, "Invitation to Graph Theory", SciTech Publications	

(India) Pvt. Ltd., Chennai, 2006.

Unit-I Chapter-1 Sec 1.0, 1.1 and Chapter -2 Sec 2.0, 2.1, 2.2, 2.3, 2.4.2.6

Unit-II Chapter-2 Sec 2.8,2.9 ,Chapter-4 Sec 4.1,4.2 and Chapter-5 Sec 5.0,,5.1

Unit-III Chapter-5 Sec 5.2, Chapter-6 Sec 6.0, 6.1, 6.2.

Unit-IV Chapter-8 Sec 8.0, 8.1, 8.2.

Unit-V Chapter-10 Sec 10.0, 10.1 Chapter-11 Sec 11.0, 11.1, 11.2

REFERENCES

1. Narsingh Deo, "Graph Theory with applications to Engineering and Computer Science", Prentice Hall of India, 2004.

2. Gary Chartrand and Ping Zhang, "Introduction to Graph Theory", Tata McGraw-Hill Edition,

2004.

COI	U RSE	CODE	COURSE NAME	L	Т	' P	С	
XM	KMT602A Complex Analysis		4	2	0	6		
С	P	Α						
6	0	0		L	Т	' P	Η	
	t.	•		4	2	0	6	
PRF	REQU	ISITE: [Vifferential Calculus and Integral Calculus					
COI	JRSE (OUTCON	IES:					
Cou	rse out	comes:		Domain	Ι	Level		
CO 1	L: Use	CR Equat	ions in cartesian and polar co-ordinates to find analytic	Cognitive Under		Jnders	standing	
		ion and to cations.	Explain Harmonic function Properties and		ł	Applyi	ng	
CO2	-		ormal mappings - Linear and Non-linear transformations cross ratio to construct Bilinear transformations.	Cognitiv		Jnders Applyi	tanding ng	
CO3	formu	la and to	ral using cauchy's integral theorem, cauchy's integral Explain Liouville's theorem, Maximum modulus apply them in simple problems.	Cognitiv		Jnders Applyi	tanding ng	
CO4		•	series and laurent's series Expansion of functions in not to explain types of singularities.	Cognitiv	re A	Applyi	ng	
COS		• •	residue theorem to Solve Integration of functions of the cosx, sinx.	Cognitiv	re A	Applyi	ng	

UNIT I	18
Analytic function - Cauchy Riemann Equation in Cartesian and polar co-ordinates - Harmonic function Properties and ap	pplicati
UNIT II	18
Conformal mappings - Linear and Non-linear transformations - Bilinear transformations - Properties and applications	
UNIT III	18
Integration in the Complex plane - Cauchy's Integral theorem - Cauchy's Integral formula - Liouville's theorem - Maxir modulus theorem - Applications and simple problems.	num
UNIT IV	18
Taylor's and Laurent's series - Expansion of functions in power series - Singular points - Types of singularities - Proper	ties of

singularities - I	dentification of singularities.						
UNIT V : 18							
Calculus of Res	sidues: Residue theorem - Integration of functions of the type involving cosx , sinx- Applications and pro	blems					
relating to resid	lues.						
LECTURE	TUTORIAL	TOTAL					
60	30	90					
TEXT BOOK							
1. S. Narayanar	n & T.K. ManickavasagamPillai, "Complex Analysis", S. Viswanathan Publishers,						
Chennai, 199	97.						
Unit 1:	Chapter 1						
Unit 2:	Chapter 2						
Unit 3:	Chapter 3						
Unit 4:	Chapter 4						
Unit 5:	Chapter 5						
REFERENCE	S						
1. S. Arumugar	n, A. Thangapandi Isaac& A. Somasundaram, "Complex Analysis", SciTech						
Publications	s, India, Pvt. Ltd., 2004.						
2. S. Ponnusan	ny, "Foundations of Complex Analysis", 2ndEdition, Narosa Publication, New						
Delhi, 2005	Delhi, 2005.						
3. R. V. Church	hill & J.W.Brown, "Complex variables and applications", 5thEdition, McGraw						
Hill, Singaj	pore, 1990.						

XMT602B Number Theory 4 2		C	
	0	6	
C P A			
6 0 0 L T	P	H	
4 2	0	6	
PREREQUISITE: Algebra			
COURSE OUTCOMES:	_		
Course outcomes: Domain Leve			
	emberi	0	
Linear Diophantine Equation, The Fundamental Theorem of Arithmetic.Under	erstand	ing	
CO2: Define and Explain Permutations and Combinations, Fermat's Cognitive Rem	Remembering		
	Understanding		
CO3: Define and Explain Basic Properties of Congruences Residue Cognitive Rem	Remembering		
	Understanding		
Revisited.			
	emberi	ng	
	erstand	ing	
CO5: Define and Explain Formulae for d(n) and s(n) – Multiplicative Cognitive Rem	emberi	ng	
Arithmetic Function – The Mobius Inversion Formula. Under	erstandi	ing	
UNIT I	8		
Euclid's Division Lemma – Divisibility – The Linear Diophantine Equation – The Fundam	ental		
Theorem of Arithmetic			
UNIT II	8		
Permutations and Combinations – Fermat's Little Theorem – Wilson's Theorem –			
Generating Functions			
UNIT III 1	8		
Basic Properties of Congruences Residue Systems. Linear Congruences – The Theorems of Fermat and Wilson Revisited.	•		
UNIT IV	18		
The Chinese Remainder Theorem – Polynomial Congruences – Combinational Study of F(ı).		

UNIT V :		18
Formulae for d(n) and s(n) – Multiplicative Arithmetic Function – The	e Mobius Inversion
Formula.	·	
LECTURE	TUTORIAL	ΤΟΤΑ
	20	L
60	30	90
TEXT BOOK		1004
1. George E.A	ndrews, "Number Theory", Hindustan Publishing Co	prporation – 1984,
Unit I : Cha	pter - 2 Sec. 2.1 – 2.4 pages 12-29	
Unit II : Ch	apter – 3 Sec. 3.1, 3.4 pages 30-44	
Unit III : Cl	hapter – 4Sec. 4.1 – 4.2 Pages 49 – 55, Sec. 5.1- 5.2 Pa	ages 58-65
Unit IV : Cl	napter – 4 Sec. 5.3 – 5.4 pages 66-74, Sec. 6.1 Pages 7	5-81
Unit V : Ch	apter – 5 Sec. 6.2 – 6.3 Pages 82-92	
REFERENCE	3	
1. S.B.Mali	x, "Basic Number Theory", Vikas Publishing House P	vt. Ltd., 2 nd Ed.2009.
2. K.C.Cho	wdhury, "A First Course Theory of Numbers", Asian	n Books Pvt. Ltd., I Edition
2004.		

CO	URSE (CODE	COURSE NAME	L	Т	P	С
XMT603A			Linear programming	4	2	0	6
С	P	Α					
5	0.5	0.5		L	Т	P	Η
		*****		4	2	0	6
PRI	EREQU	ISITE:	NIL		.	i	
CO	URSE (UTCO	MES:				
Course outcomes: Domain Lev			Level				

CO1: Find Graphical Solution, Solve LPP using Simplex Method, Big M Method and Two Phase Method.	Cognitive	Remembering Applying
CO2: Solve Linear Programming problem Formulation of Primal, Dual Pairs, Duality and Simplex Method.	Cognitive Psychomotor	Applying Guided Response
CO3: Solve Transportation Problems, finding initial basic feasible solution using North West Corner Rule and Vogel's approximation method, Solve unbalanced Transportation Problems, Assignment Problems and Routing Problems.	Cognitive	Applying
CO4: Solve sequencing Problems, Problems with 'n' jobs and 'k' machines, Problems with 'n' jobs and 2 machines, Problems with 2 jobs and k machines and Problems with 2 jobs and 3 machines.	Cognitive Affective	Applying Receiving
CO 5: Solve Game Theory problems Two persons Zero sum games, maximin and minimax principle, Games without saddle points, Mixed strategies, using Graphical method and Dominance property.	Cognitive	Applying

UNIT I		18			
Introduction to	convex sets - Mathematical Formulation of LPP - Graphical Solution - Simplex Method - Big M Method	- Two			
Phase Method.					
UNIT II		18			
Duality in Linear Programming: Formulation of Primal - Dual Pairs - Duality and Simplex Method - Dual Simplex					
Method					
UNIT III		18			
±	Problems: Mathematical formulation of the problem - finding initial basic feasible solution using North W				
	Vogel's approximation method - Moving towards Optimality - Unbalanced Transportation Problems. As	signment			
	ematical formulation of Assignment Problems - Assignment algorithm – Routing Problems.	10			
UNIT IV	$[1, \dots, D_{n-1}, 1, \dots, 1, 4] (1, 2, \dots, 1, 4] (1, 2, \dots, 1, 4] (1, 2, \dots, 1, 4) (1, 2, \dots, 1, 4) (1, 2, \dots, 1, 4) (1, 2, \dots, 4)$	18			
	blems: Problems with 'n' jobs and 'k' machines - Problems with 'n' jobs and 2 machines- Problems with 2 - Problems with 2 jobs and 3 machines.	2 jobs			
UNIT V :	- Froblems with 2 jobs and 5 machines.	18			
	wo persons Zero sum games - maximin and minimax principle - Games without saddle points - Mixed str				
	od - Dominance property.	alegies -			
······································	TUTORIAL	TOTAL			
60	30	90			
TEXT BOOK					
1. KantiSwarup	P. K. Gupta& Man Mohan, "Operations Research", Sultan Chand& Sons, New				
Delhi, Twelft	h Revised Edition, 2005.				
Unit 1: c	hapter 2: 2.1, 2.2, chapter 3: 3.2, chapter 4; 4.1, 4.4.				
Unit 2: c	hapter 5: 5.2, 5.3, 5.7, 5.9.				
Unit 3: 0	Chapter 10: 10.2, 10.9, 10.14, Chapter 11: 11.2, 11.3.				
Unit 4: 0	Chapter 12: 12.1 – 12.6.				
Unit 5: 0	Chapter 17: 17.1 – 17.7.				

REFERENCES

1. P. K. Gupta & D. S. Hira, "Operations Research", S. Chand & Company Ltd., New Delhi, 2002.

2. J. K. Sharma, "Operations Research theory and its applications", 2nd Edition, Macmillan, New

Delhi, 2006.

3. R. Panneerselvam, "Operations Research", Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

COURSE CODE XMT603B			COURSE NAME Stochastic Processes		L 4	T 2	P 0	C 6
6	0	0			L	Т	P	Η
					4	2	0	6
PRF	EREQU	ISITE: P	Probability and Statistics					
CO	URSE (DUTCON	IES:					
Course outcomes:				Don	nain	Level		
CO1: Find and Solve Generating function, Laplace transforms,				Cognitive		Remembering		
Laplace transforms of a probability distribution function,- Difference					Unde	rstand	ing	
equa	ations, D	oifferentia	I difference equations.					
CO	CO2: Define and Explain with Examples Stochastic Process, Cognitive				Remembering			
Notion, Specification, Stationary Process, Markov Chains, and Higher						Unde	rstand	ing
trans	sition pr	obabilitie	S.					
CO3: Define and Explain Classification of states and chains, Co			Cog	nitive	Remembering			
Determination of higher transition probabilities, Stability of Markov						Unde	rstand	ing
syste	em, and	Limiting	behaviour.					
CO	4: Defin	e and Ex	plain Poisson Process and related distributions,	Cog	nitive	Reme	ember	ing

Generalization of Poisson Process, Birth and death process.		Understanding
CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi channel models and Bulk Queues.	Cognitive	Remembering Understanding

UNIT I	18					
Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference equations						
Differential difference equations – Matrix analysis.						
UNIT II						
Stochastic Process - Notion - Specification - Stationary Process - Markov Chains - Definition and examples - Higher						
transition probabilities.						
UNIT III	18					
Classification of states and chains – Determination of higher transition probabilities – Stability of Markov system – Limiting						
behaviour.						
UNIT IV	18					
Poisson Process and related distributions – Generalization of Poisson Process – Birth and death process.						
UNIT V :						
Stochastic Process in queuing and reliability – queuing systems – M/M/1 models – Birth and death process in queuing the	eory –					
Multi channel models – Bulk Queues.	TOTAL					
LECTURE TUTORIAL						
60 30	90					
TEXT BOOK						
1. J.Medhi, "Stochastic Processes", 3 rd Ed. New age, International, 2009.						
Chapters 1,2,3 (Omitting 3.6,3.7,3.8), Chapter (Omitting 4.5 and 4.6) and Chapter 10						
(Omitting 10.6, 10.7). Unit 1: Chapter 1 – Sec 1.1, 1.2, 1.3, Appendix A 1, 2, 3, 4. Unit 2:						
Chapter 2 – Sec 2.1, 2.2, 2.3 &						
Chapter 3 – Sec 3.1, 3.2. Unit 3: Chapter 3 – Sec 3.4, 3.5, 3.6. Unit 4: Chapter 4 – Sec 4.1,						

4.2, 4.3, 4.4 Unit 5: Chapter 10 – Sec 10.1, 10.2, 10.3, 10.4, 10.5

REFERENCES

- 1. Samuel Karlin, "First Course in Stochastic Processes" 2nd Edition, Elsevier, 2012.
- 2. Srinivasan and Metha, "Stochastic Processes" TATA McGraw Hill, 1978.
- 3. U.Narayan, "Elements of Applied Stochastic Processes" A.John wiley & Sons, 2002.

•