CURRICULUM AND SYLLABUS FOR M.Sc. (Mathematics) - MASTER OF SCIENCE (TWO YEARS - FULL TIME) REGULATION - 2018

(Applicable to the students admitted from the academic year 2018-2019 onwards)

Semester	Course	Course Name	Lecture	Tutorial	Practical	Credit
	Code					
	YMA101	Groups and Rings	4	1	0	5
	YMA102	Analysis - I	4	1	0	5
I	YMA103	Differential Equations	3	1	0	4
	YMA104	Discrete Mathematics	3	1	0	4
	YMA1E*	One among the list of Electives (1E)	3	0	0	3
						21

* List of Electives (1E)

Elective Code	Course Name	L	T	P	С
01	Graph Theory	3	0	0	3
02	Coding Theory	3	0	0	3
03	Mathematical Logic	3	0	0	3

Semester	Course	Course Name	Lecture	Tutorial	Practical	Credit
	Code					
	YMA201	Linear Algebra	4	1	0	5
	YMA202	Analysis - II	4	1	0	5
	YMA203	Differential Geometry	3	1	0	4
II	YMA204	Operations Research	3	1	0	4
	YMA2E*	One among the list of Electives (2 E)	3	0	0	3
						21

* List of Electives (2E)

Elective Code	Course Name	L	T	P	C
01	Algebraic Number Theory	3	0	0	3
02	Data structures and Algorithms	3	0	0	3
03	Fuzzy sets and Fuzzy logic	3	0	0	3

Semester	Course Code	Course Name	Lecture	Tutorial	Practical	Credit
	YMA301	Field Theory	3	1	0	4
	YMA302	Topology	4	1	0	5
	YMA303	Measure Theory	3	1	0	4
III	YMA304	Mathematical Statistics	3	1	0	4
	YMA3E*	One among the list of Electives (3 E)	3	0	0	3
						20

* List of Electives (3E)

Elective Code	Course Name	L	T	P	С
01	Analytical Number Theory	4	0	0	4
02	Numerical Methods	4	0	0	4
03	Commutative Algebra	4	0	0	4

Semester	Course Code	Course Name	Lecture	Tutorial	Practical	Credit
	YMA401	Complex Analysis	4	1	0	5
	YMA402	Functional Analysis	4	1	0	5
IV	YMA403	Stochastic Processes	3	1	0	4
		Project work				8
						22

Total Number of Credits : 84

CO	URSE	CODE	COURSE NAME	L	Т	P	C
	YMA1	01	GROUPS AND RINGS	4	1	0	5
С	P	A					
C	1	A					
5	0	0		L	Т	Р	Н
	<u>i</u>			4	1	0	5
PRE	REQUI	SITE: B	asic concepts of sets, groups and rings		.1		
COU	RSE OU	JTCOME	S:				
Cour	se outco	mes:		Doma	in	Level	
CO1		_	plain Subgroups, Normal subgroups and Quotient ge's Theorem.	Cognit	tive	Remem Underst	
CO2	: Define	and Exp	plain Homomorphism Theorems, Isomorphism	Cognit	tive	Remem	_
			omorphisms Theorems, Cayley's theorem.			Underst	anding
	Permu	tation gro	oups, Another Counting principle.				
CO3	: Define	and Ex	plain Sylow's Theorems and their simple	Cognit	tive	Remem	
	applica	tions, Di	rect Products: External and Internal, Finite			Underst	anding
	Abelia	n Groups	•				
CO4	: Define	and Ex	plain Rings, Subrings, Ideals, Factor Rings,	Cognit	tive	Rememberin	
	Homo	morphism	and Integral Domains. Maximal and prime			Underst	anding
			of Quotients of an integral domain.				
CO ₅			lain Euclidean Ring, A Particular Euclidean	Cognit	tive	Remem	
			al Ring, and Polynomial over the Rational Field,			Underst	anding
T 13 17 7		mial Ring	gs over Commutative Rings.				1.5
UNIT		1	or Caronia Culturana Namalantana and One	4:4 C		T	15
Theo		example	s: Groups, Subgroups, Normal subgroups and Quo	neni Gr	oups,	Lagran	ge s
UNIT							15
		ism Theo	orems, Isomorphism Theorems, Automorphisms	Theore	ems.	Cavley'	
			groups, Another Counting principle.	1110010	,	cujicj	
UNIT							15
			nd their simple applications, Direct Products: E	xternal	and	Internal,	Finite
	ian Grou	ıps.					1 1 -
UNIT		aga Idaal	G. Footor Bings, Homomorphism, Integral Domain	a Mayi	mal a	nd nrim	15
_		_	s, Factor Rings, Homomorphism, Integral Domain notients of an integral domain.	s. iviaxi	mai a	на рип	Ē.
UNIT		210 01 Qt	otento of an integral domain.				15
		ng, A Pa	rticular Euclidean Ring, Polynomial Ring, Polynor	nial ove	er the	Rationa	<u>1</u>
			r Commutative Rings.				
· · · · · · · · · · · · · · · · · · ·	ECTURE		ORIAL			TO 7	ΓAL
60		15				75	
1EX	TBOOK						

1. Herstein, I.N., "Topics in Algebra", Willey Eastern 1975.

Unit I - Chapter 2 (Section 2.1 - 2.6)

Unit II - Chapter 2 (Section 2.7 - 2.11)

Unit III - Chapter 2 (Section 2.12 - 2.14)

Unit IV - Chapter 3 (Section 3.1 - 3.6)

Unit V - Chapter 3 (Section 3.7 - 3.11)

REFERENCES

COURSE CODE

UNIT II

Basic Topology:

1. John B. Fraleigh, "A First Course in Abstract Algebra", Narosa Publication, Third Edition, 2003.

COURSE NAME

L

 \mathbf{T}

P

 \mathbf{C}

15

2. Cohn P. M., "Basic Algebra", Springer's Publications, Second Edition, 2005.

	YMA102 ANALYSIS - I		4	1	0	5	
C	P	A					
5	0	0		L	T	P	H
				4	1	0	5
PRE	REQU	ISITE:		<u> </u>			<u> </u>
COL	J RSE (OUTCO	MES: Basic concepts of real numbers				
Cou	rse out	comes:		Doma	ain	Level	
CO1	: Defin	e and E	xplain the Real and Complex Number Systems.	Cogn	itive		nbering tanding
CO2	: Defin	e and E	xplain Basic Topology.	Cogn	itive		nbering tanding
CO3	: Defin	e and E	xplain convergence of sequences and series	Cogn	itive		nbering tanding
CO4	: Defin	e and E	xplain Continuity of functions	Cogn	itive		nbering tanding
	inuity o		Explain the derivative of a real function, the atives, Derivatives of Higher Order, and Taylor's	Cogn	itive		nbering standing
UNI	T I The	Real a	nd Complex Number Systems:				15
Orde	red sets	s, The re	al field, The complex field, Euclidean spaces.				

Finite, Countable and Uncountable sets, Metric space, Compact sets, Perfect Sets, Connected	
Sets.	
UNIT III Numerical Sequences and Series:	15
Convergent sequences (in Metric Spaces), subsequences, Cauchy sequences, Upper and	Lower
Limits, Some Special Sequences, Series, Series of Negative terms, The root and ratio tests.	
UNIT IV Continuity:	15
Limits of functions (in metric spaces) Continuous functions, Continuity and	
Compactness, Continuity and Connectedness, Discontinuities, Monotonic functions, Uniform	
Continuity, Infinite Limits and Limits at Infinity.	
UNIT V Differentiation:	15
The Derivative of a Real Function, Mean Value Theorems, The Continuity of Derivative	atives,
L'Hospital's Rule, Derivatives of Higher Order, Taylor's Theorem.	
LECTURE TUTORIAL TOTA	L
60 15 75	
TEXTBOOK	

1. Walter Rudin,"Principles of Mathematical Analysis", (3rd Edition) McGraw-Hill, 2016.

Unit I - Chapter 1 (Pages: 3-5, 8-11, 12-16)

Unit II - Chapter 2 (Pages: 24 - 42)

Unit III - Chapter 3 (Pages: 47-63, 65-69)

Unit IV - Chapter 4 (Pages: 83-97) Unit V - Chapter 5 (Section 103-111)

- 1. Shanti Narayan,"A Course of Mathematical Analysis", S.Chand & Co, 2005.
- 2. Apostol, T.M,"Mathematical Analysis", 2nd Edition,1996.
- 3. Malik, S.C,"Mathematical Analysis", Wiley Eastern Ltd, 2017.

CO	OURSE CODE COURSE NAME		L	Т	P	C	
YMA103		03	DIFFERENTIAL EQUATIONS	3	1	0	4
С	P	A					
4	0	0		L	T	P	Н
	<u> </u>			3	1	0	4
PRE	REQU	ISITE: Dif	ferentiation and Integration		<u> </u>		
COU	IRSE O	UTCOMES	:				
Cour	Course outcomes:				in	Level	

CO1: Find The general solution of the homogeneous equations using various methods.	Cognitive	Remembering Understanding
CO2: Solve the homogeneous linear system with constant coefficients and special functions.	Cognitive	Applying
CO3: Find the critical points and stability for linear systems by Liapounov's direct method.	Cognitive	Remembering Understanding
CO4: Solve First order linear partial differential equations using various methods.	Cognitive	Applying
CO5: Solve initial and boundary value problems.	Cognitive	Applying
UNIT I	<u> </u>	12

The general solution of the homogeneous equation – The use of one known solution to find another – The method of variation of parameter – Power series solutions – Series solutions of first order equations – Second order linear equations – ordinary points – Regular singular points – Gauss hyper geometric equations – the point 0 at infinity.

UNIT II

Legendre polynomials – Properties of Legendre polynomials – Bessel functions – The gamma function – Properties of Bessel function – linear systems – Homogeneous linear system with constant coefficients.

UNIT III

12

The existence and uniqueness of solutions – The method of Successive approximation – Picard's theorem – Types of critical points – Critical points and stability for linear systems – Stability by Liapunov's direct method.

UNIT IV 12

First order partial differential equations – Linear equations of the first order – Partial differential equations – Compatible systems – Charpit's method – Jacobi's method – Integral surface through a given circle.

UNIT V 12

Solution of initial and boundary value problems – Characteristics – D'Alembert's solution – Significance of characteristic curves – Laplace transforms solutions for displacement in a string – a long string under its weight – Longitudinal vibration of a elastic bar with prescribed force on one end – free vibrations of string.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXTBOOK

- 1. Simmons, G.F.,"Differential Equations with Applications and Historical Notes", TMH, New Delhi, 2003
- 2. T. Amarnath, "An Elementary Course in Partial Differential Equations", Narosa, New Delhi, 1997.
 - Unit I- Chapter 3: Sections 15,16,19, Chapter 5: Sections 26 to 31
 - Unit II- Chapter 8: Sections 44 to 47, Chapter 10: Sections 54 to 56
 - Unit III- Chapter 13: Sections 68, 69, Chapter 11: Sections 60, 61
 - Unit IV Chapter 1: Sections 1.4 to 1.9
 - Unit V Chapter 2: Sections 2.1, 2.2, 2.3.1, 2.3.2, 2.3.3, 2.3.5, 2.5.1, 2.5.2

- 1. W.T.Reid, "Ordinary Differential Equations", John Wiley, New York, 1971.
- 2. E.A.Coddington and E.Levinson, "Theory of ODE", Mc Graw Hill Publishing Company, New york, 1955 .
- 3. J.N. Sneddon, "Elements of Partial Differential Equations", Mc Graw Hill Publishing Company, New york, 1957.

COURSE CODE		ODE	COURSE NAME	L	T	P	С	
YMA104		4	DISCRETE MATHEMATICS	3	1	0	4	
С	P	A						
4	0	0		L	Т	P	H	
	i	<u>i</u>		3	1	0	4	
PRE	REQUI	SITE:	Algebra					
COL	IRSE OU	JTCON	IES:					
Cou	rse outco	mes:		Doma	in	Level		
CO ₁	: Defin	e and]	Explain Basic logical operations.	Cogni	tive	Rememl Underst		
CO2			Explain the theory of inference for the statement	Cogni	tive	Remem		
	Calcu	lus.				Unders	anding	
CO3	3: Solve	Recurr	ence Relations using Generating Functions.	Cogni	tive	Applyin	ing	
CO ₄	l: Define	and E	Explain Lattices and Boolean Algebra.	Cogni	tive	Rememl		
COS	5: Defin	e and l	E xplain Grammar and Languages.	Cogni	tive	Remem	<u> </u>	
						Underst	anding	
			ical Logic :				12	
	_	-	ions, conditional and biconditional statements, tauto	ologies, c	ontra	diction,		
	nal form						T	
			y of inference for the statement Calculus:				12	
			Consistency, Automatic Theorem proving, Predicate	e Calculu	ıs, qu	antifiers,		
Infer	ence Th	eory of	the Predicate Calculus.					
			nce Relations and Generating Functions:				12	
-		_	ions, telescopic form, recursion theorem, closed for	m expres	sion,	generati	ng	
			f recurrence relation using generating function.					
			and Boolean Algebra:	D 1		1	12	
Parti	al ordere	ed sets,	Properties of Lattices, Lattices as Algebraic System	ns, Boole	an A	gebra.		
UNI	ΓV Gr	ammai	and Languages:				12	

Phrase structure grammars, rewriting rules, derivation sentential forms, language generated by grammar, regular, context free and context sensitive grammar and languages.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXTBOOK

- 1. P. Tremblay, R. Manohar,"Discrete Mathematical Structure with Applications to Computer Science", Mc Graw-Hill International Edition, 1997.
 - Unit I Chapter 1 (Section 1.1,1.2 & 1.3)
 - Unit II Chapter 1 (Section 1.4, 1.5 & 1.6)
 - Unit IV Chapter 4 (Section 4.1& 4.2)
 - Unit V Chapter 4 (Section 4.6)
- 2. Alan Doerr, "Applied Discrete Structure for Computer Science", Pearson Education, 2013 Unit III – Chapter 8 (Section 8.1,8.2,8.3 &8.5)

REFERENCE

1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", Mc Graw-Hill International Edition, 2002.

COURSE CODE			COURSE NAME	L	T	P	C
	YMA10	15	GRAPH THEORY	3	U	0	3
С	P	A					
3	0	0		L	Т	P	Н
				3	0	0	3

PREREQUISITE:

COURSE OUTCOMES: Basic concepts of Graph Theory		
Course outcomes:	Domain	Level
CO1: Define and Explain Graphs, subgraphs and trees.	Cognitive	Remembering Understanding
CO2: Define and Explain Connectivity - Blocks - Euler tours - Hamilton Cycles.	Cognitive	Remembering Understanding
CO3: Define and Explain Matchings and Coverings in Bipartite Graphs, Edge Chromatic Number and Vizing's Theorem.	Cognitive	Applying
CO4: Define and Explain independent sets and cliques, vertex colourings.	Cognitive	Remembering Understanding

	d Explain Plane and planar Graphs, Dual graphs,	Cognitive	Rememberin
	rmula, The Five-Colour Theorem and the Four-	Understan	
Colour Co	njecture- Applications.		
UNIT I GRAPI	IS, SUBGRAPHS AND TREES		9
Graphs and simp	e graphs - Graph Isomorphism - The Incidence and A	djacency Mat	rices -
Subgraphs - Vert	ex Degrees - Paths and Connection - Cycles - Trees - 0	Cut Edges an	d Bonds - Cu
Vertices.			
UNIT II CONN	ECTIVITY, EULER TOURS AND HAMILTON (CYCLES	9
Connectivity - B	ocks - Euler tours - Hamilton Cycles – Applications.		
UNIT III MAT	CCHINGS, EDGE COLOURINGS		9
Matchings - Mat	chings and Coverings in Bipartite Graphs - Edge Chro	matic Number	ſ -
Vizing's Theorem	n- Applications.		
UNIT IV INDE	PENDENT SETS AND CLIQUES, VERTEX COL	OURINGS	9
Independent sets	- Ramsey's Theorem - Chromatic Number - Brooks'	Гheorem -	
Chromatic Polyn	omials- Applications.		
UNIT V PLAN	AR GRAPHS		9
			•
Plane and planar	Graphs - Dual graphs - Euler's Formula - The Five-Co	olour Theoren	1
		olour Theoren	1
	Graphs - Dual graphs - Euler's Formula - The Five-Co	olour Theoren	TOTAL
and the Four-Col LECTURE 45	Graphs - Dual graphs - Euler's Formula - The Five-Co	olour Theoren	
and the Four-Col LECTURE 45 TEXTBOOK	Graphs - Dual graphs - Euler's Formula - The Five-Coour Conjecture- Applications.		TOTAL 45
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", M.		TOTAL 45
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3)		TOTAL 45
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2)		TOTAL 45
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte Unit III - Chapte	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2)	Iacmillan, Loi	TOTAL 45
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte Unit III - Chapte Unit IV - Chap	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2) eter 7 (Section 7.1 - 7.2); Chapter 8 (Section 8.1 - 8.2,	Iacmillan, Loi	TOTAL 45
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte Unit III - Chapte Unit IV - Chapte Unit IV - Chapte Unit V - Chapte	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2)	Iacmillan, Loi	TOTAL 45
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte Unit III - Chapte Unit IV - Chapte Unit V - Chapte REFERENCES	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2) eter 7 (Section 7.1 - 7.2); Chapter 8 (Section 8.1 - 8.2, eter 9 (Section 9.1 - 9.3, 9.6)	Iacmillan, Loi	TOTAL 45
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte Unit III - Chapte Unit IV - Chapte Unit V - Chapte REFERENCES 1. Harary, "Grap	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2) eter 7 (Section 7.1 - 7.2); Chapter 8 (Section 8.1 - 8.2, er 9 (Section 9.1 - 9.3, 9.6) In Theory" Narosa Publishing House., 2001.	Jacmillan, Loi	TOTAL 45 and on, 1976.
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte Unit IV - Chapte Unit IV - Chapte Unit V - Chapte REFERENCES 1. Harary, "Grap 2. A. Gibbons, "A	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2) eter 7 (Section 7.1 - 7.2); Chapter 8 (Section 8.1 - 8.2) er 9 (Section 9.1 - 9.3, 9.6) Theory" Narosa Publishing House., 2001. Igorithmic Graph Theory, Cambridge University Press	Iacmillan, Lor , 8.4)	TOTAL 45 and on, 1976.
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte Unit IV - Chapte Unit IV - Chapte Unit V - Chapte Unit V - Chapte A.Gibbons, "A 3.R.J.Wilson and	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2) eter 7 (Section 7.1 - 7.2); Chapter 8 (Section 8.1 - 8.2, er 9 (Section 9.1 - 9.3, 9.6) In Theory" Narosa Publishing House., 2001.	Iacmillan, Lor , 8.4)	TOTAL 45 and on, 1976.
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit III - Chapte Unit IV - Chapte Unit IV - Chapte Unit V - Chapte Unit V - Chapte Unit V - Chapte A.Gibbons, "A 3.R.J.Wilson and York, 1989.	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2) ter 7 (Section 7.1 - 7.2); Chapter 8 (Section 8.1 - 8.2, er 9 (Section 9.1 - 9.3, 9.6) In Theory" Narosa Publishing House., 2001. Ilgorithmic Graph Theory, Cambridge University Press J.J. Watkins, "Graphs: An Introductory Approach", John March 1988 (Section 9.1)	(acmillan, Lor (a, 8.4) (b) (a, Cambridge, b) (b) (a) (a) (a)	1989. Sons, New
and the Four-Col LECTURE 45 TEXTBOOK 1. J.A.Bondy and Unit I - Chapte Unit II - Chapte Unit IV - Chapte Unit IV - Chapte Unit V - Chapte Unit V - Chapte A.Gibbons, "A 3.R.J.Wilson and York, 1989. 4.V.K. Balakrish	Graphs - Dual graphs - Euler's Formula - The Five-Cour Conjecture- Applications. U.S.R. Murthy, "Graph Theory and Applications", Mer 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3) er 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2) ter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2) eter 7 (Section 7.1 - 7.2); Chapter 8 (Section 8.1 - 8.2) er 9 (Section 9.1 - 9.3, 9.6) Theory" Narosa Publishing House., 2001. Igorithmic Graph Theory, Cambridge University Press	(acmillan, Lor (a, 8.4) (b) (a, Cambridge, b) (b) (a) (a) (a)	1989. Sons, New

5.S.A.Choudum, "A First Course in Graph Theory", MacMillan India Ltd. 1987.

COURSE CODE			COURSE NAME	L	Т	P	C	
YMA201		01	LINEAR ALGEBRA	4	1	0	5	
C	P	A						
5	0	0		L	Т	P	Н	
				4	0	0	4	
PRE	REQU	ISITE:	Group theory and Ring theory					
COU	JRSE O	UTCOM	ES:					
	rse outco			Doma		Level		
	Indepen	dence an		Cogni		Remen Unders	tanding	
CO2	2: Defir	ne and E	Explain Dual Spaces- Inner Product Space- Modules.	Cogni	tive	Remem Unders	nbering standing	
CO3	Solve roots.	the Alge	bra of Linear Transformations to find characteristics	Cogni	tive	Applyi	ng	
CO4			xplain Canonical Forms, Triangular form, Nilpotent , Jordan Form and Rational Canonical form.	Cogni	tive	Remen Unders		
CO5		itian, Un	xplain Trace and Transpose, Determinants, itary and Normal Transformations, Real Quadratic	Cognitive Rememl			embering erstanding	
UNI		-		<u> </u>			15	
Elen	nentary	Basic Co	oncepts- Linear Independence and Bases.				i	
UNI	ΤΙΙ						15	
Dual	Spaces	- Inner I	Product Space- Modules.					
	ТШ						15	
The .	Algebra	of Line	ar Transformations- Characteristics Roots- Matrices					
UNI							15	
Cano form		orms: Ti	iangular form- Nilpotent Transformations- Jordan F	Form - F	Ration	al Cano	nical	
UNI							15	
		ranspose tic form	– Determinants- Hermitian, Unitary and Normal Trs.	ansforr	natior	1S-		
LI 60	ECTUR	E TU'	ΓORIAL			TO'	ΓAL	
TEX 1. He	TBOOK erstein,	ζ Ι.Ν.,"Το	pics in Algebra", Willey Eastern 1975.			i		
		•	(Section 4.1 & 4.2) (Section 4.4 – 4.5) Unit III - Chapter 6 (Section 6)	51 – 63	3)			
		-)		
Ul	1111 I V -	Chapter	6 (Section $6.4 - 6.7$) Unit V - Chapter 6 (Section $6.4 - 6.7$)	0.0	– U. I I	.)		

- 1. John B. Fraleigh, "A First Course in Abstract Algebra", Narosa Publication, Third Edition, 2013.
- 2. P. M. Cohn, "Basic Algebra", Springer's Publications, Second Edition, 2003.

COURSE CODE		ODE	COURSE NAME	L	Т	P	С	
YMA202		2	ANALYSIS - II	4	1	0	5	
С	P	A						
5	0	0		L	Т	P	H	
				4	1	0	5	
PRE	REQUI	SITE:	Basic concepts of convergence and uniform convergence	gence			<u> </u>	
COU	RSE OU	JTCON	IES:					
Cour	se outco	mes:		Doma	in	Level		
CO1			Explain Existence, Properties of the Integral, and Differentiation.	Cogni	tive	Remem		
CO2			Explain Uniform convergence and Continuity.	Cogni	tive	Remem	bering tanding	
CO3							embering rstanding	
CO4	CO4: Define and Explain Set functions, Construction of Lebesgue Measures, Measurable function, Simple functions in measure. Cognitive Unders						bering tanding	
CO5	: Defin	e and l	Explain Integration Comparison with the Riemann ration of Complex functions, Functions of class \mathcal{J}^2 .	Cogni	tive	Remem		
UNI			, , , , , , , , , , , , , , , , , , , ,				15	
Defii	nition ar	nd Exist	ence of the Integral, Properties of the Integral, Integ	ration a	nd Di	fferentia	tion.	
UNI	ΓII						15	
Unifo	orm Coi	ivergen	ce, Uniform convergence and Continuity.					
UNI	ΓIII						15	
		vergen	ce and Integration, Uniform convergence and Difference	entiation	ì.		1	
UNI	ΓIV						15	
·····		s, Const	ruction of Lebesgue Measures, Measurable function	, Simple	func	tions in		
meas	sure.		-					
UNI							15	
		Compari	son with the Riemann Integral, Integration of Comp	lex func	tions	, Function	ons of	
class		T TOT	TODIAI			тог	ГАТ	
60	ECTURI	15	TORIAL			75	ΓAL	
	ТВООК	.				13		

1. Walter Rudin, "Principles of Mathematical Analysis", (3rd Edition), McGraw-Hill, 2016

Unit I - Chapter 6 (Pages: 120-135)

Unit II - Chapter 7 (Pages: 143-151)

Unit III - Chapter 7 (Pages: 151-154)

Unit IV - Chapter 11 (Pages: 300-314) Unit V - Chapter 5 (Section 314-325)

REFERENCES:

- 1. Shanti Narayan, "A course of Mathematical Analysis", S. Chand & Company Ltd New Delhi, 2005.
- 2. Apostol, T.M, "Mathematical Analysis", Narosa Book Distributors Pvt Ltd, 2nd Edition, New Delhi, 1996.
- 3. Malik, S.C, "Mathematical Analysis", Wiley Eastern Ltd. 2017.

COURSE CODE		ODE	COURSE NAME	L	Т	P	C
YMA203			DIFFERENTIAL GEOMETRY	3	1	0	4
С	P	A					
4	0	0		L	Т	P	Н
<u> </u>				3	1	0	4

PREREQUISITE: Multivariable calculus and vector calculus

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1: Define and Explain Arc length, tangent, normal and binormal	Cognitive	Remembering
curvature and torsion, contact between curves and surfaces,		Understanding
Tangent surface involutes and evolutes.		
CO2: Define and Explain Surfaces of revolution, Helicoids, Families of curves and Isometric correspondence.	Cognitive	Remembering Understanding
CO3: Define and Explain Normal property of geodesic, Geodesic parallels, Gaussian curvature and Conformal mapping.	Cognitive	Remembering Understanding
CO4: Define and Explain Second fundamental form, Lines of curvature, Developables associated with curves on surfaces and Parallel surfaces.	Cognitive	Remembering Understanding
CO5: Define and Explain Compact surfaces whose points are umbilics, Gaussian or mean curvature, Conjugate points on geodesics Cognitive Remem Underst		
UNIT I		12

Definition of Space curves – Arc length – tangent – normal and binormal – curvature and torsion – contact between curves and surfaces – tangent surface – involutes and evolutes – intrinsic equations

- Fundamental Existence Theorem for space curves - Helics.	
UNIT II	12
Definition of surface - Curves on a surface - Surfaces of revolution - Helicoids - Metric - Direction coefficients - Families of curves - Isometric correspondence - Intrinsic properties - Geodesics - Canonical geodesic equations.	
UNIT III	12
Normal property of geodesic - Evistence theorems - Geodesic parallels - Geodesic curvature -	Gance

Normal property of geodesic - Existence theorems - Geodesic parallels - Geodesic curvature - Gauss Bonnet theorem - Gaussian curvature - Surfaces of constant curvature - Conformal mapping - Geodesic mapping.

UNIT IV 12

Second fundamental form - Principal curvatures- Lines of curvature — Developables - Developables associated with space curves - Developables associated with curves on surfaces- Minimal surfaces and ruled surfaces - Fundamental equations of Surface theory - Parallel surfaces.

UNIT V 12

Compact surfaces whose points are umbilics- Hilbert's lemma- Compact surfaces of constant Gaussian or mean curvature- Complete surfaces- Characterization of complete surfaces- Hilbert's theorem- Conjugate points on geodesics.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXTBOOK

1. T. J. Wilmore, "An introduction to Differential Geometry", Oxford University Press, 1997.

- 1. Do Carmo, "Geometry of curves and surfaces", Academic Press, 2017.
- 2. D.Somasundaram, "Differential Geometry", Narosa Publ. House, Chennai, 2005.
- 3. J.A.Thorpe, "Elementary Topics in Differential Geometry", Springer Verlag, New York, 1979.

COURSE CODE		CODE	COURSE NAME	L	Т	P	C
YMA204)4	OPERATIONS RESEARCH	3	1	0	4
C	P	A					
4	0	0		L	T	P	Н
				3	1	0	4
PRE	REQU	ISITE:	Nil				
COU	JRSE O	UTCOM	IES:				
Cour	rse outco	omes:		Doma		Level	
			Explain Decision theory in detail.	Cogni		Rement Unders	tanding
CO2	2: Expl	ain and	solve problems in PERT and CPM	Cogni	tive	Unders Applyin	_
CO3	_	tory Co	ministic inventory control models and probabilistic ntrol Models and solve problems by using the	Cogni	tive	Unders Applyin	_
CO4			ntial Features of Queueing System, Classification of els and find solution of Queueing Models.	Cogni	tive	Unders Remen	
CO5	_		acement and maintenance models and solve using these methods.	Cogni	tive	Unders Applyii	_
			THEORY				12
Unde	er Unce	rtainty -	neory Approach - Types of Decision-Making Environeous Decision Making under Risk - Posterior Probabilitysis - Decision Making with Utilities.				
UNI			Γ MANAGEMENT : PERT AND CPM				12
Netv	vork Co	mponer	etween PERT and CPM - Steps in PERT/CPM Tecl its and Precedence Relationships - Critical Path Ana oject time-cost Trade Off - Updating the Project - Re	alysis -	Prob	ability i	
			MINISTIC INVENTORY CONTROL MODELS				12
Feati short Prob	ures of i tage - D abilistic	Inventor etermin Inventor	ory Control - Functional Classification - Advantage ry System - Inventory Model building - Deterministic istic Inventory with Shortages ory Control Models: abilistic Models without Setup cost - Single Perio	c Inver	ntory]	Models	with no
	*	UEUEI	NG THEORY				12
Esse Prob Quei	ntial F abilistic ueing M	eatures Distrib	of Queueing System - Operating Characteristic oution in Queueing Systems - Classification of Que Probability Distribution of Arrivals and Departure	ueing l	Mode	ls - Solı	stem ution o
			EMENT AND MAINTENANCE MODELS				12
			of items - Replacement of Items Deteriorates with T	ime - F	Replac	cement o	of item
4 -	C '1	1 , 1	other Depleasment Ducklams				

that fail completely - other Replacement Problems.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXTBOOK

1. J.K.Sharma, "Operations Research Theory and Applications", Third Edition, Macmillan India Ltd., 2007,

Unit I - Chapter-11 (Section 11.1 - 11.8)

Unit II - Chapter-13 (Section 13.1 - 13.9)

Unit III - Chapter-14 (Section 14.1 - 14.8); Chapter-15: (Section 15.1 - 15.4)

Unit IV - Chapter-16 (Section 16.1 - 16.9); Appendix 16. A (PP 774-781)

Unit V - Chapter-17 (Section 17.1 - 17.5)

REFERENCES

- 1.F.S. Hillier and J.Lieberman, "Introduction to Operations Research" (8th Edition), Tata McGraw Hill Publishing Company, New Delhi, 2006.
- 2. Beightler. C, D.Phillips, B. Wilde, "Foundations of Optimization" (2nd Edition) Prentice Hall Pvt Ltd., New York, 1979
- 3.Bazaraa, M.S; J.J.Jarvis, H.D.Sharall, "Linear Programming and Network flow", John Wiley and sons, New York, 1990.
- 4. Gross, D and C.M.Harris, "Fundamentals of Queueing Theory", (3rd Edition), Wiley and Sons, New York, 1998.
- 5. Hamdy A. Taha, "Operations Research" (sixth edition), Prentice Hall of India Private Limited, New Delhi. 2007

COURSE CODE		CODE	COURSE NAME	L	Т	P	C
YMAE205		05	FUZZY SETS AND FUZZY LOGIC	3	0	0	3
С	P	A					
3	0	0		L	Т	P	H
	i			3	0	0	3

PREREQUISITE: Discrete Mathematics

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1: Define and Explain basic definitions of Crisp sets, the notion of fuzzy sets and basic concepts of fuzzy sets.	Cognitive	Remembering Understanding
CO2: Define and Explain operation on Fuzzy Sets.	Cognitive	Remembering Understanding

CO3: Define and Explain Fuzzy Relations	Cognitive	Remembering Understanding					
CO4: Define and Explain Classical Logic.	Cognitive	Remembering					
Understa							
CO5: Define and Explain Fuzzy logic, fuzzy tautologies - Cognitive Remember							
contradictions - equivalence and logical proofs.		Understanding					
UNIT I Crisp Sets and Fuzzy Sets	i	9					
Crisp sets basic definitions - the notion of fuzzy sets - basic concepts	of fuzzy sets.	i					
UNIT II Operation on Fuzzy Sets		9					
Fuzzy complement - fuzzy union - fuzzy intersection - combination a operations.	and general aggr	egation					
UNIT III Fuzzy Relations		9					
Crisp and fuzzy relations - binary relation - equivalence and similari - orderings.	ty relations - tol	erance relations					
UNIT IV Classical Logic		9					
Tautologies - contradictions - equivalence - exclusive OR and exclus	ive NOR - logic	al proofs.					
UNIT V Fuzzy Logic		9					
Fuzzy logic - approximate reasoning - fuzzy tautologies - contradicti proofs.	ons - equivalenc	e and logical					
LECTURE		TOTAL					
45		45					
TEXTBOOKS		1 -0					
1. George J. Klir & Tina A. Folger, "Fuzzy Sets, Uncertainty, and In India Pvt. Ltd., New Delhi, 1988	formation", Pren	ntice Hall of					
2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", 3 2010.	rd edition, McG	raw-Hill. Inc,					
REFERENCES							
1.Zimmermann. H.J, "Fuzzy Set Theory and Its Applications", 4 th	edition, Spring	er,					
Netherlands, 2015. 2. Bart Kosko, "Neural Networks and Fuzzy Systems", Prentice-Hall	l International, 1	992.					

Semester III

COURSE CODE		•••••	COURSE TITLE FIELD THEORY	L 3	T 1	P 0	C
YMA301		/1	FIELD THEORY	3	1	U	4
С	P	A					
4	0	0		L	Т	P	Н
	İ	L		3	1	0	4
PRE	EREQU	ISITE:	Algebra	<u>I</u>	L	L	
COU	JRSE O	UTCON	IES:				

Course outcomes:	Domain	Level			
CO1: Define and Explain Extension fields – Finite Extension – Algebraic Extension - Transcendence of e.	Cognitive	Remembering Understanding			
CO2: Define and Explain Roots of Polynomials Remainder Theorem – Splitting field - More about roots. Cognitive Unders					
CO3: Define and Explain Elements of Galois Theory- Fixed field – Normal extension- Fundamental Theorem.	Cognitive	Remembering Understanding			
CO4: Define and Explain Solvability by radicals – Solvable group – Galois group over the rational.	Cognitive	Remembering Understanding			
CO5: Define and Explain Finite fields - Wedderburn's theorem on finite division rings – A Theorem of Frobenius.	Cognitive	Remembering Understanding			
UNIT I	<u>. i</u>	12			
Extension fields – Finite Extension – Algebraic Extension - Transcender	nce of e.	***************************************			
UNIT II Roots of Polynomials Remainder Theorem – Splitting field - More about	out roots.	12			
UNIT III		12			
Elements of Galois Theory- Fixed field – Normal extension- Fundamen	tal Theorem.				
UNIT IV		12			
Solvability by radicals – Solvable group – Galois group over the rational	1.	•			
UNIT V		12			
Finite fields - Wedderburn's theorem on finite division rings – A Theorem of I	Frobenius.	· · · · · · · · · · · · · · · · · · ·			
4 LECTURE TUTORIAL		TOTAL			
45		60			
1. N. Herstein,"Topics in Algebra", Willey Eastern, 1975.					
REFERENCES					
1. John B. Fraleigh,"A First Course in Abstract Algebra", Narosa Public	cation, Third	Edition, 2013			
2. P. M. Cohn,"Basic Algebra", Springers Publications, Second Edition	, 2003.				

COU	JRSE (CODE	COURSE NAME	\mathbf{L}	T	P	C
YMA302		2	TOPOLOGY	4	1	0	5
С	P	A					
5	0	0		L	Т	P	H
				4	1	0	5
PRE	REQU	ISITE:	Analysis		<u> </u>		<u> </u>
COU	RSE O	JTCOM	TES:				
Cour	se outco	mes:		Doma	in	Level	
CO ₁	: Defin	e and	Explain Topological Spaces	Cogni	tive	Remem	
CO2	. D.C.		Francis Continuous Frantisms	Cooni	+:	Underst	<u> </u>
COZ	: Denn	ie and 1	Explain Continuous Functions	Cogni	uve	Remem Unders	tanding
CO3	: Defin	e and E	Explain Connectedness	Cogni	tive	Remem	
CO4	: Defin	e and F	Explain Compactness	Cogni	tive	Remem	_
CO5	: Defin	e and l	Explain Countability and Separation Axiom	Cogni	tive	Remem	
UNIT	TI Top	ologic	al Spaces	•			15
Topo	logical	spaces	- Basis for a topology - The order topology - The p	product to	polog	y	
on X	x Y - T	he subs	space topology.				
UNIT	II Co	ntinuoı	is Functions				15
Close	ed sets a	and limi	t points-Continuous functions - the product topolo	gy - The	metric	;	
topo	logy '	The me	tric topology (continued) - Uniform limit theorem.				
UNIT	T III (Connect	tedness				15
Conn	ected s	paces -	connected subspaces of the Real line - Component	s and loca	ıl con	nectedn	ess.
UNIT	ΓIV C	ompact	tness				15
			compact subspaces of the Real line - Limit	Point C	ompa	ctness -	Local
Com	pactnes	S.					
UNIT	ΓV Co	untabi	lity and Separation Axiom				15
			xioms - The separation Axioms - Normal spaces	- The Ur	ysohr	Lemm	a - The
Urys	ohn me	trizatio	n Theorem - The Tietz extension theorem.				
LF	ECTURI	E T U	TORIAL			TO	ΓAL
45		15				60	
	TBOOK		(ID 1 N (0 1 D 11)	T. 1		r 1• =	
	ew Dell	i, 2014	res, "Topology", (2nd Edition) PHI Learning Pvt apter 2: Sections 12 to 17	. Ltd., (T	hird 1	Indian I	Reprint)

Unit II - Chapter 2: Sections 18 to 21 (Omit Section 22)

Unit III - Chapter 3: Sections 23 to 25

Unit IV - Chapter 3: Sections 26 to 29

Unit V - Chapter 4: Sections 30 to 35

- 1. J. Dugundji, "Topology", Prentice Hall of India, New Delhi, 1975.
- 2. George F.Sinmons, "Introduction to Topology and Modern Analysis", McGraw Hill Book Co., 1963.
- 3. J.L. Kelly, "General Topology", Van Nostrand, Reinhold Co., New York. 1995
- 4. L.Steen and J.Subhash, "Counter Examples in Topology", Holt, Rinehart and Winston, New York, 1970.
- 5. S.Willard, "General Topology", Addison Wesley, Mas.1970.

COURSE CODE		CODE	COURSE NAME	L	T	P	C
YMA303)3	MEASURE THEORY	3	1	0	4
С	P	A					
4	0	0		L	Т	P	Н
				3	1	0	4
	REQU IRSE O		Analysis TES:				<u> </u>
	se outco			Doma	in	Level	
CO1: Define and Explain Measure Spaces – Measurable functions – Integration			Cognitive		Remembering Understandin		
CO2: Define and Explain General Convergence Theorems – Signed measures – The Radon Nikodym Theorem.				Remem Unders	_		
002	. Dofin	a and I	Explain The L ^p – spaces – Outer measure and	Cogni	fixa	Remem	harina

CO2: Define and Explain General Convergence Theorems – Signed measures – The Radon Nikodym Theorem.	Cognitive	Remembering Understanding
CO3: Define and Explain The L ^p – spaces – Outer measure and measurability- The Extension Theorem.	Cognitive	Remembering Understanding
CO4: Define and Explain The Lebesgue-Stieltjes integral – Product measures – Integral operators.	Cognitive	Remembering Understanding
CO5: Define and Explain Inner measure – Extension by sets of measure zero- Caratheodory outer measure Hausdorff measure	Cognitive	Remembering Understanding
UNIT I		12
Measure Spaces – Measurable functions – Integration.		
UNIT II		12
General Convergence Theorems – Signed measures – The Radon Nikody	m Theorem	1.
UNIT III		12
The L ^p – spaces – Outer measure and measurability- The Extension Theo	orem.	***************************************

UNIT IV	12
The Lebesgue-Stieltjes integral – Product measures – Integral operate	ors.
UNIT V	12
	4
Inner measure – Extension by sets of measure zero- Caratheodory or	uter measure
Inner measure – Extension by sets of measure zero- Caratheodory of Hausdorff measure.	uter measure
	TOTAL
Hausdorff measure.	Ψ
Hausdorff measure. LECTURE TUTORIAL	TOTAL

1.H.L.Royden, Real Analysis, 3rd Edition, Standford University, Prentice – Hall of India private Limited, New Delhi. 2002.

(Chapter 11 - Section 1 to 7, Chapter 12 - Section 1 to 9).

REFERENCES

- 1.P.R. Halmos, "Measure Theory", Graduate Text in Mathematics, Springer-Verlag, 1979.
- 2.Inder K. Rana, "An Introduction to Measure and Integration", (2^{nd} ed.) , Narosa Publishing House, New Delhi, 2004.

COURSE CODE		CODE	COURSE NAME	COURSE NAME L		COURSE NAME		Т	P	C
YMA304)4	MATHEMATICAL STATISTICS	3	1	0	4			
C	P	A								
4	0	0		L	Т	P	Н			
				3	1	0	4			

PREREQUISITE: Nil

COURSE OUTCOMES:

Course outcomes:	Domain	Level			
CO1: Define and Explain Estimation Theory.	Cognitive	Remembering Understanding			
CO2: Explain and solve Tests based on normal, t and f distributions for testing of means, variance and proportions – Analysis of r × c tables – Goodness of fit	Cognitive	Understanding Applying			
CO3: Explain and solve Correlation And Regression.	Cognitive	Understanding Applying			
CO4: Explain and solve Design of Experiments	Cognitive	Understanding Applying			
200 2 production of the control of t		Understanding Applying			
UNIT I Estimation Theory					

Estimators: Un biasedness, Consistency, Efficiency and Sufficiency – Maximum likelihood

12
12

Multiple and Partial correlation – Method of least squares – Plane of Regression – Properties of residuals – Coefficient of multiple correlation – Coefficient of partial correlation – Multiple correlation with total and partial correlation – Regression and Partial correlations in terms of lower order co-efficient.

UNIT IV Design of Experiments

12

Analysis of variance – One way and two way classifications – Completely randomized design – Randomized block design – Latin square design.

UNIT V Statistical Quality Control

12

Analysis of variance: Control charts for measurements (X and R charts) – control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling, Introduction to SPSS.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXTBOOK

1. Gupta. S.C., and Kapoor. V.K., "Fundamentals of Mathematical Statistics", Sultan Chand and sons, Thirteenth Edition, 2014.

REFERENCES

- 1. J.E. Freund, "Mathematical Statistical", 5th Edition, Prentice Hall of India, 2001.
- 2. Jay L. Devore, "Probability and Statistics for Engineering and the Sciences",5th Edition, Thomas and Duxbury, Singapore, 2002.

COURSE CODE		CODE	COURSE NAME	L	Т	P	C
, Y	YMA3E02 C P A		NUMERICAL METHODS	3	0	0	3
С	P	A					
3	0	0		L	Т	P	H
	·			3	0	0	3

PREREQUISITE: Algebra

COURSE OUTCOMES:			
Course outcomes:	Domain	Level	
CO1: Find the solution by using Bisection method-Newton-Raphson	Cognitive	Remembe	ering
Method-Curve fitting straight line and parabola.			
CO2: Solve Simultaneous Linear Equations.	Cognitive	Remembe	
		Understa	nding
CO3: Find the value of $y = f(x)$ using interpolation formula.	Cognitive	Remembe	ring
$\mathbf{Cos. Time the value of } \mathbf{y} = \mathbf{i}(\mathbf{x}) \text{ using interpolation formula.}$	Cogmitive	Understar	_
CO4: Find the first and second derivative of $f(x)$ and to find the value	Cognitive	Remembe	
of integrals using numerical methods.		Understar	_
CO5: Solve ordinary differential equations by using various methods.	Cognitive	Remembe	ering
, , , , , , , , , , , , , , , , , , , ,	_	Understar	nding
UNIT I			9
Solution of Numerical Algebraic Equations & Curve fitting Bisection	on method-N	Iewton-Raj	phson
method-Curve fitting straight line and parabola.			
UNIT II			9
Solution of Simultaneous Linear Equations-Gauss-Elimination	method-Me	thod of	•
factorization-Gauss Jacobi and Gauss-Seidel methods			
UNIT III			9
Interpolation - Gregory-Newton forward and backward interpolation f	formulae Ste	rling's for	mula-
Lagrange's formula.			
UNIT IV			9
Numerical Differentiation and Integration, Numerical differentiation,	Trapezoidal	rule-Simp	son's
one-third rule —Simpson's three-eighth rule.			
UNIT V			9
Numerical Solution of Ordinary Differential Equations, Euler's method	l – fourth ord	ler Runge-	Kutta
method-Milne's predictor corrector method.			
LECTURE		TOTA	L
45		45	
TEXTBOOK			
1. Sastry.S.S, "Introductory Methods of Numerical Analysis", Pren	tice Hall of I	ndia, 2000).
REFERENCES			
1. Gerald, Curtis and Wheatley, Patrick.O,"Applied Numerical	Analysis",	(Fifth Ed	lition)
Addison-Wesley, 1989.	• •	`	,
2 Kandasamu D. Thilalrayathu K. Cunayathu K. Nyumani ad Matha	la C Chand (C. C. I.1	NT

2. Kandasamy.P, Thilakavathy.K, Gunavathy.K-Numerical Methods, S.Chand & Co. Ltd, New Delhi, Reprint 2001.

COUR	SE CO)DE	COURSE NAME	L	Т	P	С
YN	IA401		COMPLEX ANALYSIS	4	1	0	5
C	P	A					
5	0	0		L	Т	Р	Н
				4	1	0	5
PRERI	EQUIS	SITE:	Analysis				
COURS	SE OU	ГСОМ	TES:				
Course				Doma	in	Level	
			Explain Line Integrals- Rectifiable arc – Line	Cogni		Remem	bering
	integra	ıls as f	functions of arc- Cauchy's Theorem for rectangle-	8		Underst	_
		-	Explain Integral Formula – Higher derivatives –	Cogni	tive	Remem	bering
			ngularities – Taylor's theorem – Zeros and Poles –			Underst	anding
T	he Loc	cal Ma	pping – The Maximum Principle.				
CO3: I	Define	and E	xplain The General Statement of Cauchy's	Cogni	tive	Remem	
T	'heorer	n – Pr	oof of Cauchy's Theorem – Locally Exact			Underst	anding
			- Multiply Connected Regions.				
			xplain The Residue Theorem – The Argument	Cogni	tive	Remem	_
			aluation of Definite Integrals – The Mean – value			Underst	anding
			sson's formula- Schwarz's Theorem – The				
	Reflecti						
			xplain Weierstrass's Theorem – The Taylor Series	Cogni	tive	Remem	
			Series – Partial Fractions- Jensen's Formula –			Underst	anding
	ladama	ard's I	heorem				
UNIT I	1	D (, 101		C	15
	_		ifiable arc – Line integrals as functions of arc- Cauch	ny's The	eoren	i for rec	angle-
Cauchy		orem 1	or disc.				1.5
UNIT I					•		15
		-	nt - Integral Formula – Higher derivatives – Remo		_		-
		em – 2	Zeros and Poles – The Local Mapping – The Maximo	um Prin	icipie	•	15
UNIT I			Simple Connectivity Hemelegy The Cone	1 C+-4		t of Co	15
		•	 Simple Connectivity – Homology – The Gene of Cauchy's Theorem – Locally Exact Differenti 				•
Regions		1001 (of Cauchy's Theorem – Locary Exact Differenti	.ais — 1	viuitij	ory Con	necteu
UNIT I							15
		Cheore	m – The Argument Principle – Evaluation of Defin	ite Inte	orale	_ The N	
			sson's formula- Schwarz's Theorem – The Reflection			THE I	20011
UNIT V		1 01			-r -c ·		15
		Theo	rem – The Taylor Series – The Laurent Series –	Partial	Fract	ions- Je	
			d's Theorem.				
	TURE	······ ? ······	TORIAL			TO	ΓAL
60		15				75	
TEXTB							
1.Lars \	V.Ahlf	ors, "	Complex Analysis", 3 rd Edition McGraw Hill Educa	tion (In	dia) F	rivate	

Ltd.2013.

Chapter 4 - Section 1.1 to 1.5, Section 2.1 to 2.3, Section 3.1 to 3.4, Section 4.1 to 4.7, Section 5.1 to 5.3, Section 6.1 to 6.5.

Chapter 5 - Section 1.1 to 1.3, Section 2.1, Section 3.1 & 3.2.

REFERENCES:

1. S. Poonusamy, "Complex Analysis", Alpha Science International Ltd; 2nd Revised edition, 2005.

CO	COURSE CODE COURSE NAME		L	Т	P	C	
	OURSE CODE COURSE NAME IL YMA402 FUNCTIONAL ANALYSIS 4 P A I I I I I I I I I I I I I I I I I I		4	4 1	0	5	
C	P	A					
5	0	0		L	Т	P	Н
	I			4	1	0	5

PREREQUISITE: Analysis

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1: Define and Explain Normed Spaces – Continued of Linear	Cognitive	Remembering
Maps – Hahn – Banach Theorems.		Understanding
CO2: Define and Explain Banach Spaces – Uniform Boundedness	Cognitive	Remembering
Principle – Closed Graph and Open Mapping Theorems.		

		Understa	nding				
CO3: Define and Explain Bounded Inverse Theorem – Spectrum of a Bounded Operator.	rum of a Cognitive Rememb Understa						
CO4: Define and Explain Inner Product Spaces – Orthonormal Sets – Projection and Riesz Representation Theorems. Cognitive Rememburgers – Understa							
CO5: Define and Explain Bounded Operators and adjoint, Normal, Unitary and Self-adjoint Operators.	Cognitive	Remembe Understa					
UNIT I			15				
Normed Spaces – Continued of Linear Maps – Hahn – Banach Theorem	ns.						
UNIT II			15				
Banach Spaces – Uniform Boundedness Principle – Closed Graph Theorems.	and Open	Mapping					
UNIT III			15				
Bounded Inverse Theorem – Spectrum of a Bounded Operator.							
UNIT IV			15				
Inner Product Spaces – Orthonormal Sets – Projection and Riesz Repres	sentation The	orems.					
UNIT V			15				
Bounded Operators and adjoint, Normal, Unitary and Self-adjoint Ope	rators.		.1				
LECTURE TUTORIAL		TOTA	\ L				
60 15		75					
TEXTBOOK 1.Balmohan V Limaye, "Functional Analysis", 3 rd Edition, New Age In Publishers, New Delhi, 2017.	ternational (F	P) Limited					
REFERENCES							
 G.F. Simmons, "Introduction to Topology and Modern International Book Company, New York, 1963. W. Rudin, "Functional Analysis", Tata McGraw-Hill Publish 1973. 	•						
 E. Kreyszig, "Introductory Functional Analysis with Application New York, 1978. H. C. Goffman and G.Fedrick, "First Course in Functional Analysis" 		•					

 H. C. Goffman and G.Fedrick, "First Course in Functional Analysis", Prentice Hall of India, New Delhi, 1987.

COURSE CODE YMA403		ODE	COURSE NAME	L	T	P	С
7	YMA40	3	STOCHASTIC PROCESSES	3	1	0	4
С	P	A					
4	0	0		L	Т	P	Н

	3		1	0	4	4
PREREQUISITE: Probability and Statistics	<u> </u>				<u> </u>	
COURSE OUTCOMES:						
Course outcomes:	Doma	ain		Level		
CO1: Define and Explain Specification of Stochastic processes, Stationary processes, Markov Chains with examples	Cogn			Remen Unders	standi	ng
CO2: Define and Explain Classification of states and chains.	Cogn	itive		Remen Under		\mathcal{C}
CO3: Define and Explain Markov processes with Discrete state space.	Cogn	itive		Remen Unders		
CO4: Define and Explain Queuing system	Cogn	itive		Remen Unders	standi	ng
CO5: Define and Explain Auto-correlation functions, cross-	Cogn	itive		Remen		
correlation functions and their properties UNIT I				Unders		ng 2
Stochastic Processes: Some notions, Specification of Stochastic proce Markov Chains – Definitions and examples – Higher Transition proba Independent Bernoulli trails – Sequence of chain – Dependent trains.						
UNIT II					1	2
Markov chains: Classification of states and chains – determination probabilities – stability of a Markov system – Reducible chains – continuous state space.		_			th	
UNIT III	41 :				<u>i</u>	2
Markov processes with Discrete state space: Poisson processes and process and related distribution – Generalization of Poisson process-Markov processes with discrete state space (continuous time Markov Charles)	Birth					
UNIT IV					1	2
Stochastic processes in Queuing – Queuing system – General concepts – Steady state behaviour – transient behaviour of M/M/1 Model- Bi queuing theory: Muti-channel models.	_		_			
UNIT V Auto-correlation functions, cross-correlation functions - properties, pow spectral density — Properties - Wiener-Khinchine relation, linear time transfer function — auto-correlation and cross-correlation functions of inp	invar	iant	sy	stem -	- Cro	
LECTURE TUTORIAL				ТО	TAL	
45 15				60		
 TEXTBOOK 1.J. Medhi, "Stochastic Processes", New Age International (P) Limited, I edition. 2013 2. T. Veerarajan, "Random Processes", Tata McGraw Hill Publishing Co Delhi, 2008 					cond	
REFERENCES:						

- 1. Peebles, P.Z., "Probability, Random Variables and Random Signal Principles", Tata McGraw Hill, 4th edition, New Delhi, (2002).
- 2. Srinivasan and Metha, Stochastic Processes,
- 3. Miller, S.L. and Childers, D.G., "Probability and Random Processes with Applications to Signal Processing and Communications", Academic Press, (2004).
- 4. R. Nelson, Probability, "Stochastic Processes, and Queuing Theory: The Mathematics of Computer Performance Modeling", Springer-Verlag, New York, 1995.