



## **Criterion 1 – Curricular Aspects**

| <b>Key Indicator</b> | 1.1   | Curriculum Design and Development                              |  |  |  |  |  |
|----------------------|-------|----------------------------------------------------------------|--|--|--|--|--|
| Metric               | 1.1.3 | Average percentage of courses having focus on employability/   |  |  |  |  |  |
|                      |       | entrepreneurship/ skill development offered by Electronics and |  |  |  |  |  |
|                      |       | Communication Engineering                                      |  |  |  |  |  |

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

| S. No. | Programme Name                                                    |
|--------|-------------------------------------------------------------------|
| i.     | Bachelor of Technology(Electronics and Communication Engineering) |
| ii.    | Master of Technology (Wireless Communications) (Full Time)        |

2. Syllabus of the courses as per the list.

Legend: Words highlighted with Blue Color

Words highlighted with **Red Color**Words highlighted with **Purple Color** 

EntrepreneurshipEmployability

- Skill Development

## 1. List of Courses

| Sl.No. | Name of the course                                             | Course<br>Code | Year of<br>Introduction | Activities/Content with direct<br>bearing on Employability/<br>Entrepreneurship/ Skill<br>development |
|--------|----------------------------------------------------------------|----------------|-------------------------|-------------------------------------------------------------------------------------------------------|
| 2020-2 | 1                                                              |                |                         |                                                                                                       |
| 1.     | Calculus and Linear Algebra                                    | XMA101         | 2014-15                 | Employability- Test, Assignment,<br>Seminar, Poster Presentation                                      |
| 2.     | Programming for Problem Solving                                | XCP102         | 2018-19                 | Employability- Test, Assignment,<br>Seminar, Poster Presentation                                      |
| 3.     | English                                                        | XGS103         | 2014-15                 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion                           |
| 4.     | Applied Chemistry for<br>Engineers                             | XAC104         | 2014-15                 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion                           |
| 5.     | Workshop Practices                                             | XWP105         | 2014-15                 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion                           |
| 6.     | Calculus, Ordinary Differential Equations and Complex Variable | XMA201         | 2014-15                 | Employability- Test, Assignment,<br>Seminar, Poster Presentation                                      |
| 7.     | Electrical and Electronics<br>Engineering Systems              | XBE203         | 2014-15                 | Employability- Test, Assignment,<br>Seminar, Poster Presentation                                      |
| 8.     | Applied Physics for<br>Engineers                               | XAP204         | 2014-15                 | Employability- Test, Assignment,<br>Seminar, Poster Presentation                                      |
| 9.     | Engineering Graphics                                           | XEG205         | 2014-15                 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion                           |
| 10.    | Transforms and Partial Differential Equations                  | XMA301         | 2014-15                 | Employability- Test, Assignment,<br>Seminar, Poster Presentation                                      |
| 11.    | Electronic Devices                                             | XEC302         | 2014-15                 | Employability- Test, Assignment,<br>Seminar, Poster Presentation                                      |
| 12.    | Digital System Design                                          | XEC303         | 2014-15                 | Employability- Test, Assignment,<br>Seminar, Poster Presentation                                      |
| 13.    | Signals and Systems                                            | XEC304         | 2014-15                 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion                           |
| 14.    | Entrepreneurship<br>Development                                | XUM305         | 2014-15                 | Entrepreneurship-<br>Test, Assignment, Seminar                                                        |

| 15. | Constitution of India*#                            | XUM306 | 2019-20 | Entrepreneurship-<br>Test, Assignment, Seminar                              |
|-----|----------------------------------------------------|--------|---------|-----------------------------------------------------------------------------|
| 16. | Network Theory                                     | XEC307 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 17. | Electronics Devices and<br>Networks Lab            | XEC308 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 18. | Digital System Design Lab                          | XEC309 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 19. | In Plant Training – 1                              | XEC310 | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 20. | Probability Theory and<br>Stochastic Processes     | XMA401 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 21. | Total Quality Management                           | XUM402 | 2014-15 | Entrepreneurship-<br>Test, Assignment, Seminar                              |
| 22. | Human ethics, values, rights and gender equality*# | XUM403 | 2014-15 | Entrepreneurship-<br>Test, Assignment, Seminar                              |
| 23. | Transmission Lines and Waveguides                  | XEC405 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 24. | Analog Communication                               | XEC406 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 25. | Electronic Circuits                                | XEC407 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 26. | Microprocessors and<br>Microcontrollers            | XEC408 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 27. | Electronic Circuits Lab                            | XEC409 | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 28. | Microprocessors and<br>Microcontrollers Lab        | XEC410 | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 29. | Analog Integrated Circuits                         | XEC501 | 2013-14 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 30. | Digital Communication                              | XEC502 | 2017-18 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 31. | Computer Architecture and Organisation             | XEC503 | 2013-14 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |

| 32. | Digital Signal Processing                          | XEC504  | 2013-14 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
|-----|----------------------------------------------------|---------|---------|-----------------------------------------------------------------------------|
| 33. | Effective Technical<br>Communication               | XGS507  | 2008-09 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 34. | Analog Integrated Circuits<br>Lab                  | XEC508  | 2017-18 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 35. | Analog and Digital<br>Communication Lab            | XEC509  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 36. | Digital Signal Processing<br>Lab                   | XEC510  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 37. | In Plant Training – 2                              | XEC511  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 38. | PCB Design through ULTIBOARD*#                     | XECM01  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 39. | Economics for Engineers                            | XUM601  | 2013-14 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 40. | VLSI Design and Embedded<br>Systems                | XEC607  | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 41. | VLSI Design and Embedded<br>Systems Lab            | XEC608  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 42. | Mini Project                                       | XEC609  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 43. | PLC and Sensorics*#                                | XECM02  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 44. | Embedded Systems and VLSI Design                   | XEC702  | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 45. | Microwave Engineering and<br>Optical Communication | XEC703  | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 46. | Professional Elective - III                        | XEC704* | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 47. | Project Phase – I                                  | XEC707  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |

| 48. | Career Development Skills             | XGS708  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
|-----|---------------------------------------|---------|---------|-----------------------------------------------------------------------------|
| 49. | In-plant Training – III               | XEC 709 | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 50. | Matlab For Wireless<br>Communication  | XEC710  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 51. | Project Phase – II                    | XEC804  | 2014-15 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 52. | Wireless Communication                | YWC102  | 2012-13 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 53. | Wireless Networks                     | YWC103  | 2012-13 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 54. | Digital Communication Lab             | YWC106  | 2012-13 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 55. | Research Methodology and IPR          | YRM107  | 2012-13 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 56. | English for Research Paper<br>Writing | YEGOE1  | 2012-13 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 57. | Wireless Networks Lab                 | YWC109  | 2012-13 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 58. | AdvancedRadiationSystems              | YWC203  | 2014-15 | Employability- Test, Assignment,<br>Seminar, Poster Presentation            |
| 59. | Radio Frequency Systems lab           | YWC206  | 2012-13 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 60. | MiniProject                           | YWC207  | 2012-13 | Skill Developement- Quiz, Test,<br>Assignment, Seminar, Group<br>Discussion |
| 61. | Constitution of India                 | YPSOE1  | 2012-13 | Entrepreneurship-<br>Test, Assignment, Seminar                              |

| COU | COURSE CODE XMA101 |     |                             | L | T | P | C |
|-----|--------------------|-----|-----------------------------|---|---|---|---|
| COU | COURSE NAME        |     | CALCULUS AND LINEAR ALGEBRA | 3 | 1 | 0 | 4 |
| C   | P                  | A   |                             | L | T | P | H |
| 3   | 0.5                | 0.5 |                             | 3 | 1 | 0 | 4 |

**PREREQUISITE:** Differentiation and Integration

| Course | Outcomes                                                                                                                                                                                                | Domain                   | Level                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| CO1    | <b>Apply</b> orthogonal transformation to reduce quadratic form to canonical forms.                                                                                                                     | Cognitive                | Remembering<br>Applying                   |
| CO2    | <b>Apply</b> power series to tests the convergence of the sequences and series. Half range Fourier sine and cosine series.                                                                              | Cognitive<br>Psychomotor | Applying Remembering Guided Response      |
| CO3    | <b>Find</b> the derivative of composite functions and implicit functions. Euler's theorem and Jacobian                                                                                                  | Cognitive<br>Psychomotor | Remembering<br>Guided<br>Response         |
| CO4    | Explain the functions of two variables by Taylorsexpansion, by finding maxima and minima with and without constraints using Lagrangian Method.  Directional derivatives, Gradient, Curl and Divergence. | Cognitive<br>Affective   | Remembering<br>Understanding<br>Receiving |
| CO5    | Apply Differential and Integral calculus to notions of Curvature and to improper integrals.                                                                                                             | Cognitive                | Applying                                  |

## UNITI -MATRICES 15 Hours

Linear Transformation - Eigen values and Eigen vectors -Properties of Eigen values and Eigen vectors - Cayley-Hamilton Theorem - Diagonalisation of Matrices - Real Matrices: Symmetric - Skew-Symmetric and Orthogonal Quadratic form - canonical form - Nature of Quadratic form and Transformation of Quadratic form to Canonical form (Orthogonal only).

### **UNIT2 -SEQUENCES AND SERIES**

15 Hours

Sequences: Definition and examples-Series: Types and convergence- Series of positive terms — Tests of convergence: comparison test, Integral test and D'Alembert's ratio test-. Fourier series: Half range sine and cosine series- Parseval's Theorem.

### **UNIT 3 -MULTIVARIABLE CALCULUS: PARTIAL DIFFERENTIATION**

15 Hours

Limits and continuity —Partial differentiation — Total Derivative — Partial differentiation of Composite Functions: Change of Variables — Differentiation of an Implicit Function - Euler's Theorem-Jacobian.

## UNIT 4 - MULTIVARIABLE CALCULUS: MAXIMA AND MINIMA AND VECTOR CALCULUS

15 Hours

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables:

with and without constraints - Lagrange's Method of Undetermined Multipliers - Directional Derivatives - Gradient, Divergence and Curl.

#### **UNIT 5 - DIFFERENTIAL AND INTEGRAL CALCULUS**

15 Hours

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 60      | 15       | 75    |  |

#### **TEXT BOOKS**

- 1.Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5).

#### REFERENCE BOOKS

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi,
- 3. D. Poole, "Linear Algebra: A Modern Introduction", 2<sup>nd</sup> Edition, Brooks/Cole, 2005.
- 4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

**Table 1: Mapping of Cos with GAs:** 

|        | GA1 | GA2 | GA3 | GA4 | GA5 | GA6 | GA7 | GA8 | GA9 | GA10 | GA11 | GA12 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO 1   | 3   | 2   |     |     | 2   |     |     |     |     | 1    |      | 2    |
| CO 2   | 3   | 1   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 3   | 3   | 1   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 4   | 3   | 2   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 5   | 3   | 2   |     |     | 1   |     |     |     |     | 1    |      | 2    |
|        | 15  | 8   | 0   | 0   | 3   | 0   | 0   | 0   | 0   | 5    | 0    | 7    |
| Scaled | 3   | 2   |     |     | 1   |     |     |     |     | 1    |      |      |
| Value  |     |     |     |     |     |     |     |     |     |      |      |      |

$$1-5 \rightarrow 1$$
.

$$1-5 \to 1$$
,  $6-10 \to 2$ ,  $11-15 \to 3$ 

$$11-15 \rightarrow 3$$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COUF  | RSE CODE                  | XCP102                                      |            | L          | T          | P      | C  |
|-------|---------------------------|---------------------------------------------|------------|------------|------------|--------|----|
| COUF  | RSE NAME                  | PROGRAMMINGFORPROBLEMS                      | OLVING     | 3          | 0          | 2      | 5  |
| PRER  | REQUISITES                |                                             |            | L          | T          | P      | Н  |
| C:P:A | 1                         |                                             |            | 3          | 0          | 4      | 7  |
| COUF  | RSE OUTCOM                | MES                                         | DOMAIN     | 1          | Ll         | EVEI   | .1 |
| CO1   | <b>Define</b> program     | mmingfundamentalsand <i>Solve</i> simplepro | Cognitive  |            | Reme       | ember  |    |
|       | gramsusing I/O statements |                                             |            | or         | Understand |        |    |
|       |                           | Apply                                       |            |            |            |        |    |
| CO2   | <b>Define</b> syntax a    | and writesimpleprogramsusing control        | Cognitive  |            | Remember   |        |    |
|       | structures and            | arrays                                      | or         | Unde       | rstanc     | ŀ      |    |
|       |                           |                                             |            |            | Apply      | y      |    |
| CO3   | <i>Explain</i> and        | writesimpleprograms using functions and     | Cognitive  |            | Unde       | rstand | l  |
|       | pointers                  | Psychomoto                                  | or         | Apply      | 1          |        |    |
| CO4   | Explain and v             | Cognitive                                   |            | Understand |            |        |    |
|       | unions                    |                                             | Psychomoto | or         | Apply      | y      |    |
|       |                           |                                             |            |            | Analy      | ze     |    |
| CO5   | <i>Explain</i> and        | writesimpleprogramsusingfiles and           | Cognitive  |            | Reme       | ember  | •  |

## UNIT I - PROGRAMMINGFUNDAMENTALSAND INPUT/OUTPUTSTATEMENTS

9+6 Hours

Understand Create

Psychomotor

#### **Theory**

Introductiontocomponentsofacomputersystem,Program—Flowchart— Pseudocode—Software—IntroductiontoClanguage—Character set—Tokens:

Identifiers, Keywords, Constants, and Operators—sampleprogramstructure-Header files — Data Types-Variables- Output statements—Input statements. **Practical** 

- 1. Program to displayasimple pictureusingdots.
- 2.Program for addition of two numbers
- 3. Program to swap two numbers

**Build**simple projects

4. Program to solve anymathematical formula.

| UNIT II- CONTROLSTRUCTUREANDARRAYS | 9+6   |
|------------------------------------|-------|
|                                    | Hours |

#### **Theory**

ControlStructures-ConditionalControlstatements:Branching,Looping-

Unconditional control structures: switch, break, continue, gotostatements—

Arrays:OneDimensionalArray-Declaration-Initialization-Accessing ArrayElements-Searching-Sorting-TwoDimensionalarrays-Declaration -Initialization-Matrix Operations - MultiDimensional Arrays-Declaration- Initialization.Storageclasses:auto-extern-static.Strings:Basicoperations on strings.

## **Practical**

- 1. Program to find greatest of 3 numbers using BranchingStatements
- 2. Program to displaydivisible numbers between n1and n2 usinglooping Statement
- 3. Program to remove duplicate element in an array.
- 4. Program to perform stringoperations.
- 5. Performingbasic sorting algorithms.

#### UNIT III- FUNCTIONSANDPOINTERS

9+6 Hours

### **Theory**

Functions:Builtinfunctions—UserDefinedFunctions-Parameterpassing methods-Passingarraystofunctions—Recursion-Programsusingarraysand functions.Pointers-Pointerdeclaration-Addressoperator-Pointer expressions&pointerarithmetic-Pointersandfunction-Callbyvalue-Call byReference-Pointertoarrays-UseofPointersinself-referentialstructures-Notion of linked list(no implementation).

#### **Practical**

- 1. Program to find factorial of a given number using four function types.
- 2.Programs using Recursion such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort
- 3. Programs using Pointers

## **UNIT IV -STRUCTURESANDUNIONS**

9+6 Hours

#### Theory

Structures and Unions - Giving values to members-Initializing structure-Functions and structures- Passing structure to elements to functions- Passing entire function to functions- Arrays of structure - Structure within a structure and Union.

#### **Practical**

- 1.Program to readand displaystudent mark sheet Structureswith variables
- 2.Program to readand displaystudent marks of a class usingStructures with arrays
- 3.Program to create linkedlist usingStructures with pointers

| UNIT V - FILES | 9+6   |
|----------------|-------|
|                | Hours |

#### Theory

FilemanagementinC-FileoperationfunctionsinC-Definingandopeninga file-Closingafile-Thegetwandputwfunctions-Thefprintf&fscanf functions - fseek function- Files and Structures.

#### **Practical**

- 1.Program for copying contents of one file to another file.
- 2. Program using files using structure with pointer

| HOURS | LECTURE | TUTORIAL | PRACTICAL | TOTAL |  |
|-------|---------|----------|-----------|-------|--|
| HOURS | 45      | 0        | 30        | 75    |  |

#### **TEXT BOOKS/ REFERENCES**

- $1. By ron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, \\2010$
- 2. YeshwantKanethker, "Let us C", BPBPublications, 2008.
- 3. Brian W. Kernighan and Dennis M. Ritchie,"The C Programming Language", Pearson EducationInc. 2005.
- 4. Behrouz A.Forouzanand Richard. F. Gilberg,"A Structured ProgrammingApproachUsingC",II Edition, Brooks—Cole ThomsonLearningPublications, 2001
- 5. Johnson baugh R. and Kalin M., "ApplicationsProgrammingin ANSIC",IIIEdition, Pearson

EducationIndia, 2003.

6. E. Balaguruswamy, Programmingin ANSIC, Tata McGraw-Hill.

**Table 1: COs Versus POs Mapping** 

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1             | 3   | 2   |     |     | 3   |     |     |     |     |      | 2    | 3    | 2    |      |
| CO2             | 3   | 2   |     |     | 2   |     |     |     |     |      | 2    | 3    | 2    |      |
| CO3             | 2   | 2   | 1   | 2   | 2   |     |     |     |     |      | 2    | 2    | 2    |      |
| CO4             | 2   | 2   | 1   | 2   | 2   |     |     |     |     |      | 2    | 2    | 2    |      |
| CO5             | 2   | 2   | 1   |     | 2   |     |     | 1   |     | 2    | 2    | 2    | 2    |      |
| Total           | 12  | 10  | 3   | 4   | 11  |     |     | 1   |     | 2    | 10   | 12   | 10   |      |
| Scaled<br>Value | 3   | 2   | 1   | 1   | 3   |     |     | 1   |     | 1    | 2    | 3    | 2    |      |

## 3-High Relation, 2-Medium Relation, 1-Low Relation, 0-No Relation

| COU                   | RSE CO                                                                           | DE       | XGS103                               |        | L   | T        | P                  | C  |  |
|-----------------------|----------------------------------------------------------------------------------|----------|--------------------------------------|--------|-----|----------|--------------------|----|--|
| COU                   | RSE NA                                                                           | ME       | ENGLISH                              |        | 3   | 0        | 0                  | 3  |  |
| PREI                  | REQUIS                                                                           | SITES    |                                      |        | L   | T        | P                  | H  |  |
| C                     | P                                                                                | A        |                                      |        | 3   | 0        | 0                  | 3  |  |
| 2.6                   | 0.4                                                                              | 0        |                                      |        | 3   | <u> </u> | U                  | 3  |  |
| COURSE OUTCOMES: Doma |                                                                                  |          |                                      |        |     |          | Leve               | el |  |
| CO1                   | Ability to recall the meaning for proper usage Cognitive                         |          |                                      |        |     |          | Remember           |    |  |
| CO2                   | Apply                                                                            | the tech | niques in sentence patterns          | Cognit | ive | Ap       | Apply              |    |  |
| CO3                   | Identif                                                                          | ythe co  | mmon errors in sentences             | Cognit | ive | Re       | Remember           |    |  |
| CO4                   | Constr                                                                           | uct the  | Nature and Style of sensible Writing | Cognit | ive | Cr       | eate               |    |  |
| CO5                   | 5 Practicing thewriting skills Psychomotor                                       |          |                                      |        |     |          | Guided<br>Response |    |  |
| CO6                   | CO6 <i>Grasping</i> the techniques in learning sounds and etiquettes Psychomotor |          |                                      |        |     |          |                    | g  |  |

## **UNITI - VOCABULARY BUILDING** 9 Hours 1.1 The concept of Word Formation 1.2 Root words from foreign languages and their use in English 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives. 1.4 Synonyms, antonyms, and standard abbreviations. 9 Hours **UNIT II - BASIC WRITING SKILLS** 2.1 Sentence Structures 2.2 Use of phrases and clauses in sentences 2.3 Importance of proper punctuation 2.4 Creating coherence 2.5 Organizing principles of paragraphs in documents 2.6 Techniques for writing precisely 9 Hours UNIT III - IDENTIFYING COMMON ERRORS IN WRITING 3.1 Subject-verb agreement 3.2 Noun-pronoun agreement 3.3 Misplaced modifiers 3.4 Articles 3.5 Prepositions 3.6 Redundancies 3.7 Clichés UNIT IV - NATURE AND STYLE OF SENSIBLE WRITING 9 Hours 4.1 Describing 4.2 Defining 4.3 Classifying 4.4 Providing examples or evidence 4.5 Writing introduction and conclusion **UNIT V - WRITING PRACTICES** 9 Hours 5.1 Comprehension 5.2 Précis Writing 5.3 Essay Writing **UNIT VI - ORAL COMMUNICATION** (This unit involves interactive practice sessions in Language Lab) ☐ Listening Comprehension ☐ Pronunciation, Intonation, Stress and Rhythm

| ☐ Common Everyday Situations: Conversations and Dialogues |
|-----------------------------------------------------------|
| ☐ Communication at Workplace                              |
| □ Interviews                                              |
| ☐ Formal Presentations                                    |
| Suggested Readings                                        |

- (i) Practical English Usage. Michael Swan. OUP. 1995
- (ii)Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii) On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006
- (v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011
- (vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

**Table 1: Mapping of Cos with POs:** 

|        | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|--------|-----|-----|-----|-----|-----|------------|-----|-----|-----|------|------|------|------|------|
| CO1    | 2   | 0   | 0   | 0   | 0   | 0          | 2   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO2    | 2   | 0   | 0   | 0   | 0   | 0          | 2   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO3    | 1   | 0   | 0   | 0   | 0   | 0          | 1   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO4    | 2   | 0   | 0   | 0   | 0   | 0          | 1   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO5    | 0   | 0   | 0   | 0   | 0   | 0          | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| Total  | 7   | 0   | 0   | 0   | 0   | 0          | 6   | 0   | 4   | 0    | 0    | 0    | 0    | 0    |
| Scaled | 2   | 0   | 0   | 0   | 0   | 0          | 2   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| Value  |     |     |     |     |     |            |     |     |     |      |      |      |      |      |
|        | 1   | 0   | 0   | 0   | 0   | 0          | 1   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High

| COURS | SE CO                           | DE                                       | XAC104                                                                                                                                         |                                     | L     | T   | P                             | C |  |
|-------|---------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|-----|-------------------------------|---|--|
| COUF  | RSE N.                          | AME                                      | APPLIED CHEMISTRY FOR<br>ENGINEERS                                                                                                             |                                     | 3     | 1   | 1                             | 5 |  |
| PRERE | EQUIS                           | ITES                                     | Nil                                                                                                                                            |                                     | L     | T   | P                             | H |  |
| C     | P                               | A                                        |                                                                                                                                                |                                     | 3     | 1   | 2                             | 6 |  |
| 3.5   | 1.0                             | 0.5                                      |                                                                                                                                                |                                     |       |     |                               |   |  |
| COUR  | SE OU                           | TCOM                                     | ES                                                                                                                                             | DO                                  | MAIN  | I   | LEVEL                         |   |  |
| CO1   | energ<br>nega<br><b>Desc</b>    | gy, elect<br>tivity.<br>e <b>ribe</b> th | periodic properties such as ionization<br>ron affinity, oxidation states and electro<br>e various water quality parameters like<br>alkalinity. | Cogni                               |       |     | ememb                         |   |  |
| CO2   | term                            | <i>lain and</i><br>s of<br>molecul       | -                                                                                                                                              | Understand<br>Set                   |       |     |                               |   |  |
| CO3   |                                 | _                                        | ulk properties and processes using nic and kinetic considerations.                                                                             | Cogni<br>Psych<br>Affect            | omoto | r M | Apply<br>Mechanism<br>Receive |   |  |
| CO4   |                                 | <i>ribe, I</i><br>ions tha               | r A                                                                                                                                            | Remember Analyze Perception Respond |       |     |                               |   |  |
| CO5   | Apple electrone mole technology | A                                        | Remember<br>Apply<br>Mechanism                                                                                                                 |                                     |       |     |                               |   |  |

#### UNIT I-PERIODIC PROPERTIES AND WATER CHEMISTRY

8+3+6

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. **Water Chemistry-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity**.

#### UNIT II- USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA

12+3+6

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board (PCB).

#### UNITIII - ATOMIC AND MOLECULAR STRUCTURE

10+3+6

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

#### Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H<sub>3</sub>, H<sub>2</sub>F and HCN and trajectories on these surfaces.

## UNIT IV - SPECTROSCOPIC TECHNIQUES AND APPLICATIONS

7+3+6

Principles of spectroscopy and selection rules. Electronic spectroscopy-chromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

#### UNITY - STEREOCHEMISTRY AND ORGANIC REACTIONS

8+3+6

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

## Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule-Aspirin and paracetamol.

| HOURS | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
| HOURS | 45      | 15       | 30        | 90    |

#### **TEXT BOOKS**

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23<sup>rd</sup>ition), New Delhi, Shoban Lal Nagin Chand & Co., 1993
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- 3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10<sup>th</sup> Edition, Oxford publishers, 2014
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., 1976.
- 6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3<sup>th</sup> Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and ArunBahl, Advanced Organic Chemistry, (4<sup>th</sup> edition), S./ Chand & Company Ltd. New Delhi, 1977.
- 8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9<sup>th</sup> Edition), New Age International Publishers, 2017.

#### REFERENCE BOOKS

- 1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishal publishing Co., Edition 2004
- 2. Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000

#### **E Resources -** MOOCs:

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. <a href="http://freevideolectures.com/Course/3001/Chemistry-I">http://freevideolectures.com/Course/3001/Chemistry-I</a>
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. <a href="http://ocw.mit.edu/courses/chemistry/">http://ocw.mit.edu/courses/chemistry/</a>

| Laboratory Part 30                                                                                         | ) hrs |
|------------------------------------------------------------------------------------------------------------|-------|
| Experiments:                                                                                               |       |
| <ol> <li>Determination of chloride ion present in the water sample by Argentometric<br/>method.</li> </ol> | CO1   |
| 2. Determination of total, temporary and permanent hardness of water sample by EDTA method.                | CO1   |
| 3. Determination of cell constant and conductance of solutions.                                            | CO2   |
| 4. Potentiometry - determination of redox potentials and emfs.                                             | CO2   |
| 5. Determination of surface tension and viscosity.                                                         | CO3   |
| 6. Adsorption of acetic acid by charcoal.                                                                  | CO3   |
| 7. Determination of the rate constant of a reaction.                                                       | CO4   |
| 8. Estimation of iron by colorimetric method.                                                              | CO4   |
| 9. Synthesis of a polymer/drug.                                                                            | CO5   |
| 10. Saponification/acid value of an oil.                                                                   | CO5   |

#### REFERENCE BOOKS

- 1. Mendham, Denney R.C,. Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.

#### **E Resources** -MOOCs:

- 1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques
- 2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011
- 3.http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques

**Table 1: Mapping of CO's with PO's:** 

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 3   | 0   | 0   | 0   | 0   | 0   | 2   | 3   | 3   |
| CO2 | 2   | 0   | 0   | 0   | 0   | 0   | 1   | 2   | 2   |
| CO3 | 3   | 0   | 0   | 0   | 0   | 0   | 2   | 3   | 3   |
| CO4 | 8   | 0   | 0   | 0   | 0   | 0   | 3   | 3   | 3   |
| CO5 | 3   | 0   | 0   | 0   | 0   | 0   | 2   | 2   | 3   |

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$ 

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

| SUB | 3 CO                   | DE              | XWP105                                        | L             | T               | P               | C      |    |  |  |
|-----|------------------------|-----------------|-----------------------------------------------|---------------|-----------------|-----------------|--------|----|--|--|
| SUB | NA                     | ME              | WORKSHOP PRACTICES                            |               | 1               | 0               | 2      | 3  |  |  |
| C   | P                      | A               |                                               |               | L               | T               | P      | H  |  |  |
| 1   | 1   2   0   1          |                 |                                               |               |                 |                 |        |    |  |  |
| PRE | REQ                    | UISI            | TE:                                           |               |                 |                 |        |    |  |  |
|     | Course outcomes Domain |                 |                                               |               |                 |                 |        |    |  |  |
| CO1 |                        |                 | urize the machining methods and Practice      | Cognitive     |                 | nderst          |        | _  |  |  |
|     | m                      | achin           | r Gu                                          | uided         | respo           | ase             |        |    |  |  |
| CO2 | D                      | efinin          | gmetal casting process, moulding methods      | Cognitive     | Re              | emem            | bering | ĭ  |  |  |
|     | ar                     | nd <b>rel</b> a | atesCasting and Smithy applications.          | Psychomoto    | r Pe            | rcepti          | on     |    |  |  |
| CO3 | P                      | <i>lan</i> b    | pasic carpentry and fitting operation and     | Cognitive     | Aı              | plyin           | g      |    |  |  |
|     | P                      | ractic          | <i>e</i> carpentry and fitting operations.    | r Gu          | Guided response |                 |        |    |  |  |
| CO4 | Si                     | umma            | Uı                                            | Understanding |                 |                 |        |    |  |  |
|     | W                      | elding          | g operation.                                  | Psychomoto    | r Gu            | Guided response |        |    |  |  |
| CO5 | Il                     | lustra          | te the, electrical and electronics basics and | Cognitive     |                 | nderst          | andin  | g  |  |  |
|     | M                      | lakes           | appropriate connections.                      | Psychomoto    | r Oı            | iginat          | ion    |    |  |  |
| COU | IRSE                   | E CO            | NTENT                                         |               |                 |                 |        |    |  |  |
| EXP | ·.                     |                 | TITLE                                         |               |                 | СО              |        |    |  |  |
| NO  |                        |                 |                                               |               |                 | RE              | LATI   | ON |  |  |
| 1   |                        |                 | action to Machining Process                   |               |                 |                 | CO1    |    |  |  |
| 2   |                        |                 | Curining using Lathe Operation                |               |                 |                 | CO1    |    |  |  |
| 3   |                        |                 | action to CNC                                 |               |                 |                 | CO1    |    |  |  |
| 4   |                        |                 | nstration of Plain Turning using CNC          |               |                 |                 | CO1    |    |  |  |
| 5   |                        |                 | of Metal Casting Operation                    |               |                 |                 | CO2    |    |  |  |
| 6   |                        |                 | nstration of Molding Process                  |               |                 | CO2             |        |    |  |  |
| 7   |                        |                 | of Smithy Operation                           |               |                 | CO2             |        |    |  |  |
| 8   |                        |                 | of Carpentry Tools                            |               |                 | CO3             |        |    |  |  |
| 9   |                        |                 | p joint – Carpentry                           |               |                 | CO3             |        |    |  |  |
| 10  | N                      | <b>Aortis</b>   | e and Tenon joint – Carpentry                 |               |                 |                 | CO3    |    |  |  |

| 11 | Study of fitting tools                | CO3 |
|----|---------------------------------------|-----|
| 12 | Square fitting                        | CO3 |
| 13 | Triangular fitting                    | CO3 |
| 14 | Study of Welding Tools                | CO4 |
| 15 | Square butt joint - welding           | CO4 |
| 16 | Tee joint – Welding                   | CO4 |
| 17 | Introduction to house wiring          | CO5 |
| 18 | One lamp controlled by one switch     | CO5 |
| 19 | Two lamps controlled by single switch | CO5 |
| 20 | Staircase wiring                      | CO5 |

#### **TEXT BOOKS**

- 1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay
- 2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

#### **REFERENCES**

- 1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.
- 2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd., New Delhi
- 3. Workshop Technology by B.S. Raghuwanshi, DhanpatRai and Co., New Delhi.
- 4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

#### E RESOURCES

1. http://nptel.ac.in/courses/112107145/

### Mapping of CO's with PO'S:

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1    | 2   | 1   | 2   | 2   | 1   |     |     | 1   | 1   |      | 1    | 2    |
| CO2    | 2   | 1   | 2   | 2   | 1   |     |     | 1   | 1   |      | 1    | 2    |
| CO3    | 2   | 1   | 2   | 2   | 1   |     |     | 1   | 1   |      | 1    | 2    |
| CO4    | 2   | 1   | 2   | 2   | 1   |     |     | 1   | 1   |      | 1    | 2    |
| CO5    | 2   | 1   | 2   | 2   | 1   |     |     | 1   | 1   |      | 1    | 2    |
| Total  |     |     |     |     |     |     |     |     |     |      |      |      |
| Scaled |     |     |     |     |     |     |     |     |     |      |      |      |

0- No relation 1- Low relation

2- Medium relation

3- High relation

| COU.                      | RSE C                           | ODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XMA201                                                                                  |                                   | L      | T                 | P                        | C          |  |
|---------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|--------|-------------------|--------------------------|------------|--|
| COU                       | RSE N                           | AME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CALCULUS, ORDINARY DIFFERI                                                              | ENTIAL                            | 2      | 1                 |                          | 4          |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EQUATIONS AND COMPLEX VAI                                                               |                                   | 3      | 1                 | 0                        | 4          |  |
| C                         | P                               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                   | L      | T                 | P                        | H          |  |
| 3                         | 0.5                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                   | 3      | 1                 | 0                        | 4          |  |
| PREI                      | REQUI                           | SITE:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mathematics I (Calculus and Linear Algel                                                | bra)                              |        |                   |                          |            |  |
| Cour                      | se Out                          | comes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         | Domain                            |        | L                 | evel                     |            |  |
| CO <sub>1</sub>           | Fin                             | d doub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le and triple integrals and to find line,                                               | Cognitive                         | A      | pply              | ing                      |            |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d volume of an integral by Applying                                                     | _                                 | R      | Remei             | nberi                    | ng         |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uss divergence and Stokes theorem.                                                      |                                   |        |                   |                          |            |  |
| CO2                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | order differential equations of different                                               | Cognitive                         | A      | pply              | ing                      |            |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h are solvable for p, y, x and Clairaut's                                               |                                   |        |                   |                          |            |  |
| CO3                       | typ                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ond order ordinary differential equations                                               | Comitivo                          |        |                   | ina                      |            |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | le coefficients using various methods.                                                  | Cognitive                         | P      | apply             | ing                      |            |  |
| CO <sub>4</sub>           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uations to verify analytic functions and to                                             | Cognitive                         |        |                   | nberi                    | ng         |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onic functions and harmonic conjugate.  mapping of translation and rotation.            | Psychomoto                        |        | apply             | _                        |            |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Guided                                                                                  |                                   |        |                   |                          |            |  |
| COF                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | insformation.                                                                           | C:4:                              |        | Response Applying |                          |            |  |
| COS                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chy residue theorem to evaluate contour avolving sine and cosine function and to        | Cognitive Affective               |        | appiy<br>Receiv   | _                        |            |  |
|                           |                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hy integral formula, Liouvilles theorem.                                                | Affective                         | l N    | CCCIV             | mg                       |            |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | series, zeros of analytic functions,                                                    |                                   |        |                   |                          |            |  |
|                           | -                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s, Laurent's series.                                                                    |                                   |        |                   |                          |            |  |
| UNIT                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARIABLE CALCULUS (Integration)                                                          |                                   |        | 1                 | 2 Ho                     | ur         |  |
| integr<br>integr<br>Green | als - C<br>als - ve<br>i, Gauss | Change of the control |                                                                                         | integrals (Car<br>r surface integ | tesiar | n), So<br>- The   | calar<br>orem            | lin<br>s o |  |
| UNIT                      | ' - IIFI                        | RST O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RDER ORDINARY DIFFERENTIAL EQ                                                           | QUATIONS                          |        | 1                 | 2 Ho                     | ur         |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bernoulli's equations - Euler's equations                                               |                                   |        |                   |                          |            |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or p - equations solvable for y- equations sol                                          |                                   | id Cla |                   | 's typ<br>  <b>2 H</b> o |            |  |
| ORD                       |                                 | OKDIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ARY DIFFERENTIAL EQUATIONS OF                                                           | r HIGHER                          |        |                   | L <b>Z 11</b> 0          | uI         |  |
|                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | differential equations with variable coeff<br>y-Euler equation- Power series solutions- |                                   |        |                   |                          |            |  |
| param                     | neters -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kind and their properties.                                                              |                                   |        |                   |                          |            |  |

their properties- Conformal mappings- Mobius transformations and their properties.

12 Hours

UNIT - V COMPLEX VARIABLE - INTEGRATION

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions-singularities- Laurent's series - Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

| HOURS | LECTURE | TUTORIAL | TOTAL |
|-------|---------|----------|-------|
| HOURS | 45      | 15       | 60    |

#### **TEXT BOOK**

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th<sup>th</sup> Edition, 2008.

#### REFERENCE BOOKS

- 1.G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9<sup>th</sup> Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 3.W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9th Edn. Wiley India, 2009.
- 4. S. L. Ross, "Differential Equations", 3<sup>rd</sup> Ed., Wiley India, 1984.
- 5.E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
- 6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.
- 7.J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7<sup>th</sup> Ed., McGrawHill, 2004.
- 8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", LaxmiPublications, Reprint, 2008.

**Table 1: Mapping of Cos with GAs:** 

|                 | GA1 | GA2 | GA3 | GA4 | GA5 | GA6 | GA7 | GA8 | GA9 | GA10 | GA11 | GA12 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO 1            | 3   | 2   |     |     | 2   |     |     |     |     | 1    |      | 2    |
| CO 2            | 3   | 1   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 3            | 3   | 1   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 4            | 3   | 2   |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 5            | 3   | 2   |     |     | 1   |     |     |     |     | 1    |      | 2    |
|                 | 15  | 8   | 0   | 0   | 3   | 0   | 0   | 0   | 0   | 5    | 0    | 7    |
| Scaled<br>Value | 3   | 2   |     |     | 1   |     |     |     |     | 1    |      |      |

$$1-5 \to 1$$
,  $6-10 \to 2$ ,  $11-15 \to 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COURSE CODE | XBE203                     | L | T | P | C |
|-------------|----------------------------|---|---|---|---|
| COURSE NAME | ELECTRICAL AND ELECTRONICS | 3 | 1 | 1 | 5 |
|             | ENGINEERING SYSTEMS        |   |   |   |   |

| PRER                                                                                                                    | <b>EQUIS</b>                                                                                                              | SITES                                                                                                      | Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    | L                                     | T                                                               | P                                                           | Η                                                     |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|
| C                                                                                                                       | P                                                                                                                         | A                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    | 3                                     | 1                                                               | 2                                                           | 6                                                     |
| 3                                                                                                                       | 1                                                                                                                         | 0                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |                                       |                                                                 |                                                             |                                                       |
| COUR                                                                                                                    | SE OU                                                                                                                     | JTCON                                                                                                      | IES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DOMAIN                                                                                                             | 1                                     | L                                                               | EVE                                                         | L                                                     |
| CO <sub>1</sub>                                                                                                         |                                                                                                                           | e, Rei                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cognitive                                                                                                          |                                       | Rem                                                             |                                                             |                                                       |
|                                                                                                                         | -                                                                                                                         |                                                                                                            | and build and explain AC, DC circuits by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |                                       | Und                                                             |                                                             |                                                       |
|                                                                                                                         | Using                                                                                                                     | Psychomoto                                                                                                 | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mec                                                                                                                | hanis                                 | sm                                                              |                                                             |                                                       |
| ~~-                                                                                                                     |                                                                                                                           |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | set                                                                                                                |                                       |                                                                 |                                                             |                                                       |
| CO <sub>2</sub>                                                                                                         |                                                                                                                           |                                                                                                            | Explain the of operation of DC and AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cognitive                                                                                                          |                                       | Rem                                                             |                                                             |                                                       |
| 002                                                                                                                     | mach                                                                                                                      |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>a</b>                                                                                                           |                                       |                                                                 | ersta                                                       |                                                       |
| CO <sub>3</sub>                                                                                                         |                                                                                                                           |                                                                                                            | strate, various semiconductor Devices and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cognitive                                                                                                          |                                       | Rem                                                             |                                                             |                                                       |
|                                                                                                                         |                                                                                                                           |                                                                                                            | ations and displays the input output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D 1 4                                                                                                              |                                       | Und                                                             |                                                             |                                                       |
| CO4                                                                                                                     |                                                                                                                           |                                                                                                            | es of basic semiconductor devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Psychomoto                                                                                                         | or                                    | Mec                                                             |                                                             |                                                       |
| CO4                                                                                                                     |                                                                                                                           |                                                                                                            | ain, the number systems and logic gates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cognitive                                                                                                          |                                       | Rem<br>Und                                                      |                                                             |                                                       |
|                                                                                                                         | Const                                                                                                                     | ruct iii                                                                                                   | e different digital circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Psychomoto                                                                                                         | or                                    | Orgi                                                            |                                                             |                                                       |
| CO5                                                                                                                     | Lahal                                                                                                                     | l Outli                                                                                                    | and different types of microprocessors and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                  | O1                                    | Rem                                                             |                                                             |                                                       |
| COS                                                                                                                     | <b>CO5</b> Label, Outline different types of microprocessors and cognitive their applications.                            |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |                                       |                                                                 |                                                             |                                                       |
|                                                                                                                         | I their :                                                                                                                 | annlicat                                                                                                   | ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |                                       | Und                                                             | erstai                                                      | ทศ                                                    |
| Fundar<br>Star/De                                                                                                       | -I FUN<br>mentals                                                                                                         | of DC-                                                                                                     | - Ohm's Law – Kirchoff's Laws - Sources - ation - Fundamentals of AC – Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Voltage and ue, RMS Va                                                                                             | Curr<br>lue,                          | ent re<br>Form                                                  | 9+6<br>elation<br>Fac                                       | ons -                                                 |
| Fundar<br>Star/De<br>AC po<br>Paralle<br>Instrum                                                                        | rentals elta Trawer and l, Serie                                                                                          | of DC-<br>ansform<br>d Powe<br>es Para                                                                     | - Ohm's Law – Kirchoff's Laws - Sources -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Voltage and ue, RMS Vadal quantitie                                                                                | Curr<br>lue,<br>es - S                | rent re<br>Form<br>Simp<br>Mov                                  | 9+6 elation Factor le Serving                               | ons -<br>tor<br>eries                                 |
| Fundar<br>Star/De<br>AC po<br>Paralle<br>Instrum<br>meter).                                                             | -I FUN<br>mentals<br>elta Tra<br>wer and<br>l, Seric<br>ments (                                                           | of DC-<br>insform<br>d Powe<br>es Para<br>Ammet                                                            | CNTAL OF DC AND AC CIRCUITS, MEA Ohm's Law – Kirchoff's Laws - Sources - Sation - Fundamentals of AC – Average Value Factor, Phasor Representation of sinusoidal Circuit - Operating Principles of M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Voltage and ue, RMS Vadal quantitie                                                                                | Curr<br>lue,<br>es - S                | rent re<br>Form<br>Simp<br>Mov                                  | 9+6 elation Factor le Serving                               | ons -<br>etor<br>eries<br>Iron<br>ergy                |
| Fundar<br>Star/De<br>AC po<br>Paralle<br>Instrum<br>meter).<br>UNIT                                                     | -I FUN mentals elta Tra wer and l, Seric ments ( -II ELI uction, otors - uction,                                          | of DC- unsform d Powe es Para Ammet  Princip Basics Princip                                                | CNTAL OF DC AND AC CIRCUITS, MEA-<br>- Ohm's Law – Kirchoff's Laws - Sources - Sation - Fundamentals of AC – Average Value of Factor, Phasor Representation of sinusoidal Circuit - Operating Principles of Mer, Voltmeter) and Dynamometer type me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Voltage and que, RMS Vadal quantitie oving coil eters (Watt 1                                                      | Curr<br>lue,<br>es - S<br>and<br>mete | rent ro<br>Form<br>Simp<br>Mover and                            | 9+6 elation Face le Sering d En  9+                         | ons tor eries Iron ergy 3+0                           |
| Fundar<br>Star/De<br>AC po<br>Paralle<br>Instrum<br>meter).  UNIT                                                       | rentals elta Trawer and l, Serie nents (                                                                                  | of DC- unsform d Power es Para Ammet  ECTRI  Princip Basics Princip mer.                                   | CNTAL OF DC AND AC CIRCUITS, MEA- one of Single Phase Induction Motor and T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Voltage and que, RMS Vadal quantitie oving coil eters (Watt 1                                                      | Curr<br>lue,<br>es - S<br>and<br>mete | rent ro<br>Form<br>Simp<br>Mover and                            | 9+6 elation Face le Sering d En  9+                         | ons tor eries Iron ergy 3+0                           |
| Fundar<br>Star/De<br>AC po<br>Paralle<br>Instrum<br>meter).<br>UNIT<br>Construm<br>DC me<br>Construm<br>Auto tr<br>UNIT | -I FUN mentals elta Tra wer and l, Seric ments ( -II ELI uction, otors - uction, ransforr - III SI ication - Zene         | of DC- unsform d Powe es Para Ammet  ECTRI  Princip Basics Princip mer.  EMICO of Ser                      | CNTAL OF DC AND AC CIRCUITS, MEA- one of State of Announce of Sinusois of Action of Sinusois of Action of Sinusois of Action of Action of Sinusois of Action of Sinusois of Action of Sinusois of Action of Action of Sinusois of Action of | Voltage and ue, RMS Vadal quantitie oving coil sters (Watt in Application Three Phase ner, Three phase characteris | Currilue, es - Sand mete              | rent re<br>Form<br>Simp<br>Mover and<br>or and<br>or and<br>ran | 9+6 elation Factoring le Serving d En 9+ enerate Mosform 9+ | ons tor eries Iron 3+0 tors otor ners                 |
| Fundar Star/De AC po Paralle Instrummeter).  UNIT Construm Construm Construm Auto trum Classif Diode Rectific           | -I FUN mentals elta Tra wer and l, Seric ments ( -II ELI action, otors - action, cansform - III SI ication - Zene er – Ap | of DC- unsform d Power es Para Ammet  ECTRI  Princip Basics Princip mer.  EMICO of Ser or Diodo pplication | CNTAL OF DC AND AC CIRCUITS, MEA- one of State of Announce of Sinusois of Action of Sinusois of Action of Sinusois of Action of Action of Sinusois of Action of Sinusois of Action of Sinusois of Action of Action of Sinusois of Action of | Voltage and ue, RMS Vadal quantitie oving coil sters (Watt in Application Three Phase ner, Three phase characteris | Currilue, es - Sand mete              | PN con C                                                        | 9+6 elation Factoring le Serving d En 9+ enerate Mosform 9+ | ons-tor<br>tor<br>ergy<br>3+(<br>tors<br>otor<br>mers |

**UNIT - V MICROPROCESSORS** 

9+ 3+0

Architecture, 8085, 8086 - Interfacing Basics: Data transfer concepts - Simple Programming concepts.

#### **LIST OF EXPERIMENTS:**

- 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.
- 2. Study of Active and Passive elements Resistors, Inductors and Capacitors, Bread Board.
- 3. Verification of AC Voltage, Current and Power in Series and Parallel connection.
- 4. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.
- 5. Fluorescent lamp connection with choke.
- 6. Staircase Wiring.
- 7. Forward and Reverse bias characteristics of PN junction diode.
- 8. Forward and Reverse bias characteristics of zener diode.
- 9. Input and Output Characteristics of NPN transistor.
- 10. Construction and verification of simple Logic Gates.
- 11. Construction and verification of adders.
- 12. Construction and verification of subtractor.

| HOURS | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
| nouks | 45      | 15       | 30        | 90    |

#### TEXT BOOKS

- 1. Metha V.K., 2008. Principles of Electronics. Chand and Company.
- 2. Malvino, A. P., 2006. Electronics Principles. 7<sup>th</sup> ed. New Delhi: Tata McGraw-Hill.
- 3. Rajakamal, 2007. Digital System-Principle & Design. 2<sup>nd</sup> ed. Pearson education.
- 4. Morris Mano, 1999. Digital Design. Prentice Hall of India.
- 5 Ramesh, S. Gaonkar, 2000. Microprocessor Architecture, Programming and its Applications with the 8085. 4<sup>th</sup> ed. India: Penram International Publications.

#### REFERENCE BOOKS

- 1. Corton, H., 2004. Electrical Technology. CBS Publishers & Distributors.
- 2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
- 3. Jacob Millman and Christos, C. Halkias, 1967. Electronics Devices. New Delhi: McGraw-Hill.
- 4. Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems. Tokyo: McGraw-Hill, Kogakusha Ltd.
- 5. Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

#### **E-REFERENCES**

- 1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G. D. Roy, IIT Kharagpur.
- 2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.

- 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. NagendraKrishnapura , IIT Madras.
- 4. Dr.LUmanand , http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore

**Table: 1 Mapping of COs with POs:** 

| PO1 | PO2                         | PO3                     | PO4                                                                                                                 | PO5                                                                                                                                                     | PO6                                                                                                                                                                                         | PO7                                                                                                                                                                                                                             | PO8                                                                                                                                                                                                                                                     | PO9                                                                                                                                                                                                                                                                             | PO10                                                                                                                                                                                                                                                                                                                                                | PO11                                                                                                                                                                                                                                                                                                                                                                                          | PO12                                                                                                                                                                                                                                                                                                                                                                      | PSO1                                                                                                                                                                                                                                                                                                                                                                      | PSO2                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-----------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | 3                           | 1                       | 1                                                                                                                   | 1                                                                                                                                                       | 1                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
| 3   | 3                           | 1                       | 1                                                                                                                   | 1                                                                                                                                                       | 1                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
| 2   | 2                           | 2                       | 1                                                                                                                   | 2                                                                                                                                                       | 2                                                                                                                                                                                           | 1                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
| 2   | 2                           | 1                       | 1                                                                                                                   | 1                                                                                                                                                       | 1                                                                                                                                                                                           | 1                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
| 2   | 2                           | 1                       | 1                                                                                                                   | 1                                                                                                                                                       | 1                                                                                                                                                                                           | 1                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
| 12  | 12                          | 6                       | 5                                                                                                                   | 6                                                                                                                                                       | 6                                                                                                                                                                                           | 3                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
| 3   | 3                           | 2                       | 1                                                                                                                   | 2                                                                                                                                                       | 2                                                                                                                                                                                           | 1                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
|     | 3<br>2<br>2<br>2<br>2<br>12 | 3 3 3 2 2 2 2 2 2 12 12 | 3     3     1       3     3     1       2     2     2       2     2     1       2     2     1       12     12     6 | 3     3     1     1       3     3     1     1       2     2     2     1       2     2     1     1       2     2     1     1       12     12     6     5 | 3     3     1     1     1       3     3     1     1     1       2     2     2     1     2       2     2     1     1     1       2     2     1     1     1       12     12     6     5     6 | 3     3     1     1     1     1       3     3     1     1     1     1       2     2     2     1     2     2       2     2     1     1     1     1       2     2     1     1     1     1       12     12     6     5     6     6 | 3     3     1     1     1     1       3     3     1     1     1     1       2     2     2     1     2     2     1       2     2     1     1     1     1     1       2     2     1     1     1     1     1       12     12     6     5     6     6     3 | 3     3     1     1     1     1       3     3     1     1     1     1       2     2     2     1     2     2     1     1       2     2     1     1     1     1     1     1       2     2     1     1     1     1     1     1       12     12     6     5     6     6     3     3 | 3     3     1     1     1     1       3     3     1     1     1     1       2     2     2     1     2     2     1     1       2     2     1     1     1     1     1     1       2     2     1     1     1     1     1     1     1       2     2     1     1     1     1     1     1     1       12     12     6     5     6     6     3     3     5 | 3     3     1     1     1     1     1       3     3     1     1     1     1     1     1       2     2     2     1     2     2     1     1     1     1       2     2     1     1     1     1     1     1     1       2     2     1     1     1     1     1     1     1       2     2     1     1     1     1     1     1     1       12     12     6     5     6     6     3     3     5     5 | 3     3     1     1     1     1     1     1       3     3     1     1     1     1     1     1     1       2     2     2     1     2     2     1     1     1     1     1       2     2     1     1     1     1     1     1     1     1       2     2     1     1     1     1     1     1     1     1       12     12     6     5     6     6     3     3     5     5     5 | 3     3     1     1     1     1     1     1       3     3     1     1     1     1     1     1     1       2     2     2     1     2     2     1     1     1     1     1       2     2     1     1     1     1     1     1     1     1       2     2     1     1     1     1     1     1     1     1       12     12     6     5     6     6     3     3     5     5     5 | 3     3     1     1     1     1     1     1       3     3     1     1     1     1     1     1     1       2     2     2     1     2     2     1     1     1     1     1       2     2     1     1     1     1     1     1     1     1       2     2     1     1     1     1     1     1     1     1       12     12     6     5     6     6     3     3     5     5     5 |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

| COU  | RSE C                 | ODE                         | XAP204                                                                                                                                       |                             | L                                            | T                        | P                                             | C    |  |
|------|-----------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|--------------------------|-----------------------------------------------|------|--|
| COUI | RSE N                 | AME                         | APPLIED PHYSICS FOR ENGINEER                                                                                                                 | RS                          | 3                                            | 1                        | 2                                             | 6    |  |
| PRER | REQUI                 | SITE                        | Basic Physics in HSC level                                                                                                                   |                             | L                                            | T                        | P                                             | H    |  |
| C    | P                     | A<br>0.4                    |                                                                                                                                              |                             | 3                                            | 1                        | 3                                             | 7    |  |
| 2.8  | 0.8                   |                             |                                                                                                                                              |                             |                                              |                          |                                               |      |  |
| COUR | RSE O                 | UTCO                        | MES                                                                                                                                          | Don                         | nain                                         |                          | Lev                                           | el   |  |
| CO1  | elasti                | city an                     | basics of mechanics, <i>explain</i> the principles of d <i>determine</i> its significance in engineering technological advances.             | Cognit<br>Psycho            |                                              | U                        | emem<br>nders<br>lechar                       | tand |  |
| CO2  | elect                 | romagn                      | e laws of electrostatics, magneto-statics and etic induction; <i>use</i> and <i>locate</i> basic of electromagnetic induction to technology. | Cognit<br>Psycho<br>Affecti | motor                                        | A<br>M                   | Remember,<br>Analyze,<br>Mechanism<br>Respond |      |  |
| CO3  | Unde<br>meas<br>appli | Cognit<br>Psycho<br>Affecti | motor                                                                                                                                        | A<br>M                      | Understand,<br>Apply<br>Mechanism<br>Receive |                          |                                               |      |  |
| CO4  |                       | yse ene<br>iples o<br>es.   | Cognit<br>Psycho<br>Affecti                                                                                                                  | motor                       | A                                            | nders<br>nalyz<br>lechar | e                                             |      |  |

|     |   |                           |                         |                  |     |            | Receive              |
|-----|---|---------------------------|-------------------------|------------------|-----|------------|----------------------|
| CO5 | _ | Knowledge odinger equatio | particle<br>simple pote | duality<br>ntial | and | Cognitive: | Understand,<br>Apply |
|     | • | ANTEG OF GO               | <u> </u>                |                  |     | <u> </u>   | 9+3+9                |

#### **UNIT - I MECHANICS OF SOLIDS**

**Mechanics:** Force - Newton's laws of motion - work and energy - impulse and momentum torque - law of conservation of energy and momentum - Friction.

Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus - Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum -Bending of beams - Experimental determination of Young's modulus: Uniform bending and nonuniform bending.

### **UNIT -II ELECTROMAGNETIC THEORY**

9+3+3

Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarisation, Dielectric constant, internal field - Clausius Mossotti Equation - Laws of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - expression for plane, circularly and elliptically polarized light - quarter and half wave plates - production and detection of plane, circularly and elliptically polarized light.

## UNIT -III OPTICS, LASERS AND FIBRE OPTICS

9+3+12

Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.

LASER: Introduction - Population inversion - Pumping - Laser action - Nd-YAG laser - CO<sub>2</sub> laser - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system (Block diagram).

#### **UNIT - IV SEMICONDUCTOR PHYSICS**

9+3+6

**Semiconductors**: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

Diodes and Transistors: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations - Advantages of common emitter configuration working of NPN transistor as an amplifier in common emitter configuration.

## **UNIT -V QUANTUM PHYSICS**

9+3+0

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave – particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

#### TEXT BOOKS

- 1. Gaur R. K. and Gupta S. L., "Engineering Physics", DhanpatRai Publications, 2009.
- 2. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi, 2010.

#### REFERENCE BOOKS

- 1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.
- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- 3. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.
- 4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

#### E RESOURCES

1. NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

#### **LABORATORY**

- 1. Torsional Pendulum determination of moment of inertia and rigidity modulus of the given material of the wire.
- 2. Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 3. Non-Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 4. Meter Bridge Determination of specific resistance of the material of the wire.
- 5. Spectrometer Determination of dispersive power of the give prism.
- 6. Spectrometer Determination of wavelength of various colours in Hg source using grating.
- 7. Air wedge Determination of thickness of a given thin wire.
- 8. Laser Determination of wavelength of given laser source and size of the given micro particle using Laser grating.
- 9. Post office Box Determination of band gap of a given semiconductor.
- 10. PN Junction Diode Determination of V-I characteristics of the given diode.

#### REFERENCE BOOKS

- 1. Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency (P) Ltd, 2008.
- 2. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.
- 3. UmayalSundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

| LECTURE | CTURE TUTORIAL | PRACTICAL | TOTAL |  |
|---------|----------------|-----------|-------|--|
| 45      | 45 15          | 30        | 90    |  |

**Table 1: Mapping of CO's with PO:** 

|     | PO1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PS1 | PS2 |
|-----|-----|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|-----|-----|
| CO1 | 3   | 2       | 2       | 2       | 1       | -       | -       | -       | 1       | -        | -        | 1        |     |     |
| CO2 | 3   |         | 1       |         | 1       | -       | -       | -       |         | -        | -        | 1        |     |     |
| CO3 | 3   | 2       | 2       | 2       | 1       | -       | -       | -       | 1       | -        | -        | 1        |     |     |
| CO4 | 3   | 2       | 2       | 2       | 1       | -       | -       | -       | 1       | -        | -        | 1        |     |     |
| CO5 | 3   |         | 2       |         |         | -       | -       | -       |         | -        | -        | 1        |     |     |

| Total                            | 15 | 6 | 9 | 6 | 4 |  | 3 |  | 5 |  |
|----------------------------------|----|---|---|---|---|--|---|--|---|--|
| Scaled<br>to<br>0,1,2,3<br>scale | 3  | 2 | 2 | 2 | 1 |  | 1 |  | 1 |  |

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$ 

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

| SUB CODE |   | E    | XEG205                          | L | T | P | C |  |  |  |
|----------|---|------|---------------------------------|---|---|---|---|--|--|--|
| SUB NAME |   | E    | ENGINEERING GRAPHICS AND DESIGN | 2 | 0 | 1 | 3 |  |  |  |
| C        | P | A    |                                 | L | T | P | Н |  |  |  |
| 1.75     | 1 | 0.25 |                                 | 2 | 0 | 2 | 4 |  |  |  |
|          |   |      |                                 |   |   |   |   |  |  |  |

**PREREQUISITE:** NIL

|                 | Course outcomes:                              | Domain        | Level                    |
|-----------------|-----------------------------------------------|---------------|--------------------------|
|                 | Apply the national and international          | Cognitive,    | Applying, Guided         |
| CO1             | standards, construct and practice various     | Psychomotor   | response and Responds to |
|                 | curves                                        | and Affective | Phenomena                |
|                 | Interpret, construct and practice             | Cognitive,    | Understanding,           |
| CO2             | orthographic projections of points, straight  | Psychomotor   | Mechanism and Responds   |
|                 | lines and planes.                             | and Affective | to Phenomena             |
|                 | Construct Sketch and Practice projection      | Cognitive,    | Applying, Complex Overt  |
| CO <sub>3</sub> | of solids in various positions and true       | Psychomotor   | Response and Responds to |
|                 | shape of sectioned solids.                    | and Affective | Phenomena                |
|                 | Interpret, Sketch and Practice the            | Cognitive,    | Understanding, Complex   |
| CO4             | development of lateral surfaces of simple     | Psychomotor   | Overt Response and       |
|                 | and truncated solids, intersection of solids. | and Affective | Responds to Phenomena    |
|                 | Construct sketch and practice isometric       | Cognitive,    | Applying, Complex Overt  |
| CO5             | and perspective views of simple and           | Psychomotor   | Response and Responds to |
|                 | truncated solids.                             | and Affective | Phenomena                |

## UNIT-IINTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.

Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free hand sketching of three dimensional objects.

Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves. Practice on basic tools of CAD

## UNIT - IIPROJECTION OF POINTS, LINES AND PLANE SURFACES

12+6

General principles of orthographic projection – first angle projection – layout of views –

projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection-CAD practice on points and lines

#### UNIT-HIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS

12+6

Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one plane of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections-CAD practice on solid models

#### UNIT - IVDEVELOPMENT OF SURFACES AND INTERSECTION OF SOLIDS

12+6

Need for development of surfaces – development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes – intersection of solids and curves of intersection –prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset-CAD practice on intersection of solids.

#### **UNIT - VISOMETRIC AND PERSPECTIVE PROJECTIONS**

12+6

Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones – principles of perspective projections – projection of prisms, pyramids and cylinders by visual ray and vanishing point methods-CAD practice on isometric view

| THEORY | PRACTICAL | TOTAL |
|--------|-----------|-------|
| 30     | 60        | 90    |

#### **TEXT BOOKS**

- 1. Bhatt, N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.
- 2. Natarajan, K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006.
- 3. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013

#### **REFERENCES**

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition 2001.
- 2. Venugopal, K. and Prabhu Raja, V., "Engineering Graphics", New Age International (P) Ltd., 2008.
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

#### **E RESOURCES**

- 1. <a href="http://periyarnet/Econtent">http://periyarnet/Econtent</a>
- 2. <a href="http://nptel.ac.in/courses/112103019/">http://nptel.ac.in/courses/112103019/</a>

Table 1: Mapping of CO's with PO'S:

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO 2 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|-------|
| CO1    | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 1   | 1   | 2        | 3        | 3        | 3        | -     |
| CO2    | 3   | 3   | 3   | 1   | 3   | 1   | 3   | 1   | 1   | 1        | 2        | 3        | 3        | -     |
| CO3    | 3   | 3   | 3   | 1   | 3   | 1   | 3   | 1   | 1   | 1        | 2        | 3        | 3        | -     |
| CO4    | 3   | 3   | 3   | 1   | 3   | 1   | 3   | 1   | 1   | 1        | 2        | 3        | 3        | -     |
| CO5    | 3   | 3   | 3   | 1   | 3   | 1   | 3   | 1   | 1   | 1        | 2        | 3        | 3        | -     |
| Total  | 15  | 15  | 15  | 6   | 15  | 6   | 15  | 5   | 5   | 6        | 11       | 3        | 3        | -     |
| Scaled | 3   | 3   | 3   | 2   | 3   | 2   | 3   | 1   | 1   | 2        | 3        | 3        | 3        | -     |

0 - No relation 1- Low relation 2- Medium relation

3- High relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COURSE CODE  |     | ODE  | XMA301                                        | L | T | P | C |
|--------------|-----|------|-----------------------------------------------|---|---|---|---|
| COURSE NAME  |     | AME  | TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS | 3 | 1 | 0 | 4 |
| C            | P   | A    |                                               | L | T | P | Н |
| 3            | 0.5 | 0.5  |                                               | 3 | 1 | 0 | 4 |
| PREREQUISITE |     | SITE | Nil                                           |   |   |   |   |

## **Learning Objectives**

- Introduction of methods to solve linear partial differential equations of second order and higher order.
- Find the solutions of pde's are determined by conditions at the boundaries of the spatial domain and initial conditions at time zero.
- Provide sufficient knowledge to engineering students in the specific mathematical tools and techniques such as Fourier series, Fourier transform and Z transform.
- To enable students to use Fourier series method both in the solution of pde and other wider context.

| COII        | iext.                                                       |             |               |
|-------------|-------------------------------------------------------------|-------------|---------------|
| COUR        | SE OUTCOMES:                                                |             |               |
| Course      | outcomes:                                                   | Domain      | Level         |
| <b>CO1:</b> | <b>Solve</b> standard types of first order and second order | Cognitive   | Apply         |
|             | partial differential equations with                         |             |               |
|             | constantcoefficients.                                       |             |               |
|             | Elimination of arbitrary constants and functions.           | Psychomotor | Imitation     |
| CO2         | State Dirichlet's condition. Explain general                | Cognitive   | Remembering   |
|             | Fourierseries of the curve $y = f(x)$ in the interval       |             | Understanding |
|             | $(0,2\pi)(-\pi,\pi),(0,2\ell),(-\ell,\ell)$ and $(0,\pi)$ . |             |               |
|             | Perform harmonic analysis                                   | Psychomotor | Imitation     |
| CO3         | Solve the standard Partial Differential Equations,          | Cognitive   | Apply         |
|             | arising in engineeringProblems, like one dimensional        |             |               |
|             | Wave equation and Heat flow equation by Fourier             |             |               |
|             | series method in Cartesian coordinates.                     |             |               |
|             | Classify second order quasi pde.                            | Affective   | Receiving     |
| CO4         | <b>Find</b> the Fourier transform and Fourier sine and      | Cognitive   | Remembering   |
|             | cosinetransforms of simple functions using                  |             | Apply         |
|             | definition and its properties.                              |             |               |
| CO5         | Apply the properties of Z transform to Find                 | Cognitive   | Remembering   |
|             | theZtransform and inverse Z transform of sequence           |             | Apply         |
|             | and functions, and to solve the difference                  |             |               |
|             | equation using them.                                        |             |               |

#### Unit - I PARTIAL DIFFERENTIAL EQUATIONS

12 Hours

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solution of standard types of first order partial differential equations – Lagrange's linear equation – Linear partial differential equations of second and higher order with constant coefficients.

#### **Unit - II FOURIER SERIES**

12 Hours

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series –Parseval's identity – Harmonic Analysis.

#### Unit - III APPLICATIONS OF BOUNDARY VALUE PROBLEMS

12 Hours

Classification of second order quasi linear partial differential equations – Solutions of one dimensional wave equation – One dimensional heat equation – Steady state solution of two dimensional heat equation (Insulated edges excluded) – Fourier series solutions in Cartesian coordinates.

## **Unit - IV FOURIER TRANSFORM**

12 Hours

Fourier integral theorem (without proof) – Fourier transform pairs – Fourier Sine and Cosine transforms – properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

## Unit - V Z TRANSFORM AND DIFFERENCE EQUATIONS

12 Hours

Z-transform – Elementary properties – Inverse Z – transform – Convolution theorem – Initial and Final value theorems - Formation of difference equations – Solution of difference equations. using Z-transform.

| HOURS | LECTURE | TUTORIAL | TOTAL |  |  |
|-------|---------|----------|-------|--|--|
| HOURS | 45      | 15       | 60    |  |  |

#### **TEXT BOOKS**

- 1.Grewal, B.S., "Higher Engineering Mathematics", 43<sup>rd</sup> Edition, Khanna Publishers, New Delhi (2015).
- 2. Veerarajan. T., "Engineering Mathematics Volume III", Second reprint, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012.

#### **REFERENCES**

- 1. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw Hill Book Co., Singapore (1987).
- 2. Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics Volume III", S. Chand & Company Ltd., New Delhi (1996).
- 3. Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics" 7<sup>th</sup> Edition Lakshmi Publications (P) Limited, New Delhi (2007).
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
- 6. Narayanan, S., ManicavachagomPillay, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volume: II and III, S.Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai (2002).

## **E-REFERENCES**

1. nptel: Advanced Engineering Mathematics, Prof. Jitendra Kumar, Department of Mathematics, Indian Institute of Technology, Kharagpur, India.

Table 1: CO Vs GA Mapping

|        | GA1 | GA2 | GA3 | GA4 | GA5 | GA6 | GA7 | GA8 | GA9 | GA10 | GA11 | GA12 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|        |     |     |     |     |     |     |     |     |     |      |      |      |
| CO 1   | 3   |     |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 2   | 3   |     |     |     |     |     |     |     |     | 1    |      | 1    |
| CO 3   | 3   | 2   |     |     |     |     |     |     |     | 1    | 1    | 2    |
| CO 4   | 3   | 2   |     |     | 1   |     |     |     |     | 1    | 1    | 1    |
| CO 5   | 3   | 2   |     |     | 1   |     |     |     |     | 1    | 1    | 1    |
|        | 15  | 6   | 0   | 0   | 2   | 0   | 0   | 0   | 0   | 5    | 3    | 6    |
| Scaled | 3   | 2   |     |     | 2   |     |     |     |     | 1    | 1    | 2    |
| Value  |     |     |     |     |     |     |     |     |     |      |      |      |

$$1-5 \rightarrow 1$$

$$1-5 \to 1$$
,  $6-10 \to 2$ ,  $11-15 \to 3$ 

$$11-15 \rightarrow 3$$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COUI        | RSE CO | DDE   | XEC302             | L | T | P | C |
|-------------|--------|-------|--------------------|---|---|---|---|
| COURSE NAME |        | ME    | ELECTRONIC DEVICES | 3 | 0 | 0 | 3 |
| PRER        | REQUIS | SITES |                    | L | T | P | Н |
| C           | P      | A     |                    | 2 | Λ | Λ | 2 |
| 3           | 0      | 0     |                    | 3 | U | U | 3 |

#### LEARNING OBJECTIVES

- To introduce the operation of different types of semiconductor devices.
- To familiarize the integrated circuits technology.
- To provide knowledge on the characteristics of opto electronic devices

| COUR | SE OUTCOMES:                                                                                   | Domain    | Level         |
|------|------------------------------------------------------------------------------------------------|-----------|---------------|
| CO1  | <b>Define</b> the principles of semiconductor physics.                                         | Cognitive | Remembering   |
| CO2  | <b>Describe</b> the operation and characteristics of semiconductor diodes.                     | Cognitive | Understanding |
| CO3  | <i>Understand</i> the operation and Characteristics of BJT and FET                             | Cognitive | Understanding |
| CO4  | <i>Discuss</i> the operation and characteristics of power electronic and optoelectronic diodes | Cognitive | Understanding |
| CO5  | <i>Illustrate</i> the Integrated Circuit fabrication processes.                                | Cognitive | Understanding |
|      |                                                                                                |           | 1             |

#### **UNIT - I Introduction To Semiconductor Technology**

9 Hours

ReviewofQuantumMechanics, ElectronsinperiodicLattices, E-

kdiagrams. Energybandsinintrinsicandextrinsicsilicon; Carriertransport: diffusion current, drift current, mobility and resistivity; sheet resistance, design of resistors.

#### **UNIT - II Junction Diodes And Applications**

9 Hours

Generationandrecombinationofcarriers; Poissonandcontinuity equation P-

Njunctioncharacteristics, I-V

characteristics, and small signals witching models; Avalanche breakdown, Zenerdiode, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier and Voltage Regulators.

## **UNIT - III Transistors And Applications**

9 Hours

BipolarJunctionTransistor,I-Vcharacteristics, NPN and PNP Transistors ,Ebers-MollModel, MOScapacitor,C-Vcharacteristics, Junction Field Transistor, VI Characteristics, MOSFET,I-Vcharacteristics, and small signal models of MOS transistor.

### **UNIT - IV Special Electronic Devices**

**6 Hours** 

SCR, DIAC, TRIAC, LED, LDR, LCD, Photodiode, Photo Transistorandsolarcell.

#### **UNIT - V** Introduction To Integrated Circuit Technology

6+6Hours

Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography, etching, chemical vapor deposition, sputtering, twin-tub CMOS process.

| HOURS | <b>LECTURE</b> | TUTORIAL | PRACTICAL | TOTAL |  |
|-------|----------------|----------|-----------|-------|--|
| HOURS | 45             |          | 0         | 45    |  |

#### **TEXT BOOKS**

- 1. Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit Theory" 11<sup>th</sup> Edition, UBS Publishers, New Delhi, 2013.
- 2. G.Streetman, and S.K.Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.
- 3. D.Neamen, D.Biswas "Semiconductor Physics and Devices, "McGraw-Hill Education Jacob
- 4. Millman and Christos C.Halkias, "Electronic Devices and Circuits" 3<sup>rd</sup> Edition, Tata McGraw Hill, New Delhi, 2010.

#### REFERENCES

- 1.C.T.Sah, "Fundamentalsofsolidstateelectronics," WorldScientificpublishingCo.Inc, 1991.
- 2. S.M.SzeandK.N.Kwok, "PhysicsofSemiconductorDevices," 3rdedition, Wiley&Sons, 2006.
- 3. Y.TsividisandM.Colin, "OperationandModelingoftheMOSTransistor," OxfordUniversity .Press, 2011.
- 4. David A. Bell, "Electronic devices and circuits", Prentice Hall of India, 2004.
- 5. S.Salivahanan, "Electronics devices and circuits". 2<sup>nd</sup> Edition, Tata McGraw Hill, 2008.

#### **E-REFERENCES**

- 1. <a href="http://www.rtna.ac.th/departments/elect/Data/EE304/Electronic%20Devices%20and%20Circuit%20Theory.pdf">http://www.rtna.ac.th/departments/elect/Data/EE304/Electronic%20Devices%20and%20Circuit%20Theory.pdf</a>
- 2. <a href="http://nptel.ac.in/courses/117103063/">http://nptel.ac.in/courses/117103063/</a> (Prof. ChitralekhaMahanta, NPTEL, Basic Electronics, IIT-Guwahati)
- 3. <a href="http://nptel.ac.in/video.php?subjectId=117103063">http://nptel.ac.in/video.php?subjectId=117103063</a> (Prof. Gautam Barua, NPTEL, Basic Electronics, IIT-Guwahati)
- 4. <a href="http://nptel.ac.in/courses/117101106/">http://nptel.ac.in/courses/117101106/</a> (Prof. A N chandorkar, NPTEL, Analog Electronics, IIT-Bombay)

**Table 1: Mapping of COs with Pos** 

|                 | PO1 | PO 2 | PO | PO | PO | PO | PO | PO 8 | PO | PO 10 | PO 11 | PO |
|-----------------|-----|------|----|----|----|----|----|------|----|-------|-------|----|
|                 |     |      | 3  | 4  | 5  | 6  | 7  |      | 9  |       |       | 12 |
| CO 1            | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO 2            | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO 3            | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO 4            | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO 5            | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO6             | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| Total           | 18  | 12   | 6  | 6  | 6  | 6  | 6  | 6    |    |       |       | 6  |
| Scaled<br>Value | 4   | 3    | 2  | 2  | 2  | 2  | 2  | 2    |    |       |       | 2  |

0- No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COUR        | RSECO | DE   | XEC303              | L | T | P | C |
|-------------|-------|------|---------------------|---|---|---|---|
| COURSE NAME |       |      | DIGITALSYSTEMDESIGN | 3 | 0 | 0 | 3 |
| PRER        | EQUIS | SITE |                     |   |   |   |   |
| С           | P     | A    |                     | L | T | P | Н |
| 3           | 0     | 0    |                     | 3 | 0 | 0 | 3 |

#### **LEARNING OBJECTIVES**

- To introduce basic postulates of Boolean Algebra, methods for simplification of Boolean expression and Code conversion.
- To outline the design of combinational logic circuits.
- To understand the design of sequential logic circuits.
- To introduce the function of logic families and Programmable Logic Devices.
- To implement logic gates, combinational and sequential circuits using VHDL.

| COUR | RSE OUTCOMES                                                | DOMAIN    | LEVEL         |
|------|-------------------------------------------------------------|-----------|---------------|
| CO1  | Understand the fundamental concepts and Karnaugh map        | Cognitive | Understanding |
|      | techniques used in digital electronics.                     |           |               |
| CO2  | <i>Understand</i> the fundamental concepts of combinational | Cognitive | Understanding |
|      | logic circuits                                              |           |               |
| CO3  | Understand the fundamental concepts of Sequential logic     | Cognitive | Understanding |
|      | circuits                                                    |           |               |
| CO4  | Explain the function of LogicFamilies, Memories and         | Cognitive | Understanding |
|      | Programmable Logic Devices                                  |           |               |
| CO5  | UseVHDLtosimulate combinational and sequential logic        | Cognitive | Understanding |
|      | circuits.                                                   |           |               |

#### **UNIT -I LOGIC SIMPLIFICATION**

9 Hours

Logic Simplification :Review of Boolean Algebra and DeMorgan's Theorem, SOP &POS forms, Canonical forms, Karnaughmaps upto 6 variables, Binary codes, Code Conversion.

#### **UNIT - IICOMBINATIONAL LOGIC CIRCUITS**

9 Hours

MSI devices: Comparator, Multiplexer, Demultiplexer, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU

### UNIT - III SEQUENTIAL LOGIC CIRCUITS DESIGN

9 Hours

Sequential Logic Design: Building blocks S-R, J KandMaster-Slave JKFF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Finite State Machines, Design of synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits: Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation.

#### UNIT -IV LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES

9 Hours

Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing, Memory

elements, Concept of Programmable logic devices : FPGA. Logic implementation using Programmable Devices.

## UNIT - V VERY HIGHSPEED INTEGRATED CIRCUIT HARDWARE DESCRIPTION LANGUAGE(VHDL)

9 Hours

VLSIDesignflow:Designentry:Schematic,FSM&HDL,differentmodelingstylesinVHDL,Datatypes andobjects,Dataflow,BehavioralandStructuralModeling,Synthesis andSimulationVHDLconstructsandcodesforcombinationalandsequentialcircuits.

| HOURS | LECTURE | TUTORIAL | TOTAL |
|-------|---------|----------|-------|
| HOURS | 45      | 0        | 45    |

#### **TEXT BOOKS**

- 1. R.P.Jain, "ModerndigitalElectronics", TataMcGrawHill, 4thedition, 2009.
- 2. DouglasPerry, "VHDL", TataMcGrawHill, 4thedition, 2002.
- 3.W.H.Gothmann, "DigitalElectronics Anintroductiontotheoryandpractice", PHI, 2<sup>nd</sup> edition, 2006.
- 4. D.V.Hall, "Digital Circuits and Systems", TataMcGraw Hill, 1989
- 5. CharlesRoth, "DigitalSystemDesignusingVHDL", TataMcGrawHill2<sup>nd</sup>edition 2012.

#### REFERENCES

- 1.M. Morris Mano, and Michael D.Ciletti "Digital Design: with an Introduction to Verilog HDL", VHDL, and SystemVerilog (6<sup>th</sup>Edition) 6th Edition, Pearson/Prentice Hall of India Pvt. Ltd., New Delhi, 2017.
- 2. Thomas L. Floyd, "Digital Fundamentals, 11<sup>th</sup>Edition, Pearson Education", Inc, NewDelhi, 2014.

#### E REFERENCES

- 1.Lecture series on Digital Circuits & Systems by Prof.S.Srinivasan, Department of Electrical Engineering, IIT Madras.For more details on NPTEL visit <a href="http://nptel.ac.in">http://nptel.ac.in</a>
- 2.http://nptel.ac.in/courses/117106114/
- 3.http://nptel.ac.in/courses/117106086/1

**Table 1 : CO Vs PO Mapping** 

|                 | PO1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 |
|-----------------|-----|------|------|------|------|------|------|------|------|-------|-------|-------|
| CO 1            | 3   | 3    | 3    | 2    | 2    | 2    | 1    | 1    |      |       |       | 2     |
| CO 2            | 3   | 3    | 3    | 2    | 2    | 2    | 1    | 1    |      |       |       | 2     |
| CO 3            | 3   | 3    | 3    | 2    | 2    | 2    | 1    | 1    |      |       |       | 2     |
| CO 4            | 3   | 3    | 3    | 2    | 2    | 2    | 1    | 1    |      |       |       | 2     |
| CO 5            | 3   | 3    | 3    | 2    | 2    | 2    | 1    | 1    |      |       |       | 2     |
| CO6             | 3   | 2    | 2    | 1    | 3    | 1    | 1    | 1    |      |       |       | 2     |
| Total           | 18  | 17   | 17   | 11   | 13   | 11   | 6    | 6    |      |       |       | 6     |
| Scaled<br>Value | 4   | 4    | 4    | 3    | 3    | 3    | 1    | 1    |      |       |       | 1     |

0 - No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COU         | RSECO  | DE   | XEC304              | L | T | P | C |
|-------------|--------|------|---------------------|---|---|---|---|
| COURSE NAME |        |      | SIGNALS AND SYSTEMS | 3 | 0 | 0 | 3 |
| PRE         | REQUIS | SITE |                     |   |   |   |   |
| С           | P      | A    |                     | L | T | P | H |
| 3           | 0      | 0    |                     | 3 | 0 | 0 | 3 |

#### **LEARNING OBJECTIVES**

- To introduce students the concept and theory of signals and systems needed in electronics and telecommunication engineering fields.
- To introduce students to the basic idea of signal and system analysis and its characterization in time and frequency domain

|        | E OLUCOMEC                                           | DOMAIN    | T TOXAGE      |
|--------|------------------------------------------------------|-----------|---------------|
| COURSI | E OUTCOMES                                           | DOMAIN    | LEVEL         |
| CO1    | Describe and Classify the signals & systems          | Cognitive | Remembering   |
|        |                                                      |           | Understanding |
| CO2    | Find and Apply FT and DFT and Analyze the            | Cognitive | Applying      |
|        | properties of LSI systems.                           |           | Analyzing     |
| CO3    | Find and solve Laplace Transform to study the        | Cognitive | Remembering   |
|        | response of LSI systems                              |           | Applying      |
| CO4    | Find and solve Z transform to study the              | Cognitive | Remembering   |
|        | performance of Discrete Time Signals                 | _         | Applying      |
| CO5    | <i>Interpret</i> the relation between the continuous | Cognitive | Remembering   |
|        | and discrete time signals bySampling and             |           | Understanding |
|        | Reconstruction.                                      |           | _             |

#### UNIT - I INTRODUCTION TO SIGNALS AND SYSTEMS

9 Hours

An Introduction

to

and

Systems:

Energyandpowersignals, continuous and discrete timesignals, continuous and discrete amplitudes ignals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability.

**Signals** 

#### UNIT- II LINEARSHIFT INVARIANT(LSI)SYSTEMS

9 Hours

LinearShift Invariant(LSI)systems, impulseres ponse and stepres ponse, convolution, in put-output behavior with a periodic convergent in puts. Characterization of causality and stability of linear shift-invariant systems. System representation through differential equations and difference equations.

#### UNIT - III FOURIERTRANSFORM

9 Hours

Periodicandsemi-periodicinputstoanLSIsystem, the notion of a frequency response and its relation to the impulser esponse, Fourier series representation, the Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-

 $\label{thm:continuity} Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. \\ The idea of signal space and orthogonal bases.$ 

#### **UNIT - IVLAPLACETRANSFORM**

9 Hours

TheLaplaceTransform,notionof

EigenfunctionsofLSIsystems, abasis of

Eigenfunctions, region of convergence, poles and zeros of system, Laplace domain analysis, solution to differential equations and system behavior.

Thez-Transformfordiscretetimesignalsandsystems-eigenfunctions, regionof convergence, z-domain analysis.

#### **UNIT - VSAMPLINGTHEOREMAND RECONSTRUCTION**

9 Hours

State-spaceanalysis and multi-input, multi-output representation. The state-transition matrix and its role. The Sampling Theorem and its implications-Spectra of sampled signals. Reconstruction: ideal interpolator, zero-orderhold, first-orderhold, and soon. A liasing and its effects. Relation between continuous and discrete time systems.

| HOURS | LECTURE | TUTORIAL | TOTAL |
|-------|---------|----------|-------|
| HOURS | 45      | 0        | 45    |

#### TEXT BOOKS

- 1. A.V.Oppenheim, A.S. Willskyand I.T. Young, "Signals and Systems", Prentice Hall, 1983.
- 2. R.F.Ziemer, W.H.Tranterand D.R.Fannin, "Signals and Systems-Continuous and Discrete", 4thedition, Prentice Hall, 1998.
- 3. Papoulis, "Circuits and Systems: A Modern Approach", HRW, 1980.
- 4. B.P.Lathi, "Signal Processing and Linear Systems", Oxford University Press, c1998.
- 5. Douglas K. Lindner, "Introduction to Signals and Systems", McGraw Hill International Edition: c19 99.
- 6.SimonHaykin,BarryvanVeen,"SignalsandSystems",JohnWileyandSons(Asia)PrivateLimited, c1998.
- 7. Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems", John Wiley and Sons, 1995.
- 8.M.J.Roberts, "Signals and Systems-
  - AnalysisusingTransformmethodsandMATLAB",TMH,2003.
- 9.J.Nagrath, S.N.Sharan, R.Ranjan, S.Kumar, "Signals and Systems", TMHNew Delhi, 2001.
- 10. Ashok Ambardar, "Analogand Digital Signal Processing", 2nd Edition, Brooks/Cole Publish ing Company (Aninternational Thomson Publishing Company), 1999.

#### REFERENCES

- 1. John G. Proakisand D. G. Manolakis, Digital Signal Processing: Principles, Algorithms And Applications, Prentice Hall, 1997.
- 2.D.J.DeFatta, J.G.Lucas and W.S.Hodgkiss, Digital Signal Processing, John Wiley & Sons, 1988

#### **E REFERENCES**

https://onlinecourses.nptel.ac.in/noc18\_ee02/preview

# **Mapping of COs with POs:**

|      | PO1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 |
|------|-----|------|------|------|------|------|------|------|------|-------|-------|-------|
| CO 1 | 3   | 3    | 2    | 1    | 1    | 1    | 1    | 1    |      |       |       | 1     |
| CO 2 | 3   | 3    | 2    | 1    | 1    | 1    | 1    | 1    |      |       |       | 1     |
| CO 3 | 3   | 3    | 2    | 1    | 1    | 1    | 1    | 1    |      |       |       | 1     |
| CO 4 | 3   | 3    | 2    | 1    | 1    | 1    | 1    | 1    |      |       |       | 1     |
| CO 5 | 3   | 3    | 2    | 1    | 1    | 1    | 1    | 1    |      |       |       | 1     |
| CO 6 | 3   | 3    | 2    | 1    | 1    | 1    | 1    | 1    |      |       |       | 1     |
|      | 18  | 18   | 12   | 6    | 6    | 6    | 6    | 6    |      |       |       | 6     |

0- No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COUI        | COURSE CODE XUM305 |       |                              |          | L        | T | P | C |
|-------------|--------------------|-------|------------------------------|----------|----------|---|---|---|
| COURSE NAME |                    |       | ENTREPRENEURSHIP DEVELOPMENT | Γ        | 2        | 0 | 0 | 2 |
| PRER        | REQUI              | SITE: | Nil                          |          | L        | T | P | H |
| C           | P                  | A     |                              |          | 2        | Λ | 0 | 2 |
| 2.7         | 0                  | 0.3   |                              |          | 4        | U | U | 2 |
| COLI        | DCE O              | TTCO  | MEC                          | <b>D</b> | <b>:</b> | Τ | 1 |   |

| COUR | SE OUTCOMES                                                        | Domain    | Level         |
|------|--------------------------------------------------------------------|-----------|---------------|
| CO1  | <b>Recognise</b> and <b>describe</b> the personal traits of an     | Affective | Receiving     |
|      | entrepreneur.                                                      | Cognitive | Understanding |
| CO2  | <b>Determine</b> the new venture ideas and <b>analyse</b> the      | Cognitive | Understanding |
|      | feasibility report.                                                |           | Analysing     |
| CO3  | <b>Develop</b> the business plan and <b>analyse</b> the plan as an | Affective | Receiving     |
|      | individual or in team.                                             | Cognitive | Analysing     |
| CO4  | <b>Describe</b> various parameters to be taken into                | Cognitive | Understanding |
|      | consideration for launching and managing small business.           |           |               |
| CO5  | Explain the technological management and Intellectual              | Cognitive | Understanding |
|      | Property Rights                                                    |           |               |

# UNIT - IENTREPRENEURIAL TRAITS AND FUNCTIONS

9 Hours

Definition of Entrepreneurship; competencies and traits of an entrepreneur; factors affecting Entrepreneurship Development; Role of Family and Society; Achievement Motivation; Entrepreneurship as a career and national development;

# UNIT - IINEW PRODUCT DEVELOPMENT AND VENTURE CREATION

9 Hours

Ideation to Concept development; Sources and Criteria for Selection of Product; market assessment; Feasibility Report; Project Profile; processes involved in starting a new venture; legal formalities; Ownership; Case Study.

### UNIT - IIIENTREPRENEURIAL FINANCE

9 Hours

Financial forecasting for a new venture; Finance mobilization; Business plan preparation; Sources of Financing, Angel Investors and Venture Capital; Government support in startup promotion.

### UNIT - IVLAUNCHING OF SMALL BUSINESS AND ITS MANGEMENT

9 Hours

Operations Planning - Market and Channel Selection - Growth Strategies - Product Launching - Incubation, Monitoring and Evaluation of Business - Preventing Sickness and Rehabilitation of Business Units.

# UNIT - VTECHNOLOGY MANAGEMENT, IPR PORTFOLIO FOR NEW PRODUCT VENTURE

9 Hours

Technology management; Impact of technology on society and business; Role of Government in supporting Technology Development and IPR protection; Entrepreneurship Development Training and Other Support Services.

| LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|---------|----------|-----------|-------|
| 45      | 0        | 0         | 45    |

### **TEXT BOOKS**

- 1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.
- 2. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi.

# REFERENCES

- 1. Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra, 2nd Edition.
- 2. Prasanna Chandra, 2009, *Projects Planning, Analysis, Selection, Implementation and Reviews*, Tata McGraw-Hill.
- 3. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.
- 4. Arya Kumar,2012, *Entrepreneurship: Creating and Leading an Entrepreneurial Organisation*, Pearson Education India.
- 5. Donald F Kuratko, T.V Rao, 2012, *Entrepreneurship: A South Asian perspective*, Cengage Learning India.
- 6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, *Suggested Reading / Reference Material for Entrepreneurship Development Programmes* (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad. Available from: http://www.ediindia.org/doc/EDP-TEDP.pdf

### **E-REFERENCES**

- 1. Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

**Table 1: COs Vs GA Mapping** 

| CO/GA    | GA1 | GA2 | GA3 | GA4 | GA5 | GA6 | GA7 | GA8 | GA9 | GA10 | GA11 | GA12 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|          |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1      | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 3   | 3    | 0    | 1    |
| CO2      | 0   | 0   | 1   | 2   | 3   | 2   | 1   | 3   | 1   | 2    | 3    | 0    |
| CO3      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 3    | 3    | 2    |
| CO4      | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 2   | 3   | 0    | 3    | 3    |
| CO5      | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 3   | 0   | 0    | 0    | 3    |
| Original | 0   | 0   | 1   | 2   | 3   | 5   | 3   | 8   | 10  | 8    | 9    | 9    |
| Scaled   | 0   | 0   | 1   | 1   | 1   | 1   | 1   | 2   | 3   | 2    | 2    | 2    |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 – No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

| COURSE CODE   | XUM306                | L | T | P | C |
|---------------|-----------------------|---|---|---|---|
| COURSE NAME   | CONSTITUTION OF INDIA | 0 | 0 | 0 | 0 |
| PREREQUISITE: | NIL                   | L | T | P | H |
| C:P:A         | 0:0:0                 | 3 | 0 | 0 | 3 |

| COURS | SE OUTCOMES                           | Domain    | Level         |
|-------|---------------------------------------|-----------|---------------|
| CO1   | Understand the Constitutional History | Cognitive | Understanding |
| CO2   | Understand the Powers and Functions   | Cognitive | Understanding |
| CO3   | Understand the Legislature            | Affective | Remembering   |
| CO4   | Understand the Judiciary              | Affective | Remembering   |
| CO5   | Understand the Centre State relations | Cognitive | Understanding |

Constitutional History- The Constitutional Rights- Preamble- Fundamental Rights- Fundamental Duties- Directive principles of State Policy.

08 Hours

UNIT - II 09 Hours

The Union Executive- The President of India (powers and functions)- Vice-President of India-The Council of Ministers-Prime Minister- Powers and Functions.

UNIT - III

Union Legislature- Structure and Functions of Lok Sabha- Structure and Functions of Rajya Sabha- Legislative Procedure in India- Important Committee of LokSabha- Speaker of the Lok Sabha.

UNIT - IV 09 Hours

The Union Judiciary- Powers of the Supreme Court- Original Jurisdiction- Appelete jurisdictions- Advisory Jurisdiction- Judicial review.

UNIT - V 09 Hours

Centre State relations- Political Parties- Role of governor, powers and functions of Chief Minister-Legislative Assembly- State Judiciary- Powers and Functions of the High Courts.

| LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|---------|----------|-----------|-------|
| 45      | 0        | 0         | 45    |

# **REFERENCES**

UNIT - I

- 1. W.H.Morris Shores- Government and politics of India, NewDelhi, B.1. Publishers, 1974.
- 2. M.V.Pylee- Constitutional Government in India, Bombay, Asia Publishing House, 1977.
- 3. R. Thanker- The Government and politics of India, London: Macmillon, 1995.
- 4. A.C.Kapur- Select Constitutions S, Chand& Co., New Delhi, 1995
- 5. V.D.Mahajan- Select Modern Governments, S, Chand&Co, NewDelhi, 1995.
- 6. B.C.Rout- Democractic Constitution of India.
- 7. GopalK.Puri- Constitution of India, India 2005.

**Table 1: Mapping of COs with POs** 

|           | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1      | 2   |     |     | 1   |     |     |     |     |     |
| CO 2      | 2   |     |     | 1   |     |     |     |     |     |
| CO 3      | 2   |     |     | 1   |     |     |     |     | 1   |
| CO 4      | 2   |     |     | 1   |     |     |     | 1   | 1   |
| CO 5      | 2   | 2   |     | 1   |     |     |     | 1   | 1   |
| Total     | 10  | 2   |     | 5   |     |     |     | 2   | 3   |
| Scaled to | 2   | 1   |     | 1   |     |     |     | 1   | 1   |
| 0,1,2,3   |     |     |     |     |     |     |     |     |     |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 – No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

| COUI | RSE CO | ODE   | XEC307        | L     | P     | С |   |
|------|--------|-------|---------------|-------|-------|---|---|
| COUI | RSE NA | ME    | NETWORKTHEORY | 3 0 0 |       |   |   |
| PRER | REQUIS | SITES | Mathematics   | L     | L T P |   |   |
| C    | P      | A     |               | 2     | Λ     | Λ | 2 |
| 3    | 0      | 0     |               | 3     | U     | U | 3 |

### LEARNING OBJECTIVES

- To make the students to understand the basic laws and theorems of AC and DC electrical circuits.
- To familiarize the transient and steady state behaviour of networks.
- To impart the knowledge on the frequency response characteristics of RLC and filter circuits.

| COUR | SE OUTCOMES:                                                                              | Domain    | Level                       |
|------|-------------------------------------------------------------------------------------------|-----------|-----------------------------|
| CO1  | <b>Describe and Understand</b> the concepts of nodal, mesh analysis and network theorems. | Cognitive | Remembering Understanding   |
| CO2  | Recognize and Distinguish the response of a network                                       | Cognitive | Remembering Understanding   |
| CO3  | <b>Distinguish</b> RL, RC and RLC networks and <b>Analyze</b> their characteristics       | Cognitive | Understanding<br>Analyzing  |
| CO4  | <i>Understand</i> the various functions of network and the stability of network.          | Cognitive | Understanding               |
| CO5  | Classify and Explain the different types of filters                                       | Cognitive | Understanding Understanding |

# UNIT - I DC CIRCUIT ANALYSIS AND NETWORK THEOREMS

9 Hours

Node and Mesh Analysis, matrix approach of network containing voltage and current sources, and reactance, source transformation and duality.

Network theorems: Superposition, reciprocity, The venin's, Norton's, Maximum power Transfer, compensation and Tallegen's theorem

# UNIT - II TRIGONOMETRIC AND EXPONENTIAL FOURIER SERIES

9 Hours

Discrete spectra and symmetry of waveform, steady state response of a network to non-sinusoidal periodic inputs, power factor, effective values, Fourier transform and continuous spectra, three phase unbalanced circuit and power calculation.

# **UNIT - III TRANSIENT ANALYSIS**

9 Hours

Laplace transforms and properties: Partial fractions, singularity functions, waveforms yn the sis, analysis of RC, RL, and RLC networks with and without initial conditions with Laplace transforms evaluation of initial conditions.

### UNIT - IV NETWORK FUNCTIONS: POLES AND ZEROS

9 Hours

Transientbehavior, concepto f complex frequency, Driving points and transfer functions poles and zer osofad mittance function, their properties, sinusoidal response from polezerolocations, convolution theorem

### UNIT - VRESONANCE IN RLC CIRCUITS AND FILTERS

6+6

Twofourportnetworkandinterconnections, Behaviors of series and parallel resonant circuits, Introduction to low pass, high pass, bandpass and bandreject filters.

|       | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
| HOURS | 45      |          | 0         | 45    |

### **TEXT BOOKS**

- 1. Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit Theory" 11<sup>th</sup> Edition, UBS Publishers, New Delhi, 2013.
- 2. G.Streetman, and S.K.Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.
- 3. D.Neamen, D.Biswas "Semiconductor Physics and Devices, "McGraw-HillEducation Jacob
- 4. Millman and Christos C.Halkias, "Electronic Devices and Circuits" 3<sup>rd</sup> Edition, Tata McGraw Hill, New Delhi, 2010.

# **REFERENCES**

- 1.C.T.Sah, "Fundamentalsofsolidstateelectronics," WorldScientificpublishingCo.Inc, 1991.
- 2. S.M.SzeandK.N.Kwok, "PhysicsofSemiconductorDevices," 3rdedition, Wiley&Sons, 2006.
- 3. Y.TsividisandM.Colin, "OperationandModelingoftheMOSTransistor," OxfordUniversity .Press.2011.
- 4. David A. Bell, "Electronic devices and circuits", Prentice Hall of India, 2004.
- 5. S.Salivahanan, "Electronics devices and circuits". 2<sup>nd</sup> Edition, Tata McGraw Hill, 2008.

### **E-REFERENCES**

- $1. \ \ \, \underline{http://www.rtna.ac.th/departments/elect/Data/EE304/Electronic\%20Devices\%20 and \%20 Circuit\%20 Theory.pdf}$
- 2. <a href="http://nptel.ac.in/courses/117103063/">http://nptel.ac.in/courses/117103063/</a> (Prof. ChitralekhaMahanta, NPTEL, Basic Electronics, IIT-Guwahati)
- 3. <a href="http://nptel.ac.in/video.php?subjectId=117103063">http://nptel.ac.in/video.php?subjectId=117103063</a> (Prof. Gautam Barua, NPTEL, Basic Electronics, IIT-Guwahati)
- 4. <a href="http://nptel.ac.in/courses/117101106/">http://nptel.ac.in/courses/117101106/</a> (Prof. A N chandorkar, NPTEL, Analog Electronics, IIT-Bombay)

Table1:Mapping of COs with POs:

|        | PO1 | PO 2 | PO | PO | PO | PO | PO | PO 8 | PO | PO 10 | PO 11 | PO |
|--------|-----|------|----|----|----|----|----|------|----|-------|-------|----|
|        |     |      | 3  | 4  | 5  | 6  | 7  |      | 9  |       |       | 12 |
| CO 1   | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO 2   | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO 3   | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO 4   | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO 5   | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| CO6    | 3   | 2    | 1  | 1  | 1  | 1  | 1  | 1    |    |       |       | 1  |
| Total  | 18  | 12   | 6  | 6  | 6  | 6  | 6  | 6    |    |       |       | 6  |
| Scaled | 4   | 3    | 2  | 2  | 2  | 2  | 2  | 2    |    |       |       | 2  |
| Value  |     |      |    |    |    |    |    |      |    |       |       |    |

0- No Relation 1 - Low Relation , 2- Medium Relation, 3- High Relation

| COU  | RSEC                  | ODE    |                                                                          | L                     | T          | P                  | C                          |   |
|------|-----------------------|--------|--------------------------------------------------------------------------|-----------------------|------------|--------------------|----------------------------|---|
| COU  | RSE N                 | AME    | ELECTRONIC DEVICES AND NETWOR                                            | RKS LAB               | 0          | 0                  | 1                          | 1 |
| PREF | REQUI                 | SITE   |                                                                          |                       |            |                    |                            |   |
| C    | P                     | A      |                                                                          |                       | L          | T                  | P                          | Н |
| 2.8  | 0.1                   | 0.1    |                                                                          |                       | 0          | 0                  | 2                          | 2 |
| COU  | COURSE OUTCOMES DOMAI |        |                                                                          |                       |            |                    |                            |   |
| CO1  | Con                   |        | and Verify the characteristics of semiconductor                          | Psychomo<br>Affective | otor       | Pero<br>Rec<br>Phe |                            |   |
| CO2  | Con                   | struct | and <i>Verify</i> the characteristics of Transistors                     | Psychomo<br>Affective | otor       | Rec                | ception<br>eiving<br>nomer |   |
| CO3  | Con                   |        | and studythe characteristics of Opto electronic                          | Psychomo              | tor        | Pero               | 1                          |   |
| CO4  | Con                   | struct | Psychomo                                                                 | tor                   | Perception |                    |                            |   |
| CO5  |                       |        | and Verify the characteristics of Network alters and resonance circuits. | Psychomo<br>Affective | otor       | Rec                | ception<br>eiving<br>nomer |   |

# LIST OF EXPERIMENTS

- 1. V-I characteristics of PN junction diode and Zener diode.
- 2. V-I characteristics of Input and Output characteristics of Common base configuration of BJT.
- 3. Input and Output characteristics of Common emitter configuration of BJT.
- 4. Drain and Transfer characteristics of JFET.
- 5. Characteristics of LED and LDR.
- 6. Design and implementation of Half wave and full wave rectifiers.
- 7. Verification of Reciprocity and Superposition Theorem.
- 8. Frequency response of low pass and high pass filter
- 9. Frequency response of series resonance circuit
- 10. Frequency response of parallel resonance circuit

| HOURS | PRACTICAL | TOTAL |
|-------|-----------|-------|
| HOURS | 45        | 45    |

# **CO Vs PO Mapping**

|              | PO1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 |
|--------------|-----|------|------|------|------|------|------|------|------|-------|-------|-------|
| CO 1         | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO 2         | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO 3         | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO 4         | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO 5         | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO6          | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| Total        | 18  | 18   | 18   | 18   | 12   | 12   | 12   | 6    | 12   | 12    | 6     | 12    |
| Scaled Value | 4   | 4    | 4    | 4    | 3    | 3    | 3    | 2    | 3    | 3     | 2     | 3     |

| COU | RSECO              | DE         | XEC309                                      |                          | L                                | T              | P  | C |
|-----|--------------------|------------|---------------------------------------------|--------------------------|----------------------------------|----------------|----|---|
| COU | RSE NA             | ME         | DIGITALSYSTEMDESIGN                         | LAB                      | 0                                | 0              | 1  | 1 |
| PRE | REQUIS             | ITE        |                                             |                          |                                  |                |    |   |
| С   | P                  | A          |                                             |                          | L                                | T              | P  | Н |
| 2.8 | 0.1                |            | 0                                           | 0                        | 2                                | 2              |    |   |
| COU | RSE OU             | LEV        | EL                                          |                          |                                  |                |    |   |
| CO1 | Choose applica     | Perception |                                             |                          |                                  |                |    |   |
| CO2 | Assemb<br>operati  |            | mbinational logic circuits and Verify their | Psychomotor<br>Affective | Response<br>Internalizing values |                |    |   |
| CO3 | Assemb<br>operati  |            | quential logic circuits and Verify their    | Psychomotor              | Response                         |                |    |   |
| CO4 | Design<br>their ou |            | Psychomotor                                 | Origination              |                                  |                |    |   |
| CO5 | Create<br>VHDL     | _          | l circuits and display the results using    | Psychomotor<br>Affective | Orig<br>Valı                     | ginati<br>uing | on |   |

# LIST OF EXPERIMENTS:

- 1. Study of logic gates.
- 2. Design and implementation of code converters using logic gates
- 3. Design and implementation of Adders using logic gates.
- 4. Design and implementation Subtractor using logic gates.
- 5. Design and implementation of Magnitude Comparators.
- 6. Design and implementation of encoder and decoder.

- 7. Design and implementation of Multiplexer and De-multiplexer.
- 8. Implementation of Flip- flops.
- 9. Construction and verification of counter.
- 10. Construction and verification of shift register.
- 11. Logic gates using VHDL.
- 12. Adder and subtractor using VHDL

| HOURS | PRACTICAL | TOTAL |
|-------|-----------|-------|
| HOURS | 45        | 45    |

Table 1:CO Vs PO Mapping

|                 | PO1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 |
|-----------------|-----|------|------|------|------|------|------|------|------|-------|-------|-------|
| CO 1            | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO 2            | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO 3            | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO 4            | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO 5            | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| CO6             | 3   | 3    | 3    | 3    | 2    | 2    | 2    | 1    | 2    | 2     | 1     | 2     |
| Total           | 18  | 18   | 18   | 18   | 12   | 12   | 12   | 6    | 12   | 12    | 6     | 12    |
| Scaled<br>Value | 4   | 4    | 4    | 4    | 3    | 3    | 3    | 2    | 3    | 3     | 2     | 3     |

| COU | RSE C | ODE  | XEC401                                      | L | T | P | C |
|-----|-------|------|---------------------------------------------|---|---|---|---|
| COU | RSE N | AME  | PROBABILITY THEORY AND STOCHASTIC PROCESSES | 3 | 1 | 0 | 4 |
| С   | P     | A    |                                             | L | T | P | Н |
| 3.5 | 0.25  | 0.25 |                                             | 3 | 1 | 0 | 4 |

# PREREQUISITE:Nil

# **Learning Objectives:**

- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the basic concepts of probability, one and two dimensional random variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in IT fields.
- To understand the concept of correlation and spectral densities and to understand the significance of linear systems with random inputs.

| Cours | e Outcomes                                                                 | Domain    | Level        |
|-------|----------------------------------------------------------------------------|-----------|--------------|
| CO1   | Describe sets, its operation and basics of probability by                  | Cognitive | Remembering  |
|       | examples and solve problems associated.                                    |           | Applying     |
| CO2   | Describe and Demonstrate PMF, PDF, CDF of discrete and                     | Cognitive | Remembering  |
|       | continues random variable                                                  |           | Understandin |
|       |                                                                            |           | g            |
| CO3   | <b>Describe</b> Joint distributions and <b>apply</b> them to communication | Cognitive | Remembering  |
|       | systems problems                                                           |           | Applying     |
| CO4   | Describe random sequences and limit theorems and solve                     | Cognitive | Remembering  |
|       | problems                                                                   |           | Applying     |
| CO5   | Describe stochastic and solve problems related to                          | Cognitive | Remember     |
|       | communication system which involves stochastic process.                    |           | Applying     |

UNIT - I 12 Hours

Sets and set operations; Probability space; Conditional probability and Bayes theorem; Combinatorial probability and sampling models. Requirements for a random process to be stationary. Rayleigh and Rician distribution in detail. Axioms of probability -Conditional probability -Bayes rule, statistically independent Random variable -CDF - Probability density function-Statistical averages-Moments.

UNIT - II 12 Hours

Discrete random variables, probability mass function, example random variables and distributions; Cumulative Distribution Function (CDF), Averages, and Expected Value of a Derived Random Variable, Variance and Standard Deviation; Continuous random variables, probability density function, probability distribution function, example distributions; Gaussian Random Variables, Delta Functions, Mixed Random Variables, Probability Models of Derived Random Variables.

UNIT - III 12 Hours

Joint distributions, functions of one and two random variables, moments of random variables; Conditional distribution, densities and moments; Characteristic functions of a random variable; Markov, Chebyshev and Chernoff bounds.

UNIT - IV 12 Hours

Random sequences and modes of convergence (everywhere, almost everywhere, probability, distribution and mean square); Limit theorems; Strong and weak laws of large numbers, central limit theorem.

UNIT - V 12 Hours

Stochastic Processes - Definitions and Examples- Types of Stochastic Processes- Random Variables from Random Processes- Independent Identically Distributed Random Sequences - The Poisson Process - Properties of the Poisson Process - The Brownian Motion Process - Expected Value and Correlation - Stationary Processes - Wide Sense Stationary Stochastic Processes - Cross-Correlation - Gaussian Processes.

| HOURS | LECTURE | <b>TUTORIAL</b> | TOTAL |
|-------|---------|-----------------|-------|
| HOURS | 45      | 15              | 60    |

### TEXTBOOKS

- 1. Roy D. Yates and David J."Goodman, "Probability and Stochastic Processes", 3<sup>rd</sup> Edition, John Wiley & Sons, Inc., 2014.
- 2. H. Stark and J.W.Woods, "Probability and Random Processes with Applications to Signal Processing", Third Edition, Pearson Education, 2002.

### REFERENCES

- 1. A.Papoulis and S. Unnikrishnan Pillai, "Probability, Random Variables and Stochastic Processes", Fourth Edition, McGraw Hill., 2002
- 2. Scott Miller and Donald Childers, "Probability and Random Processes, : With Applications to Signal Processing and Communications', 2<sup>nd</sup> edition, Academic Pres, 2018.
- 3. Leon-Garcia, Alberto, "Probability, statistics, and random processes for electrical engineering", Pearson Education, Inc., Upper Saddle River, NJ 07458, 2008.

### E REFERENCE

**Nptel:** Prof. Dr. S. Dharmaraja, "Stochastic Processes", Department of Mathematics, Indian Institute of Technology, Delhi, http://nptel.ac.in/courses/111102014/

# **TABLE 1: CO VS GA Mapping**

|  | GA1 | GA2 | GA3 | GA4 | GA5 | GA6 | GA7 | GA8 | GA9 | <b>GA10</b> | GA11 | GA12 |
|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|------|------|
|  |     |     |     |     |     |     |     |     |     |             |      |      |

| CO 1         | 3  | 2  | 1 |   |   |   |   | 1 | 1 |   | 1 |
|--------------|----|----|---|---|---|---|---|---|---|---|---|
| CO 2         | 3  | 2  | 1 |   |   |   |   | 1 | 1 |   | 1 |
| CO 3         | 3  | 2  | 1 | 1 |   |   |   | 1 | 1 |   | 1 |
| CO 4         | 3  | 2  | 1 | 1 | 1 | 1 |   | 1 | 1 | 1 | 1 |
| CO 5         | 3  | 2  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Total        | 15 | 10 | 5 | 3 | 2 | 2 | 1 | 5 | 5 | 2 | 5 |
| Scaled value | 3  | 2  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

| COU | RSE C | ODE | XUM402                   | L | T | P | C |
|-----|-------|-----|--------------------------|---|---|---|---|
| COU | RSE N | AME | TOTAL QUALITY MANAGEMENT | 2 | 0 | 0 | 2 |
| C   | P     | A   |                          | L | T | P | H |
| 3   | 0     | 0   |                          | 2 | 0 | 0 | 2 |

### LEARNING OBJECTIVES

- To basic concepts of total quality concepts and its limitations.
- To expose the students on Customer satisfaction, Employee involvement, supplier selection and appraise the performance by TQM principle
- To familiarize the Statistical Process Control Tools
- To enhance the fundamental knowledge on the different TQM tools and their significance
- To instill the knowledge of students on the importance aspects of different quality systems

| COUR | SE OUTCOMES                                                                 | Domain    | Level          |
|------|-----------------------------------------------------------------------------|-----------|----------------|
| CO1  | <i>List</i> and <i>Explain</i> the basic concepts of total quality concepts | Cognitive | Remembering    |
|      | and its limitations.                                                        |           | Understanding  |
| CO2  | Analyze and Explain the Customer satisfaction, Employee                     | Cognitive | Analyzing,     |
|      | involvement, supplier selection and appraise the performance                |           | Evaluating     |
|      | by TQM principle                                                            |           |                |
| CO 3 | Explain and Apply the Statistical Process Control Tools                     | Cognitive | Understanding, |
|      |                                                                             |           | Appling        |
| CO4  | Select and Explain the different TQM tools and their                        | Cognitive | Remembering,   |
|      | significance                                                                |           | Understanding  |
| CO5  | <i>Explain</i> the importance aspects of different quality systems.         | Cognitive | Understanding  |
|      | • • •                                                                       |           | 0 II           |

### **UNIT - IINTRODUCTION**

9 Hours

Definition of quality – Dimensions of quality – Quality planning – Quality costs – Analysis techniques for quality costs – Basic concepts of Total Quality Management – Historical review – Principles of TQM – Leadership – Concepts – Role of senior management – Quality Council – Quality statements – Strategic planning – Deming philosophy – Barriers to TQM implementation

# **UNIT - II TOM PRINCIPLES**

9 Hours

Customer satisfaction – Customer perception of quality – Customer complaints – Service quality – Customer retention – Employee involvement – Motivation, empowerment, teams, recognition and reward – Performance appraisal – Benefits – Continuous process improvement – Juran trilogy – PDSA cycle – 5S – Kaizen – Supplier partnership – Partnering – Sourcing – Supplier selection – Supplier rating – Relationship development – Performance measures – Basic concepts – Strategy – Performance measure.

# UNIT - III STATISTICAL PROCESS CONTROL (SPC)

9 Hours

The seven tools of quality – Statistical fundamentals – Measures of central tendency and dispersion – Population and sample – Normal curve – Control charts for variables and attributes – Process capability – Concept of six sigma – New seven management tools.

# **UNIT - IV TQM TOOLS**

9 Hours

Benchmarking – Reasons to benchmark – Benchmarking process – Quality Function Deployment (QFD) – House of quality – QFD process – Benefits – Taguchi quality loss function – Total Productive Maintenance (TPM) – Concept – Improvement needs – FMEA – Stages of FMEA.

# **UNIT - V QUALITY SYSTEMS**

9

Need for ISO 9000 and other quality systems – ISO 9000:2000 quality system – Elements – Implementation of quality system – Documentation – Quality auditing – TS 16949 – ISO 14000 – Concept, requirements and benefits.

| HOURS | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
| HOURS | 45      |          | -         | 45    |

# **TEXT BOOKS**

- 1.Dale H. Besterfiled, et. Al. "Total Quality Management", New Delhi, Pearson Education, Inc. 2007.
- 2.James R. Evans and William M. Lidsay, "The Management and Control of Quality", 5<sup>th</sup> Edition, South-Western, 2002.

### REFERENCES

- 1. Feigenbaum, A.V., "Total Quality Management", McGraw Hill, 1991.
- 2. Oakland, J.S., "Total Quality Management", Butterworth Heineman, 1989.
- 3. Narayana V. and Sreenivasan, N.S., "Quality Management Concepts and Tasks", New Age International, 1996.
- 4. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers, 1991.

### E- REFERENCES

1. <a href="http://nptel.ac.in/faq/110101010/Prof.IndrajitMukherjee,IIT,Bombay">http://nptel.ac.in/faq/110101010/Prof.IndrajitMukherjee,IIT,Bombay</a> and Prof.TapanP.Bagchi, IIT, Kharagpur.

# **COs Vs GA mapping**

|     | CO1 | CO2 | CO3 | CO4 | CO5 | Total | Scaled total |
|-----|-----|-----|-----|-----|-----|-------|--------------|
| GA1 | 2   | 1   | 2   | 1   | 1   | 7     | 2            |

| GA4  | 1 | 1 | 2 | 2 | 1 | 7 | 2 |
|------|---|---|---|---|---|---|---|
| GA5  | 1 | 1 | 2 | 2 | 1 | 7 | 2 |
| GA6  | 1 | 1 | 2 | 1 | 2 | 7 | 2 |
| GA7  | 1 | 1 | 1 | 1 | 1 | 5 | 1 |
| GA8  | 1 | 1 | 1 | 2 | 2 | 7 | 2 |
| GA9  | 1 | 1 | 1 | - | 1 | 4 | 1 |
| GA10 | 1 | 1 | 1 | 2 | 2 | 7 | 2 |
| GA12 | 1 | 1 | - | - | 2 | 4 | 1 |

| COU | JRSE ( | CODE | XUM403                                           | L | T | P | C |
|-----|--------|------|--------------------------------------------------|---|---|---|---|
| COU | JRSE 1 | NAME | HUMAN ETHICS, VALUES, RIGHTS AND GENDER EQUALITY | 0 | 0 | 0 | 0 |
| С   | P      | A    |                                                  | L | T | P | H |
| 2.7 | 0      | 0.3  |                                                  | 3 | 0 | 0 | 3 |

# **LEARNING OUTCOMES**

- To impart the knowledge on the human ethics and human relationships
- To familiarize gender issues, equality and violence against women
- To expose the students on women issues and challenges
- To introduce human rights and report on violations.
- To emphasis the students on family values, universal brotherhood, fight against corruption by common man and good governance.

|                 | 2 2 3 4 4 4 4                                                           |           |                |
|-----------------|-------------------------------------------------------------------------|-----------|----------------|
| COUR            | RSE OUTCOMES                                                            | Domain    | Level          |
|                 |                                                                         |           |                |
| CO1             | Relate and Interpret the human ethics and human                         | Cognitive | Remembering,   |
|                 | relationships                                                           | Cognitive | Understanding  |
| CO <sub>2</sub> | <b>Explain</b> and <b>Apply</b> gender issues, equality and violence    | C:4:      | Understanding, |
|                 | against women                                                           | Cognitive | Applying       |
| CO3             | Classify and Develop the identify women issues and                      | Cognitive | Analyzina      |
| CO3             | challenges                                                              | &         | Analyzing      |
|                 |                                                                         | Affective | Receiving      |
| CO4             | Classify and Dissect human rights and report on violations.             | G :::     | Understanding, |
|                 |                                                                         | Cognitive | Analyzing      |
| COF             | <i>List</i> and <b>respond</b> to family values, universal brotherhood, | Cognitive | Remembering,   |
| CO5             | fight against corruption by common man and good                         | &         | (Respond)      |
|                 | governance.                                                             | Affective |                |
|                 |                                                                         |           | 7 House        |

# UNIT - I HUMAN ETHICS AND VALUES

7 Hours

Human Ethics and values - Understanding of oneself and others- motives and needs- Social service, Social Justice, Dignity and worth, Harmony in human relationship: Family and Society, Integrity

and Competence, Caring and Sharing, Honesty and Courage, WHO's holistic development - Valuing Time, Co-operation, Commitment, Sympathy and Empathy, Self respect, Self-Confidence, character building and Personality.

# **UNIT - IIGENDER EQUALITY**

9 Hours

Gender Equality - Gender Vs Sex, Concepts, definition, Gender equity, equality, and empowerment. Status of Women in India Social, Economical, Education, Health, Employment, HDI, GDI, GEM. Contributions of Dr.B.R. Ambethkar, ThanthaiPeriyar and Phule to Women Empowerment.

# UNIT - IIIWOMEN ISSUES AND CHALLENGES

9 Hours

Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures – Acts related to women: Political Right, Property Rights, and Rights to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act.

### **UNIT - IV HUMAN RIGHTS**

9 Hours

Human Rights Movement in India – The preamble to the Constitution of India, Human Rights and Duties, Universal Declaration of Human Rights (UDHR), Civil, Political, Economical, Social and Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights and protection of children and elderly. National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness. - Intellectual Property Rights (IPR). National Policy on occupational safety, occupational health and working environment.

# UNIT - V GOOD GOVERNANCE AND ADDRESSING SOCIAL ISSUES

11 Hours

Good Governance - Democracy, People's Participation, Transparency in governance and audit, Corruption, Impact of corruption on society, whom to make corruption complaints, fight against corruption and related issues, Fairness in criminal justice administration, Government system of Redressal. Creation of People friendly environment and universal brotherhood.

| HOURS | LECTURE | SELF STUDY | TOTAL |
|-------|---------|------------|-------|
| HOURS | 45 -    | 45         |       |

### REFERENCES

- **1.** Aftab A, (Ed.), Human Rights in India: Issues and Challenges, (New Delhi: Raj Publications, 2012).
- **2.** Bajwa, G.S. and Bajwa, D.K. Human Rights in India: Implementation and Violations (New Delhi: D.K. Publications, 1996).
- **3.** Chatrath, K. J. S., (ed.), Education for Human Rights and Democracy (Shimala: Indian Institute of Advanced Studies, 1998).
- **4.** Jagadeesan. P. Marriage and Social legislations in Tamil Nadu, Chennai: Elachiapen Publications, 1990).
- 5. Kaushal, Rachna, Women and Human Rights in India (New Delhi: Kaveri Books, 2000)
- **6.** Mani. V. S., Human Rights in India: An Overview (New Delhi: Institute for the World Congress on Human Rights, 1998).
- 7. Singh, B. P. Sehgal, (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep, 1999).

- **8.** Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)
- **9.** Veeramani, K. (ed) Periyar Feminism, (PeriyarManiammai University, Vallam, Thanjavur: 2010).
- 11.Planning Commission report on Occupational Health and Safety <a href="http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg\_occup\_safety.p">http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg\_occup\_safety.p</a>
- 11. Central Vigilance Commission (Gov. of India) website: <a href="http://cvc.nic.in/welcome.html">http://cvc.nic.in/welcome.html</a>.
- **12.** Weblink of Transparency International: <a href="https://www.transparency.org/">https://www.transparency.org/</a>
- 13. Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

**Table 1: Mapping of COs with POs** 

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1             |     |     |     |     |     |     |     | 2   |     |      |      |      |      |      |
| CO2             |     |     |     |     |     |     |     | 3   | 1   |      |      |      |      |      |
| CO3             |     |     |     |     |     |     |     | 2   |     |      |      |      |      |      |
| CO4             |     |     |     |     |     |     |     | 3   |     | 2    |      |      |      |      |
| CO5             |     |     |     |     |     |     |     | 3   | 2   | 2    |      | 2    |      |      |
| Total           |     | 2   |     |     |     |     |     | 13  | 3   | 4    |      | 2    |      |      |
| Scaled<br>Value |     | 1   |     |     |     |     |     | 3   | 1   | 1    |      | 1    |      |      |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

| COU         | OURSECODE XEC405 |   |                                   |     | T | P | C |
|-------------|------------------|---|-----------------------------------|-----|---|---|---|
| COURSE NAME |                  |   | TRANSMISSION LINES AND WAVEGUIDES | 3 0 | n | 0 | 3 |
| PRE         | PREREQUISITE     |   | TRANSMISSION LINES AND WAVEGUIDES | 3   | U | U | 3 |
| C           | P                | A |                                   | L   | T | P | H |
| 3           | 0                | 0 |                                   | 3   | 0 | 0 | 3 |

# LEARNING OBJECTIVES

• To introduce the various types of transmission lines and its characteristics

- To give thorough understanding about high frequency line, power and impedancemeasurements
- To impart technical knowledge in impedance matching using smith chart
- To introduce passive filters and basic knowledge of active RF components
- To get acquaintance with RF system transceiver design

| COUI | RSE OUTCOMES                                                                  | DOMAIN    | LEVEL         |
|------|-------------------------------------------------------------------------------|-----------|---------------|
| CO1  | Explain the various types of transmission lines and its characteristics       | Cognitive | Understanding |
| CO2  | Understand the high frequency line, power and impedance measurements          | Cognitive | Understanding |
| CO3  | Analyze the characteristics of TE and TM waves                                | Cognitive | Understanding |
| CO4  | Analyze impedance matching using smith chart                                  | Cognitive | Understanding |
| CO5  | <i>Understand</i> passive filters and basic knowledge of active RF components | Cognitive | Understanding |
| CO6  | Design RF system transceiver design                                           | Cognitive | Understanding |

# **UNIT - ITRANSMISSION LINE THEORY**

9 Hours

General theory of Transmission lines - the transmission line - general solution - The infinite line - Wavelength, velocity of propagation - Waveform distortion - the distortion-less line - Loading and different methods of loading - Line not terminated in Z0 - Reflection coefficient - calculation of current, voltage, power delivered and efficiency of transmission - Input and transfer impedance - Open and short circuited lines - reflection factor and reflection loss.

### **UNIT - IIHIGH FREQUENCY TRANSMISSION LINES**

9 Hours

Transmission line equations at radio frequencies - Line of Zero dissipation - Voltage and current on the dissipation-less line, Standing Waves, Nodes, Standing Wave Ratio - Input impedance of the dissipation-less line - Open and short circuited lines - Power and impedance measurement on lines - Reflection losses - Measurement of VSWR and wavelength.

# UNIT - IIIIMPEDANCE MATCHING IN HIGH FREQUENCY LINES

9 Hours

Impedance matching: Quarter wave transformer - Impedance matching by stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single and double stub matching using Smith chart.

### **UNIT-IVWAVEGUIDES**

9 Hours

General Wave behavior along uniform guiding structures – Transverse Electromagnetic Waves,

Transverse Magnetic Waves, Transverse Electric Waves – TM and TE Waves between parallel plates. Field Equations in rectangular waveguides, TM and TE waves in rectangular waveguides, Bessel Functions, TM and TE waves in Circular waveguides.

# **UNIT - VRF SYSTEM DESIGN CONCEPTS**

9 Hours

Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations.

| HOURS | LECTURE | TUTORIAL | TOTAL |
|-------|---------|----------|-------|
| HOURS | 45      | 0        | 45    |

# **TEXT BOOKS**

- 1. John D Ryder, —Networks, lines and fields, 2nd Edition, Prentice Hall India, 2015.
- 2. Mathew M. Radmanesh, —Radio Frequency & Microwave Electronics, Pearson Education Asia, Second Edition, 2002.

### REFERENCE BOOKS

- 1. Reinhold Ludwig and Powel Bretchko, RF Circuit Design Theory and Applications, Pearson Education Asia, First Edition, 2001.
- 2. D. K. Misra, —Radio Frequency and Microwave Communication Circuits- Analysis and Design, John Wiley & Sons, 2004.
- 3. E.C.Jordan and K.G. Balmain, —Electromagnetic Waves and Radiating Systems Prentice Hall of India, 2006.
- 4. G.S.N Raju, "Electromagnetic Field Theory and Transmission Lines Pearson Education, First edition 2005.

# **CO Vs PO Mapping**

|      | РО | PO 2 | PO | PO | PO | PO | PO | PO 8 | PO | PO 10 | PO 11 | PO 12 |
|------|----|------|----|----|----|----|----|------|----|-------|-------|-------|
|      | 1  |      | 3  | 4  | 5  | 6  | 7  |      | 9  |       |       |       |
| CO 1 | 3  | 3    | 2  | 2  | 1  | 1  | 1  | 1    |    |       |       | 1     |

| CO 2   | 3  | 3  | 2  | 2 | 1 | 1 | 1 | 1 |  | 1 |
|--------|----|----|----|---|---|---|---|---|--|---|
| CO 3   | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| CO 4   | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| CO 5   | 3  | 3  | 2  | 2 | 1 | 1 | 1 | 1 |  | 1 |
| CO6    | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| Total  | 18 | 18 | 12 | 9 | 6 | 6 | 6 | 6 |  | 6 |
| Scaled | 4  | 4  | 3  | 2 | 2 | 2 | 2 | 2 |  | 2 |
| Value  |    |    |    |   |   |   |   |   |  |   |

| COU  | RSEC  | ODE   | XEC406               | L | T | P | С |
|------|-------|-------|----------------------|---|---|---|---|
| COU  | RSE N | AME   | ANALOG COMMUNICATION | 3 | Λ | 0 | 3 |
| PREF | REQUI | ISITE | ANALOG COMMUNICATION | 3 | U | U | 3 |
| C    | P     | A     |                      | L | T | P | H |
| 3    | 0     | 0     |                      | 3 | 0 | 0 | 3 |

# **LEARNING OBJECTIVES**

- To introduce the concepts of various analog modulations and their spectral characteristics
- To impart the knowledge of effect of Noise in various communications
- To enhance the fundamental knowledge on pulsemodulation system and *Differentiate* their system performance

• To emphasis the students with FDM and TDM techniques

|     | COURSE OUTCOMES                                                                                                                                | DOMAIN    | LEVEL                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| CO1 | <i>Understand</i> the basics of communication system and analog modulation techniques                                                          | Cognitive | Understanding             |
| CO2 | Apply the basic knowledge of signals and systems and Understand the concept of Frequency modulation                                            | Cognitive | Understanding<br>Applying |
| CO3 | Apply the basic knowledge of electronic circuits and Understand the effect of Noise in communication system and noise performance of AM system | Cognitive | Applying<br>Understanding |
| CO4 | <i>Understand</i> the effect of noise performance of FM system.                                                                                | Cognitive | Understanding             |
| CO5 | <i>Construct</i> pulsemodulation system and <i>Differentiate</i> their system performance                                                      | Cognitive | Understanding analyzing   |
| CO6 | Understand FDM and TDM techniques                                                                                                              | Cognitive | Understanding             |

UNIT – I 9 Hours

Basic blocks of Communication System. Amplitude (Linear) Modulation – AM, DSB-SC, SSB-SC and VSB-SC. Methods of generation and detection. FDM. Super Heterodyne Receivers.

UNIT - II 9 Hours

Angle (Non-Linear) Modulation - Frequency and Phase modulation. Transmission Bandwidth of FM signals, Methods of generation and detection. FM Stereo Multiplexing.

UNIT – III 9 Hours

Noise - Internal and External Noise, Noise Calculation, Noise Figure. Noise in linear and nonlinear AM receivers, Threshold effect.

UNIT – IV 9 Hours

Noise in FM receivers, Threshold effect, Capture effect, FM Threshold reduction, Pre-emphasis and De-emphasis.

UNIT - V 9 Hours

Pulse Modulation techniques – Sampling Process, PAM, PWM and PPM concepts, Methods of generation and detection. TDM. Noise performance.

| HOURS | LECTURE | TUTORIAL | TOTAL |
|-------|---------|----------|-------|
| HOURS | 45      | 0        | 45    |

### **TEXT BOOKS**

- 1. S.Haykins, Communication Systems, Wiley, (4/e), Reprint 2009.
- 2. Kennedy, Davis, Electronic Communication Systems (4/e), McGraw Hill, Reprint 2008.

### REFERENCE BOOKS

- 1. B.Carlson, Introduction to Communication Systems, McGraw-Hill, (4/e), 2009.
- 2. J.Smith, Modern Communication Circuits (2/e), McGraw Hill, 1997.
- 3. J.S.Beasley&G.M.Miler, Modern Electronic Communication (9/e), Prentice-Hall, 2008.

### **E REFERENCES**

- 1.http://nptel.ac.in /courses/ NPTEL, Communication Engineering ,Prof.Surendra Prasad, Department of Electrical Engineering , Indian Institute of Technology, New Delhi
- 2.http://freevideolectures.com/course/2311/Digital Communication (NPTEL, DigitalCommunication ,Prof.Bikash Kumar Dey, IIT Bombay.
- 3. <a href="http://www.nptel.ac.in/syllabus/117105077">http://www.nptel.ac.in/syllabus/117105077</a>, IIT Kharagpur.

# CO Vs PO Mapping

|      | PO1 | PO 2 | PO 3 | PO4 | PO 5 | PO6 | PO7 | PO 8 | PO9 | PO 10 | PO 11 | PO 12 |
|------|-----|------|------|-----|------|-----|-----|------|-----|-------|-------|-------|
| CO 1 | 3   | 3    | 2    | 2   | 1    | 1   | 1   | 1    |     |       |       | 1     |
| CO 2 | 3   | 3    | 2    | 2   | 1    | 1   | 1   | 1    |     |       |       | 1     |

| CO 3         | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
|--------------|----|----|----|---|---|---|---|---|--|---|
| CO 4         | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| CO 5         | 3  | 3  | 2  | 2 | 1 | 1 | 1 | 1 |  | 1 |
| CO6          | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| Total        | 18 | 18 | 12 | 9 | 6 | 6 | 6 | 6 |  | 6 |
| Scaled Value | 4  | 4  | 3  | 2 | 2 | 2 | 2 | 2 |  | 2 |

| CO  | URSE   | CODE  | XEC407              | L | T     | P | C |  |
|-----|--------|-------|---------------------|---|-------|---|---|--|
| CO  | URSE I | NAME  | ELECTRONIC CIRCUITS | 3 | 0     | 0 | 3 |  |
| PRI | EREQU  | ISITE | ELECTRONIC CIRCUITS |   | 3 0 0 |   |   |  |
| C   | P      | A     |                     | L | T     | P | Н |  |
| 3   | 0      | 0     |                     | 3 | 0     | 0 | 3 |  |

# **LEARNING OUTCOMES**

- To give a comprehensive exposure to all types of amplifiers and oscillators constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits
- To impart the knowledge on feedback amplifiers and oscillators principles
- To design oscillators.
- To expose the students about turned amplifier.
- To enhance the knowledge on the analysis and design of LC and RC oscillators, amplifiers, multi vibrators, power amplifiers and DC convertors.

| COU  | RSE OUTCOMES                                                 | DOMAIN    | LEVEL                      |
|------|--------------------------------------------------------------|-----------|----------------------------|
| CO1  | Design and analyze feedback amplifiers                       | Cognitive | Understanding<br>Analyzing |
| CO2  | Design Oscillator circuits                                   | Cognitive | Understanding              |
| CO3  | <i>Illustrate</i> the frequency response of tuned amplifiers | Cognitive | Understanding              |
| CO4  | Discuss wave shaping circuits and multivibrators.            | Cognitive | Understanding              |
| CO5  | Tell the working principle of power amplifiers               | Cognitive | Understanding              |
| CO6  | Explain about DC converters                                  | Cognitive | Understanding analyzing    |
| UNIT | - IFEEDBACK AMPLIFIERS AND STABILITY                         |           | 9 Hours                    |

Feedback Concepts – gain with feedback – effect of feedback on gain stability, distortion, bandwidth, input and output impedances; topologies of feedback amplifiers – analysis of series-series, shuntshunt and shunt-series feedback amplifiers-stability problem-Gain and Phase-margins-Frequency compensation.

### UNIT – II OSCILLATORS

9 Hours

Barkhausen criterion for oscillation – phase shift, Wien bridge - Hartley &Colpitt's oscillators – Clapp oscillator-Ring oscillators and crystal oscillators – oscillator amplitude stabilization.

### **UNIT – IIITUNED AMPLIFIERS**

9 Hours

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers – Analysis of capacitor coupled single tuned amplifier – double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth – Stagger tuned amplifiers - Stability of tuned amplifiers – Neutralization - Hazeltine neutralization method.

# UNIT - IV WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

9 Hours

Pulse circuits – attenuators – RC integrator and differentiator circuits – diode clampers and clippers – Multivibrators - Schmitt Trigger- UJT Oscillator.

### UNIT – V POWER AMPLIFIERS AND DC CONVERTERS

9 Hours

Power amplifiers- class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB Power amplifier using MOSFET –DC/DC convertors – Buck, Boost, Buck-Boost analysis and design

| HOURS | LECTURE | TUTORIAL | TOTAL |
|-------|---------|----------|-------|
| HOURS | 45      | 0        | 45    |

### **TEXT BOOKS**

1.Sedra and Smith, —Micro Electronic Circuits|; Sixth Edition, Oxford University Press,2011.

2.Jacob Millman, Microelectronics', McGraw Hill, 2nd Edition, Reprinted, 2009.

# REFERENCE BOOKS

- 1.Robert L. Boylestad and Louis Nasheresky, —Electronic Devices and Circuit Theoryll, 10th Edition, Pearson Education / PHI, 2008
- 2.David A. Bell, —Electronic Devices and Circuits, Fifth Edition, Oxford University Press, 2008.
- 3. Millman J. and Taub H., —Pulse Digital and Switching Waveforms, TMH, 2000.
- 4. Millman and Halkias. C., Integrated Electronics, TMH, 2007.

# **CO Vs PO Mapping**

|      | PO1 | PO 2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO 8 | PO9 | PO 10 | PO 11 | PO 12 |
|------|-----|------|-----|-----|-----|-----|-----|------|-----|-------|-------|-------|
| CO 1 | 3   | 3    | 2   | 2   | 1   | 1   | 1   | 1    |     |       |       | 1     |
| CO 2 | 3   | 3    | 2   | 2   | 1   | 1   | 1   | 1    |     |       |       | 1     |

| CO 3         | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
|--------------|----|----|----|---|---|---|---|---|--|---|
| CO 4         | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| CO 5         | 3  | 3  | 2  | 2 | 1 | 1 | 1 | 1 |  | 1 |
| CO6          | 3  | 3  | 2  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| Total        | 18 | 18 | 12 | 9 | 6 | 6 | 6 | 6 |  | 6 |
| Scaled Value | 4  | 4  | 3  | 2 | 2 | 2 | 2 | 2 |  | 2 |

| COU          | RSEC  | ODE | XEC408              | L | T | P | C |
|--------------|-------|-----|---------------------|---|---|---|---|
| COU          | RSE N | AME | MICROPROCESSORS AND | 3 | 0 | 0 | 3 |
| PREREQUISITE |       |     | MICROCONTROLLERS    |   |   |   |   |
| C            | P     | A   |                     | L | T | P | H |
| 3            | 0     | 0   |                     | 3 | 0 | 0 | 3 |

### **LEARNING OBJECTIVES**

- To make the students understand the Architecture of 8086 microprocessor.
- To educate the students the design aspects of I/O and Memory Interfacing circuits.
- To impart the knowledge to the students to interface microprocessors with supporting chips.
- To give insight into the Architecture of 8051 microcontroller.
- To emphasize the students to design a microcontroller based system

| COURS | E OUTCOMES                                              | DOMAIN    | LEVEL         |
|-------|---------------------------------------------------------|-----------|---------------|
| CO1   | Understand the architecture and function of 8086        | Cognitive | Understanding |
|       | microprocessor                                          |           |               |
| CO2   | Understand and execute programs based on 8086           | Cognitive | Understanding |
|       | microprocessor.                                         |           |               |
| CO3   | Illustrate 8086 System Bus Structure                    | Cognitive | Understanding |
| CO4   | Explain I/O interfacing                                 | Cognitive | Understanding |
| CO5   | <i>Illustrate</i> the architecture of 8051              | Cognitive | Understanding |
| CO6   | Design and implement 8051 microcontroller based systems | Cognitive | Applying      |
|       |                                                         |           | A TT          |

# **UNIT - ITHE 8086 MICROPROCESSOR**

9 Hours

Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

### UNIT - II 8086 SYSTEM BUS STRUCTURE

9 Hours

8086 signals – Basic configurations – System bus timing –System design using 8086 – I/O programming – Introduction to Multiprogramming – System Bus Structure – Multiprocessor configurations – Coprocessor, Closely coupled and loosely Coupled configurations – Introduction to advanced processors.

### **UNIT - IIII/O INTERFACING**

9 Hours

Memory Interfacing and I/O interfacing - Parallel communication interface - Serial communication interface - D/A and A/D Interface - Timer - Keyboard /display controller - Interrupt controller - DMA controller - Programming and applications Case studies: Traffic Light control, LED display , LCD display, Keyboard display interface and Alarm Controller.

### **UNIT - IVMICROCONTROLLER**

9 Hours

Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits – Instruction set - Addressing modes - Assembly language programming.

### UNIT - VINTERFACING MICROCONTROLLER

9 Hours

Programming 8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation - Comparison of Microprocessor, Microcontroller, PIC and ARM processors.

| HOURS | LECTURE | TUTORIAL | TOTAL |
|-------|---------|----------|-------|
| HOUKS | 45      | 0        | 45    |

# **TEXT BOOKS**

- 1.Yu-Cheng Liu, Glenn A.Gibson, —Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design, Second Edition, Prentice Hall of India, 2007.
- 2.Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, —The 8051 Microcontroller and Embedded Systems: Using Assembly and Cl, Second Edition, Pearson education, 2011.
- 3.J.L.Antonakos, "An Introduction to the Intel Family of Microprocessors", Pearson, 1999.
- 4.D. V. Hall, "Micro processors and Interfacing", 2<sup>nd</sup> Edition, Tata McGrawHill, 2006.
- 5.Ramesh S. Goankar, "Microprocessor Architecture, Programming and Applications with 8085", 5<sup>th</sup>Edition, Prentice Hall,2014.
- 6.M.A.Mazidi&J.C.Mazidi "Microcontroller and Embedded systems using Assembly & C. (2/e)", Pearson Education, 2007.
- 7. John H. Davies, "MSP430 Microcontroller Basics", Elsevier Ltd., 2008.

### REFERENCE BOOKS

- 1.B.B. Brey, "The Intel Microprocessors, (7/e), Eastern Economy Edition", 2006.
- 2.K.J. Ayala, "The 8051 Microcontroller", (3/e), Thomson Delmar Learning, 2004.
- 3.I. S. MacKenzie and R.C.W.Phan., "The 8051 Microcontroller.(4/e)", Pearson education, 2008.
- 4.A.K.Ray and K.M.Bhurchandani, "Advanced Microprocessors and Peripherals",2<sup>nd</sup> Edition, TMH, 2006.
- 5.K.UmaRao, AndhePallavi, "The 8051 Microcontrollers, Architecture and programming and

- Applications", Pearson Education, 2009.
- 6.Liu and G.A.Gibson, "Micro Computer System 8086/8088 Family Architecture. Programming and Design", 2<sup>nd</sup> Edition, PHI, 1986.
- 7. Ajay. V. Deshmukh "Microcontrollers and Applications", TMGH, 2005.
- 8. Doughlas V. Hall, —Microprocessors and Interfacing, Programming and Hardware I, TMH, 2012
- 9.A.K.Ray,K.M.Bhurchandi, "Advanced Microprocessors and Peripherals" 3<sup>rd</sup> edition, Tata McGraw Hill, 2012

# **E REFERENCES**

- 1.https://onlinecourses.nptel.ac.in/noc18\_ec03/preview
- 2.http://www.avr-tutorials.com/general/microcontrollers-basics
- 3.https://www.tutorialspoint.com/embedded\_systems/es\_microcontroller.htm

# **CO Vs PO Mapping**

|                 | PO1 | PO 2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO 8 | PO9 | PO 10 | PO 11 | PO 12 |
|-----------------|-----|------|-----|-----|-----|-----|-----|------|-----|-------|-------|-------|
| CO 1            | 3   | 3    | 2   | 2   | 1   | 1   | 1   | 1    |     |       |       | 1     |
| CO 2            | 3   | 3    | 2   | 2   | 1   | 1   | 1   | 1    |     |       |       | 1     |
| CO 3            | 3   | 3    | 2   | 1   | 1   | 1   | 1   | 1    |     |       |       | 1     |
| CO 4            | 3   | 3    | 2   | 1   | 1   | 1   | 1   | 1    |     |       |       | 1     |
| CO 5            | 3   | 3    | 2   | 2   | 1   | 1   | 1   | 1    |     |       |       | 1     |
| CO6             | 3   | 3    | 2   | 1   | 1   | 1   | 1   | 1    |     |       |       | 1     |
| Total           | 18  | 18   | 12  | 9   | 6   | 6   | 6   | 6    |     |       |       | 6     |
| Scaled<br>Value | 4   | 4    | 3   | 2   | 2   | 2   | 2   | 2    |     |       |       | 2     |

| COUR | SECO         | DE  | XEC409                  | L | T | P | C |
|------|--------------|-----|-------------------------|---|---|---|---|
| COUR | SE NA        | ME  | ELECTRONIC CIRCUITS LAB | 0 | 0 | 1 | 1 |
| PRER | <b>EQUIS</b> | ITE | ELECTRONIC CIRCUITS LAD |   |   |   |   |
| С    | P            | A   |                         | L | T | P | H |
| 2.8  | 0.1          | 0.1 |                         | 0 | 0 | 2 | 2 |

# **LEARNING OBJECTIVES**

- To instill the knowledge of students on feedback amplifiers
- To expose the students on the performance of various oscillators
- To enhance the knowledge of the students on the performance of Tuned amplifiers
- To develop the an understanding the performance of Multivibrators
- To educate the students on the waveforms of clippers and clampers

| COUF | RSE OUTCOMES                                                    | DOMAIN                   | LEVEL                                |
|------|-----------------------------------------------------------------|--------------------------|--------------------------------------|
| CO1  | Verify series and shunt feedback amplifiers                     | Psychomotor              | Perception,                          |
| CO2  | Designand verify various oscillators                            | Psychomotor<br>Affective | origination,<br>Internalising Values |
| CO3  | <b>Design</b> and verify Tuned amplifiers                       | Psychomotor              | Mechanism,                           |
| CO4  | Design and demonstrate Multivibrators                           | Psychomotor<br>Affective | origination,<br>Valuing              |
| CO5  | <b>Construct</b> and observe the waveform clippers and clampers | Psychomotor<br>Affective | Mechanism,<br>Receiving Phenomena    |

### LIST OF EXPERIMENTS

- 1. Series feedback amplifiers-Frequency response, Input and output impedance
- 2. Shunt feedback amplifiers-Frequency response, Input and output impedance
- 3.RC Phase shift oscillator
- 4. Wien Bridge Oscillator
- 5. Hartley Oscillator
- 6.Colpitts Oscillator
- 7. Single Tuned Amplifier
- 8.RC Integrator and Differentiator circuits
- 9. Astable multivibrators
- 10.Monostable multivibrators
- 11.Clippers
- 12.Clampers

| HOURS | PRACTICAL | TOTAL |
|-------|-----------|-------|
| HOURS | 45        | 45    |

# CO Vs PO Mapping

|      | PO1 | PO 2 | PO 3 | PO4 | PO5 | PO6 | PO7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 |
|------|-----|------|------|-----|-----|-----|-----|------|------|-------|-------|-------|
| CO 1 | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 1    | 2    | 1     | 1     | 2     |

| CO 2 | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 1 | 2  | 1 | 1 | 2  |
|------|----|----|----|----|----|----|----|---|----|---|---|----|
| CO 3 | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 1 | 2  | 1 | 1 | 2  |
| CO 4 | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 1 | 2  | 1 | 1 | 2  |
| CO 5 | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 1 | 2  | 1 | 1 | 2  |
| CO6  | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 1 | 2  | 1 | 1 | 2  |
|      | 18 | 18 | 12 | 12 | 12 | 12 | 12 | 6 | 12 | 6 | 6 | 12 |

| COUR | SECO             | DE                      | XEC410                                                      |                          | L           | T                                    | P                       | С  |
|------|------------------|-------------------------|-------------------------------------------------------------|--------------------------|-------------|--------------------------------------|-------------------------|----|
| COUR | SE NA            | ME                      | MICROPROCESSOR AND                                          |                          | 0           | 0                                    | 1                       | 1  |
|      |                  |                         | MICROCONTROLLERSLAB                                         |                          |             |                                      |                         |    |
| PRER | EQUIS            | ITE                     |                                                             |                          |             |                                      |                         |    |
| С    | P                |                         | L                                                           | T                        | P           | H                                    |                         |    |
| 2.8  | 0.1              | 0.1                     |                                                             |                          | 0           | 0                                    | 2                       | 2  |
|      |                  | (                       | COURSE OUTCOMES DO                                          | <b>DM</b> A              | IN          | I                                    | LEVE                    | L  |
| CO1  | Verify<br>with 8 | Psychomotor             |                                                             |                          | Perception, |                                      |                         |    |
| CO2  | _                | nand pe<br>process      |                                                             | Psychomotor<br>Affective |             | origination, Internalising Values    |                         | -  |
| CO3  |                  |                         | nd verify the 8051 Microcontroller based Psycerations.      | hom                      | otor        | Mec                                  | hanisn                  | n, |
| CO4  | differe          |                         | ority and real time constraints with 8051 Affe              | Psychomotor<br>Affective |             |                                      | origination,<br>Valuing |    |
| CO5  |                  | <i>ruct</i> an controll | d indentifythe timer applications using 8051 Psycher.  Affe |                          |             | Mechanism,<br>Receiving<br>Phenomena |                         |    |

# LIST OF EXPERIMENTS

- 1. Programs for 8/16 bit Arithmetic operations Using 8085.
- 2. Programs for Sorting and Searching Using 8085.
- 3. Parallel Communication between two MP Kits using Mode 1 and Mode 2 of 8255 with 8085.
- 4. Interfacing and Programming of Stepper Motor 8085/8086.
- 5. Interfacing and Programming 8279, 8259, and 8253with 8085/8086.
- 6. Interfacing ADC and DAC using 8085.

- 7. Programming using Arithmetic, Logical and Bit Manipulation Instructions of 8051 Microcontroller.
- 8. Serial Communication between two Microcontroller Kits using 8051.
- 9. Communication between 8051 Microcontroller kit and PC.
- 10. Interfacing and Programming of DC Motor using 8051.
- 11. Interfacing ADC and DAC using 8051.
- 12. Programming and verifying Timer, Interrupts and UART operations in 8051Microcontroller.

| HOURS | PRACTICAL | TOTAL |
|-------|-----------|-------|
| HOURS | 45        | 45    |

# CO Vs PO Mapping

|      | PO1 | PO 2 | PO 3 | PO4 | PO5 | PO6 | PO7 | PO 8 | PO9 | PO 10 | PO 11 | PO 12 |
|------|-----|------|------|-----|-----|-----|-----|------|-----|-------|-------|-------|
| CO 1 | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 1    | 2   | 1     | 1     | 2     |
| CO 2 | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 1    | 2   | 1     | 1     | 2     |
| CO 3 | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 1    | 2   | 1     | 1     | 2     |
| CO 4 | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 1    | 2   | 1     | 1     | 2     |
| CO 5 | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 1    | 2   | 1     | 1     | 2     |
| CO6  | 3   | 3    | 2    | 2   | 2   | 2   | 2   | 1    | 2   | 1     | 1     | 2     |
|      | 18  | 18   | 12   | 12  | 12  | 12  | 12  | 6    | 12  | 6     | 6     | 12    |

| COU           | RSECO | DE | XEC501                                         | L | T | P | C |
|---------------|-------|----|------------------------------------------------|---|---|---|---|
| COURSE NAME   |       |    | ANALOG INTEGRATED CIRCUITS                     | 3 | 0 | 0 | 3 |
| PREREQUISITES |       |    | <b>Electronic Devices, Electronic Circuits</b> |   |   |   |   |
| С             | P     | A  |                                                | L | T | P | Н |

| 3 | 0 | 0 | 3 | 0 | 0 | 3 |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

### **LEARNING OBJECTIVES**

- To introduce the basic building blocks of linear integrated circuits
- To familiarize the linear and non-linear applications of operational amplifiers
- To impart the knowledge on the theory and applications of analog multipliers and PLL
- To disseminate the theory of ADC and DAC
- To enhance the fundamental knowledge on the concepts of waveform generation and introduce some special function ICs

| COURS | SE OUTCOMES                                                                            | DOMAIN    | LEVEL         |
|-------|----------------------------------------------------------------------------------------|-----------|---------------|
| CO1   | <i>Understand</i> theprinciples of differential amplifiers and operational amplifiers. | Cognitive | Understanding |
| CO2   | Analyze the working of operational amplifiers and basic applications.                  | Cognitive | Analyzing     |
| CO3   | Apply the principles of op-amp for various applications.                               | Cognitive | Applying      |
| CO4   | <i>Understand</i> the working of multivibrators, filters, schimitt trigger.            | Cognitive | Understanding |
| CO5   | Understand and carry out the working of specialized ICs.                               | Cognitive | Understanding |

# **UNIT I - DIFFERENTIAL AMPLIFIERS**

(9 Hours)

Differential amplifiers: Differential amplifier configurations using BJT, Large and small signal operations, input resistance, voltage gain, CMRR, non – ideal characteristics of differential amplifiers, frequency response of differential amplifiers, Operational amplifiers: Introduction, Block diagram, Ideal op-amp parameters, Equivalent circuit, Voltage transfer curve, Open loop op-amp configurations, Effect of finite open loop gain, Bandwidth and slew rate on circuit performance.

### UNIT II - OP-AMP WITH NEGATIVE FEEDBACK

(9 Hours)

Introduction, Feedback configurations, voltage series feedback, voltage shunt feedback, properties of practical op-amp, Op-amp applications: Inverting and non inverting amplifier, DC and AC amplifiers, Summing, Scaling and averaging amplifiers, Instrumentation amplifier.

### **UNIT III - OP-AMP APPLICATIONS**

(9 Hours)

Voltage to current converter, Current to voltage converter, Integrator, Differentiator, Precision rectifiers, Log and antilog amplifier, RC Phase Shift, Wien bridge, Hartley, Colpitts and Crystal oscillators.

# UNIT IV - MULTIVIBRATORS AND FILTERS

(9 Hours)

Bistable, monostable and astablemultivibrators, Triangular and saw toothwave generators, Comparators, Zero crossing detector, Schmitt Trigger, Active filters: Advantages, First and second order low pass, Highpass, Band pass and band reject filters, Design of filters using Butterworth approximations.

# UNIT V: SPECIALIZED ICS AND ITS APPLICATIONS

(9 Hours)

Timer IC 555: Bistable, monostable and astableoperations, applications, Analog multipliers, VCO, PLL and its applications Data converters: A/D converters, D/A converters.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |

### **TEXT BOOKS**

- 1. D.RoyChoudhry, Shail Jain, Linear Integrated Circuits, New Age International Pvt. Ltd., 2018, Fifth Edition.
- 2. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 4th Edition, Tata Mc Graw-Hill, 2016
- 3. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 4/e,Tata McGraw Hill, 2015

### REFERENCES

- 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010
- 2. A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2<sup>nd</sup> edition, 2010
- 3. Ramakant A. Gayakwad, —OP-AMP and Linear ICsl, 4th Edition, Prentice Hall / PearsonEducation, 2015.
- 4.Robert F.Coughlin, Frederick F.Driscoll, —Operational Amplifiers and Linear Integrated Circuits, Sixth Edition, PHI, 2001.
- 5. William D. Stanley, —Operational Amplifiers with Linear Integrated Circuits, Pearson Education, 4<sup>th</sup> Edition, 2001.

### E REFERENCES

1. https://nptel.ac.in/courses/108106068/

### **Mapping of COs with POs:**

| PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO<br>2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|----------|----------|
|     |     |     |     |     |     |     |     |     |      |      |      |          |          |

| CO 1            | 3  | 3  | 2  | 1 |  | 2 |   | 1 |  |
|-----------------|----|----|----|---|--|---|---|---|--|
| CO 2            | 3  | 3  | 2  | 1 |  |   | 2 | 1 |  |
| CO 3            | 3  | 3  | 2  | 1 |  | 3 | 2 | 1 |  |
| CO 4            | 1  | 2  | 2  | 1 |  |   |   | 1 |  |
| CO 5            | 1  | 2  | 2  | 1 |  |   | 2 | 1 |  |
| Total           | 11 | 10 | 10 | 5 |  | 5 | 6 | 5 |  |
| Scaled<br>Value | 2  | 2  | 2  | 1 |  | 1 | 1 | 1 |  |
| Value           |    |    |    |   |  |   |   |   |  |

# 0 - No Relation 1 - Low Relation ,2 - Medium Relation, 3- High Relation

| OURSE CODE    |   |   | XEC502                | L | T | P | C |
|---------------|---|---|-----------------------|---|---|---|---|
| COURSE NAME   |   |   | DIGITAL COMMUNICATION | 3 | 0 | 0 | 3 |
| PREREQUISITES |   |   | XEC303, XEC404        | L | T | P | H |
| C             | P | A |                       | 2 | Λ | Λ | 2 |
| 3             | 0 | 0 |                       | 3 | U | U | 3 |

# **LEARNING OBJECTIVES**

- To impart the knowledge on the principles of sampling & quantization
- To instruct the various waveform coding schemes
- To familiarize the various baseband transmission schemes
- To enhance the fundamental knowledge on the various band pass signaling schemes
- To equip the students with the fundamentals of channel coding

| COUF | RSE OUTCOMES                                                                                                        | DOMAIN    | LEVEL                      |
|------|---------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|
| CO1  | <b>Describe</b> various methods to mitigate the effects of noise and ISI in baseband pulse transmission.            | Cognitive | Remembering                |
| CO2  | Explain and compare various digital modulation techniques                                                           | Cognitive | Understanding,<br>Evaluate |
| CO3  | <b>Describe</b> and <b>apply</b> various error control techniques for reducing bit errors in digital communication. | Cognitive | Remembering,<br>Applying   |
| CO4  | Explain and illustrate Spread Spectrum Communication.                                                               | Cognitive | Understanding              |
| CO5  | Explain Multiple Access Schemes                                                                                     | Cognitive | Understanding              |

| UNIT I - COMMUNICATION THROUGH BANDLIMITED CHANNELS | (9 Hours) |
|-----------------------------------------------------|-----------|
|                                                     |           |

Matched Filter- Error Rate due to noise –Inter symbol Interference- Nyquist's criterion for Distortion less Base band Binary Transmission- Correlative level coding –Baseband and Mary PAM transmission –Equalization – Linear, DFE and MLSE methods–Eye patterns

### UNIT II-DIGITAL MODULATION

(9 Hours)

Introduction – Geometric Representation of Signals -Conversion of the Continuous AWGN Channel into a Vector Channel - Optimum Receivers Using Coherent Detection- Probability of Error- Pass band Transmission model- Generation, Detection, Signal space diagram, bit error probability and Power spectra of ASK,BPSK, QPSK,QAM, FSK and MSK schemes – Differential phase shift keying – Comparison of Digital modulation systems using a single carrier – Carrier and symbol synchronization.

### UNIT III-ERROR CONTROL CODING

(9 Hours)

Discrete memoryless channels – Linear block codes - Cyclic codes - Convolutional codes – Maximum likelihood decoding of convolutional codes-Viterbi Algorithm, Trellis codedModulation, Turbo codes, Introduction to LDPC codes,Polar Codes: Channel combining, Channel splitting, Polar coding

### UNIT IV-SPREAD SPECTRUM COMMUNICATION

(9 Hours)

Pseudo- noise sequences —a notion of spread spectrum — Direct sequence spread spectrum with coherent binary phase shift keying — RAKE Receiver, Signal space Dimensionality and processing gain —Probability of error — Frequency —hop spread spectrum —Pseudorandom Sequence Generation ,Maximum Length Sequences , Gold Sequences , Barker Sequences , Time-Hopping Spread Spectrum System with Pseudorandom Pulse Position Selection.Case study on SS for 3G, Wireless LAN and Satellite systems.

# UNIT V -MULTIPLE ACCESS TECHNIQUES

(9 Hours)

Introduction- Frequency Division Multiple Access-Time Division Multiple Access- Code Division

Multiple Access-Single-Carrier CDMA-Multi-Carrier CDMA-Orthogonal Frequency Division

Multiple Access-Single-Carrier FDMA-Space Division Multiple Access- Case Study: Multiple

Access Scheme in GSM, 3GPP LTE Cellular System

| HOURS | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
| HOURS | 45      | 0        | 0         | 45    |

# **TEXT BOOKS**

- 1. Simon Haykins, "Communication Systems", 4th Edition, John Wiley & Sons, Reprint 2008.
- 2. Wesołowski, "Introduction to Digital Communication Systems", John Wiley & Sons, 2009.

### REFERENCES

- 1. John Proakis, MassoudSalehi, "Digital Communications", 5<sup>th</sup> Editions, McGraw Hill Education India, 2014.
- 2. John R.Barry, Edward A. Lee, David G.Messerschmitt, "Digital Communication", 3<sup>rd</sup> Edition, Kluwer Academic Publishers, 2004.
- 3. E. Arıkan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," IEEE Trans. Inform. Theory, vol. 55, pp. 3051–3073, July 2009.

# **E- REFERENCES**

- 1. <a href="http://freevideolectures.com/Course/2311/Digital-Communication">http://freevideolectures.com/Course/2311/Digital-Communication</a>(NPTEL,Digital Communication, Prof. Bikash Kumar Dey,IIT Bombay)
- 2. http://www.nptel.ac.in/syllabus/117105077/ (NPTEL, Digital Communication, Prof. SaswatChakrabarti, Prof. R.V. Rajakumar,IITKharagpur)

### **Mapping of COs with POs:**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO<br>2 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|----------|----------|
| CO 1   | 1   | 3   |     |     |     |     |     |     |     | 1    |      | 2    | 2        | 3        |
| CO 2   | 1   | 3   |     |     |     |     |     |     |     |      |      | 1    | 2        | 3        |
| CO 3   | 1   | 3   |     |     |     |     |     |     |     | 1    |      | 1    | 2        | 3        |
| CO 4   | 1   | 2   |     |     |     |     |     |     |     |      |      | 1    | 2        | 3        |
| CO 5   |     | 2   |     |     |     |     |     |     |     |      |      | 1    | 2        | 3        |
| Total  | 4   | 13  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2    |      | 6    | 10       | 15       |
| Scaled | 1   | 3   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    | 0    | 2    | 2        | 3        |
| Value  |     |     |     |     |     |     |     |     |     |      |      |      |          |          |

0 - No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COUR | RSE CO       | DE   | XEC503                                 | L | T | P | C |
|------|--------------|------|----------------------------------------|---|---|---|---|
| COUR | RSE NA       | ME   | COMPUTER ARCHITECTURE AND ORGNAISATION | 3 | 0 | 0 | 3 |
| PRER | <b>EQUIS</b> | ITES |                                        | L | T | P | H |
| C    | P            | A    |                                        | 2 | 0 | Λ | 2 |
| 3    | 0            | 0    |                                        | 3 | " | U | 3 |

# **LEARNING OBJECTIVES**

- To make the students to understand the basic structure and operation of digital computer.
- To familiarize the students with the arithmetic and logic unit and implementation of fixed point and floating-point arithmetic operations and memory system.
- To expose the students with the different ways of communicating with I/O devices and standard I/O interfaces.

| COURSE OUTCOMES |                                                                                          | DOMAIN    | LEVEL                   |
|-----------------|------------------------------------------------------------------------------------------|-----------|-------------------------|
| CO1             | <b>Recognize</b> the operation of functional units of a computer                         | Cognitive | Understanding           |
| CO2             | Describe and compute the operation of hardware units associated with a computing device. | Cognitive | Remembering<br>Applying |
| CO3             | <b>Demonstrate</b> the operation of processing unit.                                     | Cognitive | Understanding           |
| CO4             | Compare the performance of different types of memory                                     | Cognitive | Analyzing               |
| CO5             | <b>Recognize</b> the operation of interfacing devices.                                   | Cognitive | Understanding           |

# **UNIT I - BASIC STRUCTURE OF COMPUTERS**

9Hours

Functional Units - Bus Structures - Performance - Evolution - Machine Instructions and programs - Memory operations - Instruction and instruction sequencing - addressing modes - Basic I/O operations - stacks and queues - subroutines - Encoding of Machine instructions.

# **UNIT II- ARITHMETIC UNIT**

9 Hours

Arithmetic - Design of fast adders - Binary Multiplication - Division - Floating point numbers and operations.

### UNIT III- BASIC PROCESSING UNIT

9 Hours

Processing unit - Fundamental concepts - Execution of a complete instruction - Multiple bus organization - Hardwired control - Micro programmed control - pipelining - Basic concepts - Hazards - Inference on instruction sets. Data path and control considerations - Performance issues.

### UNIT IV-MEMORY SYSTEM

9 Hours

RAM and ROM - Cache memories - Performance considerations - Virtual memories - secondary storage devices - Associative memories.

## **UNIT V- INPUT / OUTPUT ORGANIZATION**

9 Hours

Accessing I/O devices - Interrupts - DMA - Buses - Interface circuits - standard I/O Interfaces. Case study of one RISC and one CISC processor.

| HOURS | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
|       | 45      | 0        | 0         | 45    |

### TEXT BOOKS

1. V.CarlHamacher, Zvonko G. Varanesic and Safat G. Zaky, "Computer Organisation", 6<sup>th</sup> Edition, Mc Graw-Hill Inc, 2012.

### REFERENCES

- 1. John P Hayes, "Computer Architecture and Organisation", Third edition, McGraw Hill, 2012.
- 2. David A Patterson and John L. Hennessy, 2002. "ComputerOrganisation and Design The Hardware / Software Interface", 2nd edition, Harcourt Asia, Morgan Kaufmann.
- 3. William Stallings "Computer Organization and Architecture", Seventh Edition, Pearson Education, 2006.

### **E-REFERENCES**

- 1. https://www.nptel.ac.in/courses/106106092/
- 2. <a href="http://www.nptelvideos.in/2012/11/computer-organization.html">http://www.nptelvideos.in/2012/11/computer-organization.html</a>

Table 1:COs versus POs mapping

|       | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO 6 | PO 7 | PO<br>8 | PO<br>9 | PO1<br>0 | PO1<br>1 | PO1 2 | PSO<br>1 | PSO 2 |
|-------|---------|---------|---------|---------|---------|------|------|---------|---------|----------|----------|-------|----------|-------|
| CO 1  | 2       | 2       | 2       | 1       |         |      |      |         |         | 1        |          | 1     |          |       |
| CO 2  | 2       | 2       | 2       | 1       |         |      |      |         |         | 1        |          | 1     |          |       |
| CO 3  | 2       | 2       | 2       | 1       |         |      |      |         |         |          |          | 1     |          |       |
| CO 4  | 2       | 2       | 2       | 1       |         |      |      |         | 2       |          |          | 1     |          |       |
| CO 5  | 2       | 2       | 2       | 1       |         |      |      |         |         |          |          | 1     |          |       |
| Total | 10      | 10      | 10      | 5       | 0       | 0    | 0    | 0       | 2       | 2        | 0        | 5     | 0        | 0     |
| Scale | 2       | 2       | 2       | 1       | 0       | 0    | 0    | 0       | 1       | 1        | 0        | 1     | 0        | 0     |
| d     |         |         |         |         |         |      |      |         |         |          |          |       |          |       |
| value |         |         |         |         |         |      |      |         |         |          |          |       |          |       |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0- No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COUI          | RSE C | ODE   | XEC504                    | L | T | P | C |
|---------------|-------|-------|---------------------------|---|---|---|---|
| COURSE NAME   |       | AME   | DIGITAL SIGNAL PROCESSING | 3 | 0 | 0 | 3 |
| PREREQUISITES |       | SITES |                           | L | T | P | H |
| C             | P     | A     |                           | 2 | Λ | Λ | 2 |
| 3             | 0     | 0     |                           | 3 | U | U | 3 |

## **LEARNING OBJECTIVES**

- To introduce the mathematical approach to manipulate discrete time signals, which are useful to learn digital telecommunication.
- To bring out the concepts related to DFT and its computation
- To bring out the analysis and design techniques for digital filters
- To impart the concept of finite word length effect in signal processing
- To provide thorough understanding on the fundamentals and various types of digital signal processors

| COUR | RSE OUTCOMES                                                                                               | DOMAIN    | LEVEL                                       |
|------|------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|
| CO1  | Find and analyze Discrete Fourier Transform to signal processing                                           | Cognitive | Remembering<br>Analyzing                    |
| CO2  | Explain, Design and Apply FIR digital filters                                                              | Cognitive | Understanding<br>Applying,<br>Evaluating    |
| CO3  | Explain, Design and Apply IIR digital filters                                                              | Cognitive | Understanding Applying, Evaluating          |
| CO4  | Define and ClassifyFinite word length                                                                      | Cognitive | Remembering,<br>Understanding<br>Evaluating |
| CO5  | Define and Classify the hardware architecture, construct and justify signal processing modules in hardware | Cognitive | Understanding,<br>Applying,<br>Analyzing    |

### UNIT I - DISCRETE FOURIER TRANSFORM

9 Hours

Introduction to DSP and its applications – Efficient computation of DFT, Properties of DFT, FFT algorithms – Radix-2, Radix-4 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms –Use of FFT algorithms in Linear Filtering and correlation. Convolution –overlap save and overlap add method.

### UNIT II - DIGITAL FIR FILTERS DESIGN

9 Hours

Amplitude and phase responses of FIR filters – Linear phase filters – Windowing techniques for design of Linear phase FIR filters – Rectangular, Hamming, Hanning, Blackman, Kaiser windows – frequency sampling techniques, Realization structures for FIR

## **UNIT III - DIGITAL IIR FILTERS DESIGN**

9 Hours

IIR Filters – Magnitude response – Phase response – group delay - Design of Low Pass Butterworth filters (low pass) - Bilinear transformation – prewarping, impulse invariant technique - Realization structures for IIR Filters, direct-cascade and parallel form.

### **UNIT IV - FINITE WORD LENGTH EFFECTS**

9 Hours

Fixed point and floating point number representations-comparison- Truncation and rounding errors-Quantization noise – derivation for quantization noise power - coefficient quantization error-product quantization error-over flow error – Roundoff noise power — limit cycle oscillations due to product round off and overflow errors – signal scaling- analytical model of sample and hold operations.

## **UNIT V - DIGITAL SIGNAL PROCESSORS**

9 Hours

Introduction to DSP architecture – Harvard architecture - Dedicated MAC unit - Multiple ALUs, Advanced addressing modes, Pipelining, Overview of instruction set of TMS320C5X and C54X

| HOURS | LECTURE | PRACTICAL | TOTAL |
|-------|---------|-----------|-------|
| HOURS | 45      | 0         | 45    |

### **TEXT BOOKS**

- 1. Alan V. Oppenheim, Ronald Schafer, "Discrete Time signal Processing", Pearson Education, 3<sup>rd</sup> Edition, 2010.
- 2. John G Proakis, Dimtris G Manolakis, "Digital Signal Processing Principles, Algorithms and Application", 4th Edition, PHI, 2007,
- 3. Louis Scharf, "Statistical Signal Processing", Pearson Education, 1991.
- 4. B.Venkataramani& M. Bhaskar, "Digital Signal Processor Architecture, Programming and Application", TMH, 2002.

## **REFERENCES**

- 1. Avtarsingh, S.Srinivasan, "DSP Implementation using DSP Microprocessor with Examples from TMS32C54XX", Thomson / Brooks Cole Publishers, 2003
- 2. S.Salivahanan, A.Vallavaraj, Gnanapriya, "Digital Signal Processing", McGrawHill TMH,2000.
- 3. JohnyR.Johnson Introduction to Digital Signal Processing", Prentice Hall, 1984.
- 4. S.K.Mitra, "Digital Signal Processing- A Computer based approach", Tata McGraw Hill, NewDelhi, 1998.

### **E-REFERENCES**

- 1. http://nptel.ac.in/courses/117102060/ (Prof: S. C. Dutta Roy, "Digital Signal Processing, Nptel online courses", Department of Electrical Engineering, Indian Institute of Technology, Delhi)
- 2. http://nptel.ac.in/courses/Webcourse- contents/IIT-KANPUR/Digi\_Sign\_Pro/ui/About-Faculty.html (Prof. Govind Sharma, "Digital Signal Processing, Nptel online courses", Department of Electrical Engineering, Indian Institute of Technology, Kanpur)

## **Mapping Of Course Outcomes With Program Outcomes**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO | PSO |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|-----|-----|
|        |     |     |     |     |     |     |     |     |     |      |      |      | 1   | 2   |
| CO 1   | 3   | 3   | 1   | 2   | 2   | 2   |     |     | 1   | 1    | 1    | 2    |     | 1   |
| CO 2   | 2   | 2   | 2   | 2   | 2   | 2   |     |     | 1   | 1    | 1    | 2    |     | 1   |
| CO 3   | 3   | 3   | 2   | 2   | 2   | 2   |     |     | 1   | 1    | 1    | 2    |     | 1   |
| CO 4   | 3   | 2   | 2   | 2   | 3   | 2   |     |     | 1   | 1    | 1    | 2    |     | 1   |
| CO 5   | 2   | 2   | 2   | 0   | 1   | 0   |     |     | 0   | 0    | 0    | 2    |     | 1   |
| Total  | 13  | 12  | 9   | 8   | 10  | 8   | 0   | 0   | 4   | 4    | 4    | 10   | 0   | 5   |
| Scaled | 3   | 3   | 2   | 0   | 3   | 2   | 0   | 0   | 1   | 1    | 1    | 2    | 0   | 1   |
| Value  |     |     |     |     |     |     |     |     |     |      |      |      |     |     |

0 - No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COU          | RSE C | ODE | XEC508                                         | L | T | P | C |
|--------------|-------|-----|------------------------------------------------|---|---|---|---|
| COURSE NAME  |       |     | ANALOG INTEGRATED CIRCUITS LAB                 | 0 | 0 | 1 | 1 |
| PREREQUISITE |       |     | <b>Electronic Devices, Electronic Circuits</b> |   |   |   |   |
| C            | C P A |     |                                                | L | T | P | Н |
| 1            | 0     | 0   |                                                | 0 | 0 | 2 | 2 |

## **LEARNING OBJECTIVES**

- To familiarize the basics of linear integrated circuits and available ICs
- To impart the knowledge on the characteristics of the operational amplifier.
- To teach the applications of operational amplifiers.
- To give insight into the basic knowledge of special function IC

| COUR | SE OUTCOMES                                                                                 | DOMAIN                   | LEVEL                      |
|------|---------------------------------------------------------------------------------------------|--------------------------|----------------------------|
| CO1  | <b>Understand</b> theprinciplesof differential amplifiers and hence operational amplifiers. | Cognitive<br>Psychomotor | Understanding<br>Mechanism |
| CO2  | <b>Analyze</b> the working of operational amplifiers and basic applications.                | Cognitive<br>Psychomotor | Analyzing<br>Understanding |
| CO3  | <b>Apply</b> the principles of op-amp for various applications.                             | Cognitive                | Applying                   |
| CO4  | <b>Understand</b> the working of multivibrators, filters, schimitt trigger.                 | Cognitive                | Understanding              |
| CO5  | Understandand carry out the working of specialized ICs.                                     | Cognitive<br>Psychomotor | Understanding<br>Mechanism |

# **LIST OF EXPERIMENTS (Discrete Components and Simulation)**

| S.No | List of Experiments                                                                                                                     | COs |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1    | Familiarization of Operational amplifiers - Inverting and Non inverting amplifiers, frequency response, Adder, Integrator, comparators. | CO1 |
| 2    | Measurement of Op-Amp parameters.                                                                                                       | CO1 |
| 3    | Difference Amplifier and Instrumentation amplifier.                                                                                     | CO2 |
| 4    | Schmitt trigger circuit using Op –Amps                                                                                                  | CO2 |
| 5    | Precision rectifiers using Op-Amp                                                                                                       | CO3 |
| 6    | RC Phase shift and Wien bridge oscillator using Op-Amp                                                                                  | CO3 |

| 7  | Colpitts and Hartley Oscillator using Op –Amps                      | CO4 |
|----|---------------------------------------------------------------------|-----|
| 8  | Astable , Bistable and Monostable multivibrators using IC 555 Timer | CO4 |
| 9  | Active second order filters using Op-Amp (LPF, HPF, BPF and BSF).   | CO4 |
| 10 | A/D converters                                                      | CO5 |
| 11 | D/A Converters                                                      | CO5 |
| 12 | Study of PLL IC: free running frequency lock range capture range    | CO5 |
|    | Mini Project: Application of Op- amp for Electronic Design          |     |

| HOURS | PRACTICAL | <b>TUTORIAL</b> | TOTAL |
|-------|-----------|-----------------|-------|
| HOURS | 30        | 0               | 30    |

## **TEXT BOOKS**

- 1. Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 4/e, Tata McGraw Hill, 2015
- 2. Salivahanan S., V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2008

## REFERENCES

- 1. Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010
- 2. A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2<sup>nd</sup> edition, 2010
- 3. Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010

## E REFERENCES

1. https://nptel.ac.in/courses/108106068/

## **Mapping of COs with POs:**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO<br>2 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|----------|----------|
| CO 1   | 3   | 3   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| CO 2   | 3   | 3   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| CO3    | 3   | 3   |     | 2   | 1   |     |     |     | 3   | 2    |      | 1    |          |          |
| CO 4   | 1   | 2   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| CO 5   | 1   | 2   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| Total  | 11  | 10  |     | 10  | 5   |     |     |     | 11  | 10   |      | 5    |          |          |
| Scaled | 2   | 2   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| Value  |     |     |     |     |     |     |     |     |     |      |      |      |          |          |

0- No Relation 1 - Low Relation , 2 - Medium Relation , 3- High Relation

| COURSE CODE          | XEC509                | L | T | P | C |
|----------------------|-----------------------|---|---|---|---|
| COURSE NAME          | ANALOG AND DIGITAL    | 0 | 0 | 1 | 1 |
|                      | COMMUNICATION LAB     |   |   |   |   |
| <b>PREREQUISITES</b> | Communication Theory  | L | T | P | H |
|                      | Digital Communication |   |   |   |   |
| C:P:A                | 1:0:0                 | 0 | 0 | 2 | 2 |

## **LEARNING OBJECTIVES**

- To introduce the different types of analog and digital modulation and demodulation
- To convey frequency division multiplexing and demultiplexing
- To expose the students line coding and decoding.
- To create awareness on the performance of digital modulation techniques in AWGN and Rayleigh channels

| COUR | SE OUTCOMES                                                                                                                     | DOMAIN                  | LEVEL                   |
|------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|
| CO1  | Construct, Demonstrate and Simulate Amplitude Modulation, Demodulation, sensitivity and selectivity of AM receivers.            | Cognitive<br>Psycomotor | Mechanism<br>Responding |
| CO2  | Construct, Demonstrate and Simulate Frequency Modulation, Demodulation, sensitivity and selectivity of FM receivers.            | Cognitive<br>Psycomotor | Mechanism<br>Responding |
| CO3  | Construct and Demonstrate Frequency Division Multiplexingand demultiplexing.                                                    | Cognitive<br>Psycomotor | Mechanism<br>Responding |
| CO4  | <b>Build</b> , <b>Demonstrate</b> and <b>Simulate</b> various types of analog and digital Pulse Modulations using trainer kits. | Cognitive<br>Psycomotor | Mechanism<br>Responding |
| CO5  | Simulate performance of digital modulation techniques in AWGN and Rayleigh channels.                                            | Cognitive<br>Psycomotor | Mechanism<br>Responding |

| S.No | List of Experin                                                       | nents             |                | COs    |  |  |  |
|------|-----------------------------------------------------------------------|-------------------|----------------|--------|--|--|--|
| 1    | i)Amplitude Modulation and Demodulation us                            | ing Kit.          |                | CO1    |  |  |  |
|      | ii)DSB FC, DSB SC, SSB SC spectrum using                              | Matlab softwar    | e              |        |  |  |  |
|      | iii)Performance of AM receiver (Selectivity &                         | Sensitivity) usi  | ng Kit         |        |  |  |  |
| 2    | i)Frequency Modulation and Demodulation u                             | sing Kit and Ma   | ntlab software | CO2    |  |  |  |
|      | ii)Performance of AM receiver (Selectivity &                          | Sensitivity) usin | g Kit          |        |  |  |  |
| 3    | Sampling and Reconstruction using Kit and M                           | latlab software   |                | CO3    |  |  |  |
| 4    | i)PAM/PWM/PPM modulation and Demodula                                 | tion using kit    |                | CO4    |  |  |  |
|      | ii)PCM and DPCM modulation and demodulation using kit                 |                   |                |        |  |  |  |
|      | iii)Delta modulation and Demodulation using                           | kit               |                |        |  |  |  |
| 5    | Line coding and decoding using kit                                    |                   |                | CO4    |  |  |  |
| 6    | ASK, FSK, PSK and QPSK modulation using                               | Kit               |                | CO4    |  |  |  |
| 7    | Demonstration of theoretical and simulated BI using MATLAB            | ER for M-PSK,     | M- QAM in AWO  | GN CO5 |  |  |  |
| 8    | BER for BPSK/QPSK/QAM under Rayleigh c                                | hannel            |                | CO5    |  |  |  |
| 9    | 9 BER performance of BPSK using convolutional code under AWGN channel |                   |                |        |  |  |  |
| 10   | Demonstration of Direct Sequence Spread Spe                           | ctrum in AWG      | V              | CO5    |  |  |  |
|      | HOURS                                                                 | TUTORIAL          | PRACTICAL      | TOTAL  |  |  |  |
|      | HOURS                                                                 | 0                 | 30             | 30     |  |  |  |

### TEXT BOOKS

- 1. JOHN W. LEIS, "Communication Systems Principles Using MATLAB" 1st Edition, Wiley, 2018.
- 2. Kwonhue Choi and Huaping Liu, "Problem-Based Learning in Communication Systems Using MATLAB and Simulink (IEEE Series on Digital & Mobile Communication)" 1st Edition, Wiley-IEEE Press, 2016

- 1.Amplitude Modulation Transmitter and Receiver User Manual, ACLT 001, United Electrotechnologies, Bangalore
- 2. Frequency Modulation Transmitter and Receiver User Manual, United Electrotechnologies, Bangalore
- 3. Pulse Modulation Trainer PAM/PWM/PPM DCT 007 User Manual, United Electrotechnologies, Bangalore
- 4. Channel Encode/Decode DCL -00 & DCL User Manual, Khodayss Systems Limited, Bangalore
- 5. Sampling and Reconstruction Unit DCLT001 User Manual, United Electrotechnologies, Bangalore
- 6. Pulse Code Modulation & Demodulation (Model No: VCT -07) User Manual, Vi Microsystems PVT Ltd, Chennai
- 7. Delta PCM Trainer (Model No: VCT -12) User Manual, Version 2.0, Vi Microsystems PVT Ltd, Chennai
- 8. Differential PCM Trainer (VCT 34) User Manual Version 1.0, Vi Microsystems PVT Ltd, Chennai
- 9. TDM, PAM Modulation and Demodulation User Manual Version 1.0, Vi Microsystems PVT Ltd, Chennai

|        | PO | PO1 | PO1 | PO1 | PSO 1 | PSO 2 |
|--------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-------|-------|
|        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   |       |       |
| CO 1   | 2  | 2  |    | 1  | 2  |    | 1  |    | 2  | 2   |     | 1   |       | 1     |
| CO 2   | 2  | 2  |    | 1  | 2  |    | 1  |    | 2  | 2   |     | 1   |       | 1     |
| CO 3   | 2  | 2  |    | 1  | 2  |    | 1  |    | 2  | 2   |     | 1   |       | 1     |
| CO 4   | 2  | 2  |    | 1  | 2  |    | 1  |    | 2  | 2   |     | 1   |       | 1     |
| CO 5   | 2  | 2  |    | 1  | 2  |    | 1  |    | 2  | 2   |     | 1   |       | 1     |
| Total  | 10 | 10 |    | 5  | 10 |    | 5  |    | 10 | 10  |     | 5   |       | 5     |
| Scaled | 2  | 2  |    | 1  | 2  |    | 1  |    | 2  | 2   |     | 1   |       | 1     |
| Value  |    |    |    |    |    |    |    |    |    |     |     |     |       |       |

| COURSE CODE |               |     | XEC510                    | L | T | P | C |
|-------------|---------------|-----|---------------------------|---|---|---|---|
| COURSE NAME |               | AME | DIGITAL SIGNAL PROCESSING | 0 | 0 | 1 | 1 |
|             |               |     | LABORATORY                |   |   |   |   |
| PRER        | PREREQUISITES |     |                           | L | T | P | Н |
| C           | P             | A   |                           |   |   |   |   |
| 1           | 0             | 0   |                           | 0 | 0 | 2 | 2 |

## **LEARNING OBJECTIVES**

- To compute the output response of the system for FFT spectrum.
- To make the students understand the behavior and response of the filter using different methods.
- To educate the students with the generation of the signals and arithmetic operation using DSP Processor

| COUR | SE OUTCOMES                                                               | DOMAIN      | LEVEL      |
|------|---------------------------------------------------------------------------|-------------|------------|
| CO1  | Computation of linear and circular convolution                            | Cognitive   | Mechanism  |
|      |                                                                           | Psychomotor | Responding |
|      |                                                                           | Affective   |            |
| CO2  | Design of digital IIR digital filters.                                    | Cognitive   | Mechanism  |
|      |                                                                           | Psychomotor | Responding |
|      |                                                                           | Affective   | _          |
| CO3  | <b>Design</b> of digital FIR digital filters.                             | Cognitive   | Mechanism  |
|      |                                                                           | Psychomotor | Responding |
|      |                                                                           | Affective   |            |
| CO4  | <b>Define</b> and <b>Classify</b> the hardware architecture, constructand | Cognitive   | Mechanism  |
|      | justify signal processing modules in hardware                             | Psychomotor | Responding |
|      |                                                                           | Affective   |            |
|      |                                                                           |             |            |
| CO5  | Design of varies projects                                                 | Cognitive   | Mechanism  |
|      |                                                                           | Psychomotor | Responding |
|      |                                                                           | Affective   |            |

| S.No | List of Experiment                                      | S          |           | COs     |  |  |  |
|------|---------------------------------------------------------|------------|-----------|---------|--|--|--|
| 1.   | Generation of signals(Analog & Digital) (Using S        | SciLab)    | (         | CO1     |  |  |  |
| 2.   | Convolution of two sequences. (Using SciLab)            |            | (         | CO1     |  |  |  |
| 3.   | Calculation of DFT and IDFT of a signal. (Using         | SciLab)    | (         | CO1     |  |  |  |
| 4.   | Calculation of FFT and IFFT of a signal. (Using SciLab) |            |           |         |  |  |  |
| 5.   | Design of IIR filters. (Using SciLab)                   |            |           |         |  |  |  |
| 6.   | Design of FIR filters. (Using SciLab)                   | (          | CO3       |         |  |  |  |
| 7.   | Sine Wave generation (Using TMS320C5X)                  | (          | CO1&CO5   |         |  |  |  |
| 8.   | Convolution of two sequences (Using TMS320C             | 5X)        | (         | CO1&CO5 |  |  |  |
| 9.   | Calculation of DFT( Using TMS320C5X)                    |            | (         | CO1&CO5 |  |  |  |
| 10.  | Calculation of FFT( Using TMS320C5X)                    |            | (         | CO1&CO5 |  |  |  |
| 11.  | Implementation of IIR filter (Using TMS320C5X           | ()         | (         | CO2&CO5 |  |  |  |
| 12.  | Implementation of FIR filter (UsingTMS320C5X            | <u>(</u> ) | (         | CO3&CO5 |  |  |  |
|      | HOURS                                                   | TUTORIAL   | PRACTICAL | TOTAI   |  |  |  |
|      | HOURS                                                   | 0          | 20        | 20      |  |  |  |

### TEXT BOOKS

1. B.Venkataramani& M. Bhaskar, "Digital Signal Processor Architecture, Programming and Application", TMH, 2002.

## REFERENCES

1. Avtarsingh, S.Srinivasan, "DSP Implementation using DSP Microprocessor with Examples from TMS32C54XX", Thomson / Brooks Cole Publishers, 2003

## **E-REFERENCES**

- 1. http://nptel.ac.in/courses/117102060/ (Prof: S. C. Dutta Roy, "Digital Signal Processing, Nptel online courses", Department of Electrical Engineering, Indian Institute of Technology, Delhi)
- 2. http://nptel.ac.in/courses/Webcourse- contents/IIT-KANPUR/Digi\_Sign\_Pro/ui/About-Faculty.html (Prof. Govind Sharma, "Digital Signal Processing, Nptel online courses", Department of Electrical Engineering, Indian Institute of Technology, Kanpur)

## **Mapping of COs with POs:**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO<br>2 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|----------|----------|
| CO 1   | 3   | 3   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| CO 2   | 3   | 3   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| CO 3   | 3   | 3   |     | 2   | 1   |     |     |     | 3   | 2    |      | 1    |          |          |
| CO 4   | 1   | 2   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| CO 5   | 1   | 2   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |
| Total  | 11  | 10  |     | 10  | 5   |     |     |     | 11  | 10   |      | 5    |          |          |
| Scaled | 2   | 2   |     | 2   | 1   |     |     |     | 2   | 2    |      | 1    |          |          |

0- No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COURSECODE  |              | CODE | XECM01                       | L | T | P | С |
|-------------|--------------|------|------------------------------|---|---|---|---|
| COURSE NAME |              | NAME | PCB DESIGN THROUGH ULTIBOARD | 0 | 0 | 0 | 0 |
| PRE         | PREREQUISITE |      |                              |   |   |   |   |
| C           | P            | A    |                              | L | T | P | H |
| 0           | 0            | 0    |                              | 0 | 0 | 2 | 2 |

| COUR | SE OUTCOMES                                           | DOMAIN      | LEVEL        |
|------|-------------------------------------------------------|-------------|--------------|
| CO1  | Describe Printed Circuit Boards and design them using | Cognitive   | Remember     |
|      | a CAD software.                                       | Psychomotor | Complex Over |
|      |                                                       |             | Response     |

PCB characteristics- Materials - Laminates - Key Substrates- PCB design steps- Subtractive, additive and semi-additive processes- Chemical etching - drilling - coating - Creating a Board Outline- Placing Components - Dragging Components from Outside the Board Outline Dragging Components from the Parts Tab - Placing the Tutorial Components- Placing Parts from the Database - Moving Components Placing Traces-About Component Connections - Options for Placing Traces Placing a Manual Trace -Placing a Follow-me Trace Placing a Connection Machine Trace Net Bridges - PCB Transmission Line Calculator - PCB Differential Impedance Calculator - Preparing for Manufacturing/Assembly Cleaning up the Board - Adding Comments - Exporting a File- Viewing Designs in 3D

| HOURS | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
| HOURS | 5       | 0        | 10        | 15    |

## **TEXT BOOKS**

- National Instruments, "Ultiboard 9 PCB Layout User Guide", http://www.ni.com/pdf/manuals/371586b.pdf, 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100, 2003–2006
- 2. Clyde Coombs and Happy Holden, "Printed Circuits Handbook, McGraw-Hill Education; 7 edition, 2016.

| COURSECODE  |              |      | XEC608                           | L | T | P | C |
|-------------|--------------|------|----------------------------------|---|---|---|---|
| COURSE NAME |              | NAME | VLSI DESIGN AND EMBEDDED SYSTEMS | 0 | 0 | 1 | 1 |
|             |              |      | LAB                              |   |   |   |   |
| PRE         | PREREQUISITE |      | VLSI Design and Embedded Systems |   |   |   |   |
|             |              |      |                                  |   |   |   |   |
| C           | P            | A    |                                  | L | T | P | H |
| 1           | 1 0 0        |      |                                  | 0 | 0 | 2 | 2 |

## **LEARNING OBJECTIVES**

- To acquaint the students with the the concept of FGPA and construct the FPGA circuits.
- To give insight to the students to developthe codes for the circuit using verilog.
- To emphasis the students with the design and develop the software and hardware concept of processor in real time environment.
- To equip the students with the serial communication port ,RTOS on embedded systems
- To inculcate the understanding of interfacing of data I/O devices with embedded systems in real time and use the peripherals in embedded systems.

| COUR | RSE OUTCOMES                                                                                                                                                             | DOMAIN                    | LEVEL                         |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|
| CO1  | Understand the concept of FGPA and construct the FPGA circuits.                                                                                                          | Cognitive,<br>Psychomotor | Understanding , Analyzing     |
| CO2  | <b>Define, select</b> and <b>develop</b> the codesfor the circuit using verilog.                                                                                         | Cognitive,<br>Psychomotor | Remembering,<br>Understanding |
| CO3  | <b>Describe, understand,</b> and <b>construct</b> the embedded system design and <b>develop</b> the software and hardware concept of processor in real time environment. | Cognitive,<br>Psychomotor | Remembering,<br>Understanding |
| CO4  | Describe and understand the serial communication port ,RTOS on embedded systems                                                                                          | Cognitive,<br>Psychomotor | Remembering,<br>Understanding |
| CO5  | <i>Understand</i> the interfacing of data I/O devices with embedded systems in real time and use the peripherals in embedded systems.                                    | Cognitive,<br>Psychomotor | Analyzing,<br>Understanding   |

| S.No | List of Exper                                                                                          | riment            |                 | COs   |  |  |  |
|------|--------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------|--|--|--|
| 1    | Display the text in 2 x16 LCD using FPGA.                                                              |                   |                 | CO1   |  |  |  |
| 2    | Study of simulation and synthesis for Logic                                                            | Gates             |                 | CO1   |  |  |  |
| 3    | Study of simulation and synthesis, place, ro                                                           | ot and back annot | ation for FPGAs | CO2   |  |  |  |
| 4    |                                                                                                        | 1                 |                 |       |  |  |  |
| 5    | Implementation of LEDs blinking controlled by switches using Verilog codes for Combinational circuits. |                   |                 |       |  |  |  |
| 6    | Implementation of LEDs blinking controlled by switches using Verilog codes for Sequential circuits.    |                   |                 |       |  |  |  |
| 7    | Interfacing the LED using ARM Developme                                                                | ent board .       |                 | CO4   |  |  |  |
| 8    | Interfacing to Input/output Devices (keyboa Development board.                                         | rd and LCD)using  | g ARM           | CO4   |  |  |  |
| 9    | Serial communication using I2C with ARM                                                                | Development Bo    | ard.            | CO4   |  |  |  |
| 10   | Interfacing the stepper motor/servo motor/D                                                            | OC with ARM cor   | tex board.      | C05   |  |  |  |
| 11   | Interfacing EPROM and interrupt with ARM                                                               | M cortex board.   |                 | CO5   |  |  |  |
| 12   | Interfacing the ADC and DAC with ARM c                                                                 | ortex board.      |                 | CO5   |  |  |  |
|      | Miniproject – Application of embedded systems on health, safety, environment                           |                   |                 |       |  |  |  |
|      | 1                                                                                                      | PRACTICAL         | TUTORIAL        | TOTAL |  |  |  |
|      |                                                                                                        | 30                | 0               | 30    |  |  |  |

### **TEXT BOOKS**

- 1. Frank Vahid and Tony Givargis, "Embedded System Design", 3<sup>rd</sup> Edition, Wiley India, 2002.
- 2. Arnold S. Berger "Embedded Systems Design", 1st Edition, Taylor & Francis, 2002.
- 3. Rajkamal "Embedded Systems", 2<sup>nd</sup> Edition, Tata McGraw Hill, 2008.
- 4. A. Pucknell and Kamran Eshraghian, "Basic VLSI Design", 3<sup>rd</sup> Edition,PHI,1995.
- 5. K. Lal Kishore, V.S.V. Prabhakar, "VLSI Design", I.K. International Pvt.Ltd, 2010.
- 6. Neil H.E Weste, David Money Harris, "CMOS VLSI Design", 3<sup>rd</sup> Edition, Pearson Education, 2005.
- 7. Neil weste and Kamran Eshraghian "Principles of CMOS VLSI Design A Systems Perspective", 2<sup>nd</sup> Edition, Pearson Education, Reprint 2010.
- 8. Principles of CMOS VLSI Design, Addison Wesley N. Weste and K. Eshranghia Addison Wesley. 1985
- 9. The Design and Analysis of VLSI Circuits, L. Glaser and D. Dobberpuhl ,Addison Wesley,1985
- 10. Introduction to VLSI Systems ,C. Mead and L. Conway ,Addison Wesley1979
- 11. Digital Integrated Circuits: A Design Perspective, J. Rabaey, Prentice Hall India, 1997 5. VHDL ,D. Perry, McGraw Hill International 1995 2nd Ed.,

- <u>David Kleidermacher</u>, <u>Mike Kleidermacher</u>, "Embedded Systems Security: Practical Methods for Safe and Secure Software and Systems Development", PHI, 2012.
- 2. Chattopadhyan, "Embedded System Design", 3<sup>rd</sup>Edition, PHI,2013.
- 3. M.J.S.Smith: "Application Specific integrated circuits", Pearson Education, 1997.
- 4. Wayne Wolf, "Modern VLSI Design", Pearson Education, 2003.
- 5. Bob Zeidmin "Introduction to verilog", Prentice Hall, 1999.
- 6. J.Bhaskar, "Verilog HDL Primer", Prentice Hall, 1999.
- 7. E. Fabricious, "Introduction to VLSI design", McGrawHill, 1990.
- 8. C. Roth, "Digital Systems Design Using VHDL", Thomson Learning, 2000.

## **E REFERENCES**

- 1. http://web.cs.mun.ca/~paul/transistors/node3.html
- 2. http://www.csee.umbc.edu/~cpatel2/links/315/lectures/chap3\_lect09\_processing2.pdf
- 3. http://www.aicdesign.org/scnotes/2002notes/Chapter02-2UP(8\_13\_02).pdf
- 4. www.verilog.com
- 5. http://www.ece.umd.edu/class/enee359a/verilog\_tutorial.pdf
- 6. https://www.vidyarthiplus.com/vp/attachment.php?aid=24159
- 7. https://www.vidyarthiplus.com/vp/attachment.php?aid=20222
- 8. http://ic.sjtu.edu.cn/ic/dic/wp-content/uploads/sites/10/2013/04/CMOS-VLSI-design.pdf
- 9.https://swayam.gov.in/course/3573-embedded-systems-design
- 10.http://www.keil.com/dd/docs/data

## **Mapping of COs with POs:**

|        | P  | PO | PO9 | PO | PO1 | PO | PS | PSO 2 |
|--------|----|----|----|----|----|----|----|----|-----|----|-----|----|----|-------|
|        | 01 | 2  | 3  | 4  | 5  | 6  | 7  | 8  |     | 10 | 1   | 12 | 01 |       |
| CO 1   | 3  | 2  | 1  | 3  | 3  | 3  | 1  |    | 3   | 3  | 2   | 3  |    |       |
| CO 2   | 3  | 1  | 1  | 3  | 3  | 3  | 1  |    | 3   | 3  | 2   | 3  |    |       |
| CO 3   | 2  | 1  | 1  | 3  | 3  | 3  | 1  |    | 3   | 3  | 2   | 3  |    |       |
| CO 4   | 2  | 1  | 1  | 3  | 3  | 3  | 1  |    | 3   | 3  | 2   | 3  |    |       |
| CO 5   | 2  | 2  | 1  | 3  | 3  | 3  | 1  |    | 3   | 3  | 2   | 3  |    |       |
| Total  | 12 | 7  | 1  | 15 | 15 | 15 | 5  |    | 15  | 15 | 10  | 15 |    |       |
| Scaled | 3  | 2  | 1  | 3  | 3  | 3  | 1  |    | 3   | 3  | 3   | 3  |    | 0     |
| Value  |    |    |    |    |    |    |    |    |     |    |     |    |    |       |

0 - No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COURSECODE   |   | CODE   | XECM02            | L | T | P | C |
|--------------|---|--------|-------------------|---|---|---|---|
| COURSE NAME  |   | NAME   | PLC AND SENSORICS | 0 | 0 | 0 | 0 |
| PREREQUISITE |   | JISITE | XEC 304           |   |   |   |   |
| C            | P | A      |                   | L | T | P | Н |
| 0            | 0 | 0      |                   | 0 | 0 | 2 | 2 |

| COUR | SE OUTCOMES                                                                                                                  | DOMAIN | LEVEL                                 |
|------|------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|
| CO1  | <b>Describe</b> the role of PLC and sensorics in Industrial Automation and <b>integrate</b> them using Indra logic software. | _      | Remember<br>Complex Overt<br>Response |

PLC architecture (L20DB) – ladder language coding for basic logic gates – AND,OR,NOR,NAND – user defined functions – Up counter, down counter, TON,TOFF, Rising trigger, Falling trigger –sub program concept, set and reset concept-program for given case study (Ex:Traffic light signal control, Bottling etc) – Interfacing of PLC with hardware using communication parameter.

Sensorics-Construction and working principle of Inductive sensor, Capacitive sensor, Photo electric sensor, Ultrasonic sensor and Proximity sensor – study of characteristics of each sensor with respect to the sample material-interfacing of sensors with PLCs

| LECTURE | PRACTICAL | TOTAL |
|---------|-----------|-------|
| 5       | 10        | 15    |

## **TEXT BOOKS**

- 1. Kelvin.T.Ericson, "Programmable Logic Controllers:An Emphasis on Design and Application", 2<sup>nd</sup> Edition, 2011
- 2. Handbook on PLC and Sensorics -Bosch Rexroth.
- 3. Krzysztof Iniewski, "Smart Sensors for Industrial applications", 2017 CRC Press

| COURSE CODE |         |     | XEC702                           | L | T | P | C |
|-------------|---------|-----|----------------------------------|---|---|---|---|
| COURSE NAME |         |     | EMBEDDED SYSTEMS AND VLSI DESIGN | 3 | 0 | 1 | 4 |
| PRERI       | EQUISIT | ES  | XEC303, XEC604                   | L | T | P | H |
| C           | P       | A   |                                  | 3 | 0 | 2 | 5 |
| 3           | 0.9     | 0.1 |                                  |   |   |   |   |

| COURSE | OUTCOMES                                                                                                                                      | Domain                                | Level                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|
| CO1    | Describe, understand, construct and report embedded system design and development                                                             | Cognitive Psychomotor Affective       | Remembering,<br>Understanding,<br>Applying<br>Mechanism<br>Responding to a<br>phenomena |
| CO2    | Describe, understand, react and perform the software and hardware concept of processor in real time environment.                              | Cognitive Psychomotor Affective       | Remembering,<br>Understanding<br>Set<br>Responding to a<br>phenomena                    |
| CO3    | Define, select, compare, reproduce and identify the peripherals in embedded systems.                                                          | Cognitive  Psychomotor  Affective     | Remembering, Understanding, Evaluate Guided Response Receiving Phenomena                |
| CO4    | Outline, explain the IC fabrication techniques and Design rules pertaining to CMOS technology.construct and report the design of logic gates. | Cognitive Psychomotor Affective       | Remembering,<br>Understanding<br>Mechanism<br>Responding to a<br>phenomena              |
| CO5    | Design, create, construct and report the combinational and sequential circuits using Verilog                                                  | Cognitive<br>Psychomotor<br>Affective | Analyze, Create<br>Mechanism<br>Responding to a<br>phenomena                            |

# UNIT I - INTRODUCTION TO EMBEDDED SYSTEMS AND DESIGN ANALYSIS

9+6+6

Complex systems and microprocessors – Embedded system design process – Formalism for system design-ARM processor – Architecture, Instruction sets and programming. CPU: Programming input and output – Coprocessor – Memory system mechanism– Memory devices – I/O devices – Component interfacing – Design with microprocessors – Development and Debugging – Program design – Model of programs – Assembly and Linking – Basic compilation techniques – Analysis and optimization of execution time, power, energy, program size – Program validation and testing.

# UNIT II PROCESSES,OPERATING SYSTEMS AND EMBEDDED SOFTWARE

9+6+6

Multiple tasks and processes – Context switching – Scheduling policies – Interprocess communication mechanisms – Performance issues-Programming embedded systems in assembly and C – Meeting real time constraints –Multi-state systems and function sequences. Embedded software development tools –Emulators and debuggers.

## UNIT III - DEVICES AND BUSES FOR DEVICES NETWORK

9+6+6

I/O devices – device I/O types and examples – synchronous – Iso-synchronous and asynchronous communications from serial devices – examples of internal serial –communication devices – UART and HDLC – parallel port devices – sophisticated interfacing features in devices/ports – timer and counting devices – '12C', 'USB', 'CAN' and advanced I/O serial high speed buses – ISA, PCI, PCIX, CPCI and advanced buses.

### **UNIT IV - CMOS TECHNOLOGY**

9+6+6

An overview of Silicon semiconductor technology, Basic CMOS technology: well, P well, Twin tub and SOI Process. Interconnects, circuit elements: Resistors, capacitors, Electrically alterable ROMs, bipolar transistors, Latch up and prevention.

Layout design rules, physical design: basic concepts, CAD tool sets, physical design of logic gates: Inverter, NAND, NOR, Design Hierarchies.

## UNIT V - SPECIFICATION USING VERILOG HDL

9+6+6

Basic Concepts: VLSI Design flow, identifiers, gate primitives, value set, ports, gate delays, structural gate level and switch level modeling, Design hierarchies, Behavioral and RTL modeling: Operators, timing controls, Procedural assignments conditional statements, Data flow modeling and RTL. Structural gate level description of decoder, equality detector, comparator, priority encoder, D-latch, D-ff, half adder, Full adder, Ripple Carry adder, Programming of PALs, ASIC design flow.

### LIST OF EXPERIMENTS

Combinational circuits.

## EMBEDDED SYSTEMS LAB Write a program to blink LED using ARM Development board and Write a program to read 1 and write a data into EEPROM using I2C using ARM Development Board. Write a program for Interfacing to Input/OutputDevicesusing ARM Development board. Write a program for serial communication architecture on ARM architecture 4 Study and Implementation (porting) of Process creation using fork system call in Embedded Linux on ARM Processor. Study and Implementation (porting) of Synchronization of two 5 threads to access resources using semaphore in Embedded Linux Environment on processor. Display the text in 2 x16 LCD using FPGA. 6 Study of simulation and synthesis for Logic Gates 8 Study of simulation and synthesis, place, root and back annotation for FPGAs Study and implementation of schematic entry and Verilog code simulation of pipelined serial and parallel adder to add/subtract 8 number of size, 12 bit each in 2's complement. Implementation of LEDs blinking controlled by switches using Verilog codes for 10

| 11 | Implementation of LEDs blinking controlled by switches using Verilog codes for |
|----|--------------------------------------------------------------------------------|
|    | Sequential circuits.                                                           |

12 Mini project on FPGA.

|       | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
| HOURS | 45      | 0        | 30        | 75    |

### **TEXT BOOK**

- 1. Frank Vahid and Tony Givargis, "Embedded System Design", 3<sup>rd</sup> Edition, Wiley India, 2002.
- 2. Arnold S. Berger "Embedded Systems Design", 1st Edition, Taylor & Francis, 2002.
- 3. Rajkamal "Embedded Systems", 2<sup>nd</sup> Edition, Tata McGraw Hill, 2008.
- 4. A. Pucknell and Kamran Eshraghian, "Basic VLSI Design", 3<sup>rd</sup> Edition,PHI,1995.
- 5. <u>K. Lal Kishore</u>, <u>V.S.V. Prabhakar</u>, "VLSI Design", I.K. International Pvt.Ltd, 2010.
- 6. Neil H.E Weste, David Money Harris, "CMOS VLSI Design",3<sup>rd</sup> Edition, Pearson Education, 2005.
- 7. Neil weste and Kamran Eshraghian "Principles of CMOS VLSI Design A Systems Perspective", 2<sup>nd</sup> Edition, Pearson Education, Reprint 2010.

### REFERENCES

- 1. <u>David Kleidermacher</u>, <u>Mike Kleidermacher</u>, "Embedded Systems Security: Practical Methods for Safe and Secure Software and Systems Development", PHI, 2012.
- 2. Chattopadhyan, "Embedded System Design", 3<sup>rd</sup>Edition, PHI,2013.
- 3. M.J.S.Smith: "Application Specific integrated circuits", Pearson Education, 1997.
- 4. Wayne Wolf, "Modern VLSI Design", Pearson Education, 2003.
- 5. Bob Zeidmin "Introduction to verilog", Prentice Hall, 1999.
- 6. J.Bhaskar, "Verilog HDL Primer", Prentice Hall, 1999.
- 7. E. Fabricious, "Introduction to VLSI design", McGrawHill, 1990.
- 8. C. Roth, "Digital Systems Design Using VHDL", Thomson Learning, 2000.

- 1. http://web.cs.mun.ca/~paul/transistors/node3.html
- 2. http://www.csee.umbc.edu/~cpatel2/links/315/lectures/chap3\_lect09\_processing2.pdf
- 3. http://www.aicdesign.org/scnotes/2002notes/Chapter02-2UP(8\_13\_02).pdf
- 4. www.verilog.com
- 5. http://www.ece.umd.edu/class/enee359a/verilog\_tutorial.pdf
- 6. https://www.vidyarthiplus.com/vp/attachment.php?aid=24159
- 7. https://www.vidyarthiplus.com/vp/attachment.php?aid=20222
- 8. http://ic.sjtu.edu.cn/ic/dic/wp-content/uploads/sites/10/2013/04/CMOS-VLSI-design.pdf

# **Mapping of COs with POs:**

|        | PO1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO 7 | PO<br>8 | PO<br>9 | PO1<br>0 | PO1<br>1 | PO1 2 | PS<br>O 1 | PS<br>O 2 |
|--------|-----|---------|---------|---------|---------|---------|------|---------|---------|----------|----------|-------|-----------|-----------|
| CO 1   | 3   | 3       |         | 2       | 1       | 1       | 2    |         |         |          |          | 1     |           |           |
| CO 2   | 2   | 2       |         | 2       | 2       | 1       | 1    |         |         |          |          | 1     |           |           |
| CO 3   | 3   | 3       |         | 3       | 2       | 2       | 2    |         |         |          |          | 1     | 2         | 2         |
| CO 4   | 1   | 2       |         | 1       | 1       |         |      |         |         |          |          | 1     |           |           |
| CO 5   | 2   | 2       |         | 2       | 3       | 2       | 1    |         |         |          |          | 1     |           |           |
| Total  | 11  | 12      |         | 10      | 9       | 6       | 6    |         |         |          |          | 5     |           |           |
| Scaled | 3   | 3       |         | 2       | 2       | 2       | 2    |         |         |          |          | 1     | 1         | 1         |
| value  |     |         |         |         |         |         |      |         |         |          |          |       |           |           |

0- No Relation 1 - Low Relation , 2- Medium Relation , 3- High Relation

| COURSE CODE  |   | CODE  | XEC703                    | L            | T | P | C |
|--------------|---|-------|---------------------------|--------------|---|---|---|
| COURSE NAME  |   | AME   | MICROWAVE ENGINEERING AND | 3            | 1 | 1 | 5 |
|              |   |       | OPTICAL COMMUNICATION     |              |   |   |   |
| PREREQUISITE |   | ISITE | XEC405                    | $\mathbf{L}$ | T | P | H |
| S            |   |       |                           |              |   |   |   |
| C            | P | A     |                           | 3            | 2 | 2 | 7 |
| 3            | 1 | 0     |                           |              |   |   |   |

| COUR | SE OUTCOMES                                       | Domain      | Level           |
|------|---------------------------------------------------|-------------|-----------------|
| CO1  | Describe, demonstrate and analyse the             | Cognitive   | Remembering,    |
|      | parameters of passive microwave components.       | Psychomotor | Understanding,  |
|      |                                                   |             | Analyzing       |
|      |                                                   |             | Perception      |
| CO2  | Describe, assemble, demonstrate, measure and      | Cognitive   | Remembering,    |
|      | analyse the parameters of microwave sources       |             | Understanding,  |
|      | and construct microwave bench.                    |             | Analyzing       |
|      |                                                   | Psychomotor | Perception,     |
|      |                                                   |             | Mechanism       |
| CO3  | Outline, assemble and distinguish various         | Cognitive   | Understanding,  |
|      | semiconductor devices.                            |             | Remembering,    |
|      |                                                   | Psychomotor | Guided Response |
| CO4  | Explain, assemble, measure and analysethe         | Cognitive   | Understanding,  |
|      | transmission characteristics of optical fibers.   |             | Analyzing       |
|      |                                                   | Psychomotor | Perception,     |
|      |                                                   |             | Mechanism       |
| CO5  | Explain, identify and measure the characteristics | Cognitive   | Understanding   |
|      | of optical sources and detectors.                 | Psychomotor | Perception,     |
|      |                                                   |             | Mechanism       |

## **UNIT I - MICROWAVE PASSIVE COMPONENTS**

9+6+6

Microwave frequency range, significance of microwave frequency range - applications of microwaves. Scattering matrix -Concept of N port scattering matrix representation. Properties of S matrix- S matrix formulation of two-port junction. Microwave junctions - Tee junctions - Magic Tee - Rat race - Corners - bends and twists - Directional couplers - two hole directional couplers- Ferrites - important microwave properties and applications - Termination - Gyrator-Isolator-Circulator - Attenuator - Phase changer - S Matrix for microwave components - Cylindrical cavity resonators.

### UNIT II - MICROWAVE TUBES AND MEASUREMENTS

9+6+6

Microwave tubes- High frequency limitations - Principle of operation of Multicavity Klystron, Reflex Klystron, Traveling Wave Tube, Magnetron. Microwave measurements: Measurement of power, wavelength, impedance, SWR, attenuation, Q and Phase shift.

## **UNIT III - MICROWAVE SEMICONDUCTOR DEVICES**

9+6+6

Microwave semiconductor devices- operation - characteristics and application of BJTs and FETs -Principles of tunnel diodes - Varactor and Step recovery diodes - Transferred Electron Devices -Gunn diode- Avalanche Transit time devices- IMPATT and TRAPATT devices. Parametric devices -Principles of operation - applications of parametric amplifier .Microwave monolithic integrated circuit (MMIC) - Materials and fabrication techniques

# UNIT IV - TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS AND COMPONENTS

Introduction, Ray theory transmission- Total internal reflection-Acceptance angle – Numerical aperture – Skew rays – Electromagnetic mode theory of optical propagation – EM waves – modes in Planar guide – phase and group velocity – cylindrical fibers – SM fibers.

Attenuation – Material absorption losses in silica glass fibers – Linear and Non linear Scattering losses - Fiber Bend losses – Intra and inter Modal Dispersion – Over all Fiber Dispersion – Polarization- non linear Phenomena. Optical fiber connectors, Fiber alignment and Joint Losses – Fiber Splices – Fiber connectors – Expanded Beam Connectors – Fiber Couplers.

## UNIT V - SOURCES AND DETECTORS, FIBER OPTIC RECEIVER

9+6+6

9+6+6

Optical sources: Light Emitting Diodes - LED structures - surface and edge emitters, mono and hetero structures - internal - quantum efficiency, injection laser diode structures - comparison of LED and ILD Optical Detectors: PIN Photo detectors, Avalanche photo diodes, construction, characteristics and properties, Comparison of performance, Photo detector noise -Noise sources, Signal to Noise ratio, Detector response time.

Fundamental receiver operation, Pre amplifiers, Error sources – Receiver Configuration – Probability of Error – Quantum limit.

### LIST OF EXPERIMENTS

Gunn Diode – Characteristics 1. 2. Reflex Klystron – Mode characteristics **3.** VSWR, Frequency and Wave Length Measurement Directional Coupler – Directivity and Coupling Coefficient – S – parameter 4. measurement E-Plane T, H-Plane T and Magic T, Isolator and Circulator – S - parameter 5. measurement Attenuation and Power measurement 6. 7. Radiation Pattern and Gain of Antennas. **OPTICAL EXPERIMENTS:** Numerical Aperture Determination for Fibers 1. Attenuation Measurement in Fibers 2. 3. Mode Characteristics of Fibers Fiber Optic Analog and Digital Links 4. 5. Measurement of Connector and Bending Losses. DC characteristics of LED and PIN Photo Diode. 6.

|       | LECTU<br>RE | TUTORIAL | PRACTICAL | TOTAL |
|-------|-------------|----------|-----------|-------|
| HOURS | 45          | 30       | 30        | 105   |

### **TEXT BOOKS**

- 1. Samuel Y. Liao, "Microwave Devices & Circuits", Prentice Hall of India, 2006.
- 2. John M. Senior, "Optical Fiber Communication", 2nd Edition, Pearson Education, 2007.
- 3 Gerd Keiser, "Optical Fiber Communication", 3rd Edition, McGraw Hill, 2000.

- 1. Robert E.Collin, "Foundations of Microwave Engineering", McGraw Hill, 1992.
- 2. Annapurna Das and Sisir K Das, "Microwave Engineering", Tata McGraw Hill, 2004.

- 3. D.M.Pozar, "Microwave Engineering", John Wiley &Sons, 2006.
- 4. John Gowar, "Optical Communication Systems", Prentice Hall of India, 2001.
- 5. Rajiv Ramaswami, Kumar Sivarajan, Galen Sasaki, "Optical Networks: A Practical Perspective", 3<sup>rd</sup> Edition, Morgan Kaufmann, 2010.
- 6. Govind P. Agrawal, "Fiber Optic Communication Systems", 3<sup>rd</sup> Edition, John Wiley &Sons, 2004.

## **E-REFERENCES**

- 1. http://www.nptel.ac.in/downloads/117101054/
- 2. http://www.microwaves101.com
- 3. http://www.lightwaveonline.com

## **Mapping of COs with POs:**

|        | PO1 | PO | PO1 | PO1 | PO1 | PSO | PSO |
|--------|-----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
|        |     | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 2   |
| CO 1   | 3   | 2  |    | 2  | 1  | 1  |    |    |    |     |     | 2   |     |     |
| CO 2   | 1   | 2  |    | 2  | 2  | 2  |    |    |    |     |     | 2   |     |     |
| CO3    | 3   | 1  |    | 2  | 3  | 1  |    |    |    |     |     | 2   |     |     |
| CO 4   | 2   | 2  |    | 3  | 1  | 1  |    |    |    |     |     | 2   | 3   |     |
| CO 5   | 2   | 1  |    | 3  | 1  | 1  |    |    |    |     |     | 2   | 3   |     |
| Total  | 11  | 8  |    | 11 | 8  | 6  |    |    |    |     |     | 10  | 6   |     |
| Scaled | 2   | 2  |    | 3  | 2  | 2  |    |    |    |     |     | 2   | 2   |     |
| value  |     |    |    |    |    |    |    |    |    |     |     |     |     |     |

## 0- No Relation 1 - Low Relation , 2 - Medium Relation , 3- High Relation

XEC 707 and XEC 804 Project Phase -1 and Phase II

**Course Outcomes (COs)** 

Phase 1: L:T:P:C 0:0:2 C:P:A = 1:0.5:0.5

Phase II: L:T:P:C 0:0:12 C:P:A 6:3:3

|    | At the end of the course, the students will be able to                                                        |                           |                          |
|----|---------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|
| CO | Title                                                                                                         | Domain                    | Level                    |
| 1  | <b>Identify</b> the Engineering Problem relevant to the domain interest.                                      | Cognitive                 | Analyzing                |
| 2  | <b>Interpret and Infer</b> Literature survey for its worthiness.                                              | Cognitive                 | Analyzing,<br>Applying   |
| 3  | <b>Analyse</b> and <b>identify</b> an appropriate technique for solve the problem.                            | Cognitive                 | Analyzing,<br>Applying   |
| 4  | <b>Perform</b> experimentation /Simulation/Programming/Fabrication, <b>Collect</b> and <i>interpret</i> data. | Psychomotor,<br>Cognitive | CoR, Create,<br>Applying |
| 5  | <b>Record and Report the</b> technical findings as a document.                                                | Cognitive                 | Remembering,             |

|   |                                                                                                                   |                         | Understanding                     |
|---|-------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|
| 6 | <b>Devote</b> oneself as a responsible member and <b>display</b> as a leader in a team to <b>manage</b> projects. | Affective,<br>Cognitive | Value,<br>Organization,<br>Create |
| 7 | Responding of project findings among the technocrats.                                                             | Affective               | Responding                        |

## Mapping of Course Outcomes (COs) with GAs)

XEE 707 - Project Phase -1 and XEE 804 Project Phase II

|      | CO1 | CO2 | CO3 | CO4 | CO5 | CO6 | CO7 | Total |   |
|------|-----|-----|-----|-----|-----|-----|-----|-------|---|
| GA1  | 3   | 2   | 1   | 2   | 1   | -   | 1   | 10    | 2 |
| GA2  | 3   | 2   | 1   | 2   | 1   | -   | 1   | 10    | 2 |
| GA3  | •   | -   | 1   | 3   | 1   |     |     | 5     | 1 |
| GA4  | •   | 1   | 2   | 3   | 1   | 2   | 2   | 11    | 3 |
| GA5  | •   | -   | 2   | 3   | 1   | •   | •   | 6     | 2 |
| GA6  | 1   | -   | 1   | 1   | -   | 3   | 3   | 10    | 2 |
| GA7  | 1   |     | 1   | 1   | -   | 1   |     | 4     | 1 |
| GA8  | 1   | -   | 1   | 1   | -   | 3   | -   | 6     | 2 |
| GA9  | •   | -   | •   | •   | 2   | 3   | 1   | 6     | 2 |
| GA10 | •   | -   | •   | •   | 3   | 3   | 3   | 9     | 2 |
| GA11 | •   |     |     |     | 2   | 2   | 2   | 6     | 2 |
| GA12 | 1   |     |     |     | 3   | 3   | 1   | 8     | 2 |

0- No Relation 1 - Low Relation , 2 - Medium Relation , 3- High Relation

| COU | RSE CO  | DE  | XGS708                    | L T P SS |   |   |     | С |  |
|-----|---------|-----|---------------------------|----------|---|---|-----|---|--|
| COU | RSE NAI | ME  | CAREER DEVELOPMENT SKILLS | 0        | 0 | 0 | ) 2 |   |  |
|     |         |     |                           | L        | T | P | SS  | Н |  |
| C   | P       | A   | 0:0.5:1.5                 | 0        | 0 | 0 | 2   | 2 |  |
| 0   | 0.5     | 1.5 |                           |          |   |   |     |   |  |

|      |                                                      | Domain       | Level         |
|------|------------------------------------------------------|--------------|---------------|
| COUF | RSE OUTCOMES (COs)                                   |              |               |
| CO1  | Knowledge on a career related communication          | Cognitive    | Remembering,  |
|      | and learning the different formats of CV             |              | Understanding |
| CO2  | <b>Prepare</b> how to face an interview and to learn | Psychomotor, | Remembering,  |
|      | how to prepare for an interview                      | Cognitive    | Understanding |
| CO3  | Communicates with the group of people in             | Affective    | Remembering,  |
|      | discussion                                           |              | Understanding |
| UNIT | I - CV WRITING                                       |              | 10            |

Difference between resume and CV; characteristics of resume and CV; basic elements of CV and resume, use of graphics in resume and CV; forms and functions of Cover Letters.

# UNIT II- INTERVIEW SKILLS

Tips for various types of interviews. Types of questions asked; body language, etiquette and dress code in interview, interview mistakes, telephonic interview, frequently asked questions. Planning for the interview.

## **UNIT III- WORK SHOP**

Mock interviews - workshop on CV writing – Group Discussion

| Workshop | Total |
|----------|-------|
| 30       | 30    |

### **TEXT**

- 1. **How To Write a CV That Really Works**: A Concise, Clear and Comprehensive Guide to Writing an Effective CV, Paul McGee Hachette UK, 2014
- 2. **Essentials of Business Communication**, Mary Ellen Guffey, Dana Loewy, Cengage Learning, 2012

**Interview Skills that win the job**: Simple techniques for answering all the tough questions, Michael Spiropoulos, Allen &Unwin, 2005

**Effective Interviewing and Interrogation Techniques**, William L. Fleisher, Nathan J. Gordon, Academic Press, 2010

## REFERENCE WEBSITES

http://www.utsa.edu/careercenter/PDFs/Interviewing/Types%20of%20Interviews.pdf

http://www.amu.apus.edu/career-services/interviewing/types.htm

http://www.careerthinker.com/interviewing/types-of-interview/

**Mapping of COs with GAs:** 

| Mapping      | Mapping of Cos with GAs. |     |     |     |     |     |     |     |     |      |      |      |
|--------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|              | GA1                      | GA2 | GA3 | GA4 | GA5 | GA6 | GA7 | GA8 | GA9 | GA10 | GA11 | GA12 |
| CO1          |                          |     |     |     |     |     |     |     |     | 2    |      |      |
| CO2          |                          |     |     |     |     |     | 1   |     |     | 2    |      |      |
| CO3          |                          |     |     | 2   |     |     |     |     |     | 3    |      |      |
| Total        |                          |     |     | 2   |     |     | 1   |     |     | 7    |      |      |
| Scaled value |                          |     |     | 1   |     |     | 1   |     |     | 2    |      |      |

0-No Relation 1 - Low Relation, 2 - Medium Relation, 3- High Relation

| COURSECODE | XEC710 | L | T | P | C |
|------------|--------|---|---|---|---|

| CO  | URS  | E NAME                                      |                          | 0.5        | 0      | 0.5      | 1 |   |   |  |  |
|-----|------|---------------------------------------------|--------------------------|------------|--------|----------|---|---|---|--|--|
|     |      |                                             |                          | CO         | MMUN   | NICATION | Ţ |   |   |  |  |
| PRI | ERE  | QUISITE                                     | XEC60                    | 2          |        |          |   |   |   |  |  |
| C   | P    | A                                           |                          |            |        | L        | T | P | Н |  |  |
| 1   | 0    | 0                                           |                          |            |        | 1        | 0 | 1 | 2 |  |  |
| CO  | URS] | E OUTCON                                    |                          | DOMAIN     | LEVEL  |          |   |   |   |  |  |
| CO  |      | Represent va<br>communicat<br>simulation re | Cognitive<br>Psychomotor | Und<br>Set | erstai | nd       |   |   |   |  |  |

UNIT I 5+0+10

Simulation of a simple communication system and estimation bit error rate- BPSK, QPSK, QAM Modulation - Raised cosine pulses - AWGN channel - oversampled integrate-and-dump receiver front-end - Bit-error rate as a function of Es/N0 and oversampling rate. Rayleigh and Rician fading - Channel simulation - BER computation - passband and baseband systems - usage of baseband and advantages. Introduction to OFDM -Single-Carrier vs. Multi-Carrier Transmission - Basic Principle of OFDM OFDM Modulation and Demodulation - OFDM Guard Interval - OFDM Guard Band - BER of OFDM Scheme

| HOURS | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|-------|---------|----------|-----------|-------|
|       | 5       | 0        | 10        | 15    |
| [     |         |          |           |       |

### **TEXT BOOKS**

- 1. Yong Soo Cho et al., "MIMO-OFDM wireless communications with MATLAB", John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, # 02-01, Singapore 129809, 2010.\
- 2. Dennis Silage, "Digital Communication Systems Using MATLAB and Simulink, 2e, Bookstand Publishing, 2016

| SUBCODE | SUB NAME                    | L | T | P | C |
|---------|-----------------------------|---|---|---|---|
| YWC102  | MODERNDIGITAL COMMUNICATION | 3 | 0 | 1 | 4 |
| UNIT I  |                             |   |   |   | 8 |

# POWERSPECTRUMANDCOMMUNICATIONOVERMEMORYLESSCHA NNEL

Review of Autocorrelation and Spectral density, PSD of a synchronous data pulse stream; M-ary Markov source; Continuous phase modulation – Scalar and vector communication over memoryless channel – Detection criteria.

UNIT II

### BLOCKCODEDDIGITALCOMMUNICATION

Architecture and performance – Binary block codes; Orthogonal; Biorthogonal; Tran orthogonal; Linear block codes; Hamming; Golay; Cyclic; BCH; Reed – Solomon codes.

### CONVOLUTIONAL CODEDDIGITAL COMMUNICATION

Representation of codes using Polynomial, State diagram, Tree diagram, and Trellis diagram – Decoding techniques using Maximum likelihood, Viterbi algorithm, Sequential and

Threshold methods, Turbo Coding

UNIT III 8

### **OPTIMUMRECEIVERS**

Shannon's channel coding theorem; Channel capacity; Optimum Receiver; Correlation demodulator, Matched filter demodulator, properties of the matched filter, Frequency domain interpretation of the matched filter.

UNIT IV 9

### COHERENTANDNON-COHERENTCOMMUNICATION

Coded BPSK and DPSK demodulators Detections of Signals in Gaussian Noise: Decision Regions-correlation receivers- coherent detection- detection of PSK and multiple PSK-BER analysis-sampled matched filter-coherent detection of FSK - BER analysis. Non coherent Detection: Detection of DPSK, FSK-BER analysis- Performance of Non Coherent detection in Random phase, Rayleigh and Rician channels.

UNIT V 8

## **COMMUNICATIONS LINK ANALYSIS**

Channel and sources of signal loss, Received Signal Power and Noise Power, Link Budget Analysis, Noise Figure, Noise Temperature, and System Temperature, Sample Link Analysis, Satellite Repeaters

| LECTURE | PRACTICAL | TOTAL     |
|---------|-----------|-----------|
| 45      | 30        | <b>75</b> |
|         |           |           |

- 1. M.K.Simon, S.M.Hinedi and W.C.Lindsey, Digital communication techniques; Signalling and detection, Prentice Hall India, New Delhi. 1995.
- 2. Simon Haykin, Digital communications, John Wiley and sons, 2007
- 3. Bernard Sklar, "Digital Communications Fundamentals and Applications", 2<sup>nd</sup> Edition, Prentice Hall PTR, Upper Sadle River, New Jersey, 2002.
- 4. B.P.Lathi Modern digital and analog communication systems, 3<sup>rd</sup> Edition, Oxford University press 1998.
- 5. Haykins, "Communication Systems", 5th ed., John Wiley, 2008. [Unit-I, III, V].
- 6. M. K. Simon and M. S. Alouini," Digital Communication over Fading Channels", Wiley-Interscience, 2nd Edition 2005.
- 7. R. G. Gallager, "Principles of Digital Communication", Cambridge University Press, 2008.

| SUBCODE | SUB NAME          | L | T | P | C |
|---------|-------------------|---|---|---|---|
| YWC103  | WIRELESS NETWORKS | 3 | 0 | 1 | 4 |
|         |                   |   |   |   |   |
| UNIT I  |                   |   |   |   | 9 |

### PHYSICAL AND WIRELESS MAC LAYER ALTERNATIVES

Wired transmission techniques: design of wireless modems, power efficiency, out of band radiation, applied wireless transmission techniques, short distance base band transmission, VWB pulse transmission, broad Modems for higher speeds, diversity and smart receiving techniques, random access for data oriented networks, integration of voice and data traffic..

UNIT II

#### WIRELESS NETWORK PLANNING AND OPERATION

Wireless networks topologies, cellular topology, cell fundamentals signal to interference ratio calculation, capacity expansion techniques, cell splitting, use of directional antennas for cell sectoring, micro cell method, overload cells, channels allocation techniques and capacity expansion FCA, channel borrowing techniques, DCA, mobility management, radio resources and power management securities in wireless networks.

UNIT III 9

#### WIRELESS WAN

Mechanism to support a mobile environment, communication in the infrastructure, IS-95 CDMA forward channel, IS - 95 CDMA reverse channel, pallert and frame formats in IS - 95, IMT - 2000; forward channel in W-CDMA and CDMA 2000, reverse channels in W-CDMA and CDMA-2000, GPRS and higher data rates, short messaging service in GPRS mobile application protocols.

UNIT IV 9

### **WIRELESS LAN**

Historical overviews of the LAN industry, evolution of the WLAN industry, wireless home networking, IEEE 802.11. The PHY Layer, MAC Layer, wireless ATM, HYPER LAN, HYPER LAN -2.

UNIT V 9

### WPAN AND GEOLOCATION SYSTEMS

IEEE 802.15 WPAN, Home RF, Bluetooth, interface between Bluetooth and 802.11, wireless geolocation technologies for wireless geolocation, geolocation standards for E.911 service.

| LECTURE | PRACTICAL | TOTAL |
|---------|-----------|-------|
| 45      | 30        | 75    |

- 1. KavehPahlavan, PrashantKrishnamoorthy, Principles of Wireless Networks, A united approach Pearson Education, 2002.
- 2. Jochen Schiller, Mobile Communications, Person Education 2003, 2<sup>nd</sup>Edn.
- 3. X.Wang and H.V.Poor, Wireless Communication Systems, Pearson education, 2004.
- 4. M.Mallick, Mobile and Wireless design essentials, Wiley Publishing Inc. 2003.
- 5. P.Nicopolitidis, M.S.Obaidat, G.I. papadimitria, A.S. Pomportsis, Wireless Networks, John Wiley & Sons, 2003.

| SUBCODE | SUB NAME                  | L | T | P | C |
|---------|---------------------------|---|---|---|---|
| YWC106  | DIGITAL COMMUNICATION LAB | 0 | 0 | 1 | 1 |
|         | LIST OF EXPERIMENTS       |   |   |   |   |
|         |                           |   |   |   |   |

- 1. Demonstrate the theoretical and simulated BER for M-ary PSK MATLAB.
- 2. Demonstration of theoretical and simulated BER for M- QAM in AWGN using MATLAB
- 3. Rayleigh fading channel simulation
- 4. BER for BPSK/QPSK/QAM under Rayleigh channel
- 5. Single parity: Encoding and Decoding
- 6. Hamming code: Encoding and Decoding
- 7. Equalizers
- 8. Direct Sequence Spread Spectrum
- 9. Simulation of OFDM IN MATLAB
- 10. BER performance of BPSK using convolutional code under AWGN channel

## **REFERENCES:**

http://www.vlab.co.in/

http://203.110.240.139/

http://iitg.vlab.co.in/?sub=59&brch =163

http://solve.nitk.ac.in/

| SUBCODE | SUB NAME              | L | T | P | C |
|---------|-----------------------|---|---|---|---|
| YWC109  | WIRELESS NETWORKS LAB | 0 | 0 | 1 | 1 |
|         | LIST OF EXPERIMENTS   |   |   |   |   |
|         |                       |   |   |   |   |

- 1. Analysis of wireless network with wireshark.
- 2. TCL scripts and Xgraph.
- 3. Comparison of DSDV, DSR and AODV Routing protocols.
- 4. Implementation of MAC algorithm for wireless network.
- 5. Program to implement energy models for wireless nodes.
- 6. Implementation of symmetric key encryption using Ns2.
- 7. Implementation of Gray hole and wormhole attack in Ns2.
- 8. Program to calculate packet delivery ratio, packet loss, throughput, end to end delay and routing overhead for Wireless Networks.
- 9. Implementation of congestion control algorithms.
- 10. Simulate a wireless Personal Area Networks.
- 11. Measurement on the effect of RTS/CTS on a wireless link.
- 12. Performance comparison of GSM and CDMA networks

### **REFERENCES:**

1. Advanced Network Technologies Virtual Lab @ www.virtual-labs.ac.in/cse28/

- 2. www.winlab.rutgers.edu/zhibinwu/pdf/tr\_ns802\_11.pdf
- 3. www.ittc.ku.edu/jpgs/courses/... / lecture-lab-intro2ns3- print.pdf
- 4. www.isi.edu/nsnam/ns/

| SUBCODE | SUB NAME                     | L | T | P | C |
|---------|------------------------------|---|---|---|---|
| YRM107  | RESEARCH METHODOLOGY AND IPR | 3 | 1 | 0 | 4 |
| UNIT I  |                              |   |   |   | 9 |

Meaning of research problem, Sources of research problem, Criteria-Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

UNIT III 9

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT V

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 15       | 60    |

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.

- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

| SUBCODE | SUB NAME                           | L | T | P | C |
|---------|------------------------------------|---|---|---|---|
| YEGOE1  | ENGLISH FOR RESEARCH PAPER WRITING | 3 | 1 | 0 | 4 |
| IINIT I |                                    |   |   |   | 9 |

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and vagueness

UNIT II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts.Introduction

UNIT III 9

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT IV 9

key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT V 9

skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 45      | 15       | 60    |  |

### REFERENCES

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM.
- 4. Adrian Wallwork , English for Writing Research Papers, Springer New York DordrechtHeidelberg London, 2011

| SUBCOD        | SUBCODE SUB NAME               |         |         |      |         |      | c           | T          | P   | C     |      |     |
|---------------|--------------------------------|---------|---------|------|---------|------|-------------|------------|-----|-------|------|-----|
| <b>YWC203</b> |                                | ADVA    | NCED 1  | RADI | IATION  | SYS  | <b>TEMS</b> |            | 3   | 0     | 0    | 3   |
| UNITI B       | UNITI BASICCONCEPTSOFRADIATION |         |         |      |         |      |             |            |     |       |      |     |
| Radiation     | from                           | surface | current | and  | current | line | current     | distributi | on, | Basic | ante | nna |

Radiation from surface current and current line current distribution, Basic antenna parameters, Radiation mechanism-Current distribution of an Antennas, Impedance concept-

Balance to Unbalanced transformer.

### UNITH RADIATIONFROMAPERTURES

9

Field equivalence principle, Rectangular and circular apertures, Uniform distribution on an infinite ground plane, Aperture fields of Horn antenna-Babinets principle, Geometrical theory of diffraction, Reflector antennas, and Design considerations - Slot antennas.

## UNITIII SYNTHESISOFARRAYANTENNAS

9

Types of linear arrays, current distribution in linear arrays, Phased arrays, Optimization of Array patterns, Continuous aperture sources, Antenna synthesis techniques.

## **UNITIVMICROSTRIPANTENNAS**

9

Radiation mechanisms, Feeding structure, Retangular patch, Circular patch, Ring antenna. Input impedance of patch antenna, Microstrip dipole, Microstrip arrays

## UNITY EMIS/EMC/ANTENNAMEASUREMENTS

9

Log periodic, Bi-conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave antenna, Antenna measurement and instrumentation ,Amplitude and Phase measurement, Gain, Directivity. Impedance and polarization measurement, Antenna range, Design and Evaluation

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |

- 1. Kraus.J.D., "Antennas" IIE dition, John wiley and Sons, 1997
- 2. Balanis.A, "AntennaTheoryAnalysisandDesign", JohnWileyandSons, NewYork, 19823. Collin.R.E. and Zucker.F., "AntennaTheory" PartI, McGrawHill, NewYork, 1969.
- 3. QizhengGu, "RFSystemDesignofTransceiversforWirelessCommunications", Springer ,2010.
- 4. MichaelB.Steer, "MicrowaveandRFDesign: ASystems Approach", SciTech Publishing, 2009.
- 5. KenKuang, Franklin Kimand Sean S. Cahill, "RFand Microwave Microelectronics Packaging", Springer, 2009.
- 6. R.JacobBaker, "CMOSCircuitDesign, Layout, and Simulation", 3rd Edition (IEEE Press Series on Microelectronic Systems), 201

| SUBCODE | SUB NAME                    | L | T | P | C |
|---------|-----------------------------|---|---|---|---|
| YWC206  | RADIO FREQUENCY SYSTEMS LAB | 0 | 0 | 1 | 1 |

- 1. Directional coupler
- 2. Circulator
- 3. Isolator
- 4. Attenuator
- 5. Slotted line bench
- 6. Microwave horn antenna
- 7. 2.Directional Simulation of Planar Transmission Lines and matching network
- 8. Simulation of Microwave Filters
- 9. Couplers and Power dividers
- 10. Patch antenna

### **REFERENCES:**

- 1. Satish K. Sharma, "Experiment Manual on EE540L: Microwave Devices and Systems Laboratory Course", 2 nd Edition, Montezuma Publishing, Spring 201
- 2. D. M. Pozar, "Microwave Engineering", 4rth Edition, Wiley, 2011

| SUBCODE      | SUB NAME              | L | T | P | C |
|--------------|-----------------------|---|---|---|---|
| YPSOE1       | CONSTITUTION OF INDIA | 3 | 1 | 0 | 4 |
| UNIT I HISTO | RY AND PHIOLOSOPHY    |   |   |   | 9 |

History of Making of the Indian Constitution: History-Drafting Committee, (Composition & Working)Philosophy of the Indian Constitution: Preamble-Salient Features

### UNIT II CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES:

9

Fundamental Rights -Right to Equality-Right to Freedom-Right against Exploitation-Right to Freedom of Religion-Cultural and Educational Rights-Right to Constitutional Remedies-Directive Principles of State Policy-Fundamental Duties.

## **UNIT III ORGANS OF GOVERNANCE:**

9

Parliament-Composition-Qualifications and Disqualifications-Powers and Functions-Executive-President-Governor-Council of Ministers-Judiciary, Appointment and Transfer of Judges, Qualifications-Powers and Functions

### UNIT IV LOCAL ADMINISTRATION

9

District's Administration head: Role and Importance, -Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

## **UNIT V ELECTION COMMISSION:**

9

Election Commission: Role and Functioning. -Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 15       | 60    |

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.